Abstract

Fluorescence imaging is a widely used in vivo optical imaging technique for preclinical studies, but strong tissue autofluorescence and external excitation light make it suffer from a low signal-to-noise ratio (SNR). Recently, a new optical imaging method using persistent luminescence has become of interest due to its advantage of circumvention of autofluorescence and bleed-through of excitation light during signal acquisition. In this work, we proposed a tomographic imaging method based on persistent luminescence named persistent luminescence tomography (PLT), which can obtain three dimensional distributions of persistent luminescence probes deep inside small animals. Persistent luminescence signals can last several hours after excitation, which makes it possible for PLT to collect signals without interference by autofluorescence and bleed-through of excitation light, and then to reconstruct tomographic images of high quality. Phantom and mouse experiments are implemented to verify the feasiblity of PLT.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging

Rui Ma, Adrian Taruttis, Vasilis Ntziachristos, and Daniel Razansky
Opt. Express 17(24) 21414-21426 (2009)

Cerenkov luminescence tomography for small-animal imaging

Changqing Li, Gregory S. Mitchell, and Simon R. Cherry
Opt. Lett. 35(7) 1109-1111 (2010)

A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design

Changqing Li, Gregory S. Mitchell, Joyita Dutta, Sangtae Ahn, Richard M. Leahy, and Simon R. Cherry
Opt. Express 17(9) 7571-7585 (2009)

References

  • View by:
  • |
  • |
  • |

  1. T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17(5), 545–580 (2003).
    [Crossref] [PubMed]
  2. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
    [Crossref] [PubMed]
  3. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
    [Crossref] [PubMed]
  4. J. V. Frangioni, “Self-illuminating quantum dots light the way,” Nat. Biotechnol. 24(3), 326–328 (2006).
    [Crossref] [PubMed]
  5. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [Crossref]
  6. T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1–2), 114–122 (2003).
    [Crossref]
  7. Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
    [Crossref] [PubMed]
  8. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
    [Crossref] [PubMed]
  9. T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
    [Crossref] [PubMed]
  10. A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
    [Crossref] [PubMed]
  11. T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
    [Crossref] [PubMed]
  12. T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
    [Crossref] [PubMed]
  13. B. Y. Wu, H. F. Wang, J. T. Chen, and X. P. Yan, “Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles,” J. Am. Chem. Soc. 133(4), 686–688 (2011).
    [Crossref] [PubMed]
  14. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005).
    [Crossref] [PubMed]
  15. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
    [Crossref] [PubMed]
  16. A. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), 41–93 (1999).
    [Crossref]
  17. J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051917 (2001).
    [Crossref] [PubMed]
  18. J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007).
    [Crossref]
  19. V. Temlyakov, “Nonlinear methods of approximation,” Found. Comput. Math. 3(1), 33–107 (2003).
    [Crossref]
  20. G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16(4), 225–234 (2008).
  21. H. Chen, Y. C. Zhang, C. Chen, Z. L. Wang, and N. Yao, “The Research of Solvothermal Method Preparation of Y2O2S:Eu3+0.06, Mg2+0.04,Ti4+0.01 Water-Soluble Red Afterglow Materials,” Applied Mechanics and Materials 513–517, 138–142 (2014).
    [Crossref]

2014 (2)

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

H. Chen, Y. C. Zhang, C. Chen, Z. L. Wang, and N. Yao, “The Research of Solvothermal Method Preparation of Y2O2S:Eu3+0.06, Mg2+0.04,Ti4+0.01 Water-Soluble Red Afterglow Materials,” Applied Mechanics and Materials 513–517, 138–142 (2014).
[Crossref]

2013 (1)

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

2012 (1)

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

2011 (3)

B. Y. Wu, H. F. Wang, J. T. Chen, and X. P. Yan, “Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles,” J. Am. Chem. Soc. 133(4), 686–688 (2011).
[Crossref] [PubMed]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

2008 (2)

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[Crossref] [PubMed]

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16(4), 225–234 (2008).

2007 (2)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007).
[Crossref]

2006 (1)

J. V. Frangioni, “Self-illuminating quantum dots light the way,” Nat. Biotechnol. 24(3), 326–328 (2006).
[Crossref] [PubMed]

2005 (2)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005).
[Crossref] [PubMed]

2003 (3)

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17(5), 545–580 (2003).
[Crossref] [PubMed]

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1–2), 114–122 (2003).
[Crossref]

V. Temlyakov, “Nonlinear methods of approximation,” Found. Comput. Math. 3(1), 33–107 (2003).
[Crossref]

2001 (1)

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051917 (2001).
[Crossref] [PubMed]

1999 (1)

A. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), 41–93 (1999).
[Crossref]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Abdukayum, A.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

Airenne, K. J.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

Aitasalo, T.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1–2), 114–122 (2003).
[Crossref]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Arridge, A. R.

A. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), 41–93 (1999).
[Crossref]

Arridge, S. R.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Bessière, A.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Bessodes, M.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Bos, A. J.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Carminati, R.

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051917 (2001).
[Crossref] [PubMed]

Chanéac, C.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Chen, C.

H. Chen, Y. C. Zhang, C. Chen, Z. L. Wang, and N. Yao, “The Research of Solvothermal Method Preparation of Y2O2S:Eu3+0.06, Mg2+0.04,Ti4+0.01 Water-Soluble Red Afterglow Materials,” Applied Mechanics and Materials 513–517, 138–142 (2014).
[Crossref]

Chen, H.

H. Chen, Y. C. Zhang, C. Chen, Z. L. Wang, and N. Yao, “The Research of Solvothermal Method Preparation of Y2O2S:Eu3+0.06, Mg2+0.04,Ti4+0.01 Water-Soluble Red Afterglow Materials,” Applied Mechanics and Materials 513–517, 138–142 (2014).
[Crossref]

Chen, J. T.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

B. Y. Wu, H. F. Wang, J. T. Chen, and X. P. Yan, “Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles,” J. Am. Chem. Soc. 133(4), 686–688 (2011).
[Crossref] [PubMed]

Cong, A.

Cong, W.

Dai, Y.

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16(4), 225–234 (2008).

Delpy, D. T.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Deren, P.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1–2), 114–122 (2003).
[Crossref]

Dinkelborg, L. M.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[Crossref] [PubMed]

Dorenbos, P.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Frangioni, J. V.

J. V. Frangioni, “Self-illuminating quantum dots light the way,” Nat. Biotechnol. 24(3), 326–328 (2006).
[Crossref] [PubMed]

Gambhir, S. S.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[Crossref] [PubMed]

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17(5), 545–580 (2003).
[Crossref] [PubMed]

Gilbert, A. C.

J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007).
[Crossref]

Gourier, D.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Hoffman, E.

Hölsä, J.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1–2), 114–122 (2003).
[Crossref]

Jiang, M.

Jolivet, J. P.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Jungner, H.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1–2), 114–122 (2003).
[Crossref]

Kaikkonen, M. U.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

Krupa, J. C.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1–2), 114–122 (2003).
[Crossref]

Kumar, D.

Lastusaari, M.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1–2), 114–122 (2003).
[Crossref]

le Masne de Chermont, Q.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Legendziewicz, J.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1–2), 114–122 (2003).
[Crossref]

Liu, F.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Liu, Y.

Lu, Y. Y.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Maîtrejean, S.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Maldiney, T.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Massoud, T. F.

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17(5), 545–580 (2003).
[Crossref] [PubMed]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

McCray, P.

McLennan, G.

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Nieto-Vesperinas, M.

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051917 (2001).
[Crossref] [PubMed]

Niittykoski, J.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1–2), 114–122 (2003).
[Crossref]

Ntziachristos, V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051917 (2001).
[Crossref] [PubMed]

Pan, Z.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Pellé, F.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Qin, C.

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16(4), 225–234 (2008).

Richard, C.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051917 (2001).
[Crossref] [PubMed]

Scherman, D.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Schweiger, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Seguin, J.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Sharma, S. K.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Strek, W.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1–2), 114–122 (2003).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Temlyakov, V.

V. Temlyakov, “Nonlinear methods of approximation,” Found. Comput. Math. 3(1), 33–107 (2003).
[Crossref]

Teston, E.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Tian, J.

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16(4), 225–234 (2008).

Tropp, J. A.

J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007).
[Crossref]

van Bruggen, N.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[Crossref] [PubMed]

Viana, B.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Wang, G.

Wang, H. F.

B. Y. Wu, H. F. Wang, J. T. Chen, and X. P. Yan, “Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles,” J. Am. Chem. Soc. 133(4), 686–688 (2011).
[Crossref] [PubMed]

Wang, L.

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Wang, Z. L.

H. Chen, Y. C. Zhang, C. Chen, Z. L. Wang, and N. Yao, “The Research of Solvothermal Method Preparation of Y2O2S:Eu3+0.06, Mg2+0.04,Ti4+0.01 Water-Soluble Red Afterglow Materials,” Applied Mechanics and Materials 513–517, 138–142 (2014).
[Crossref]

Wattier, N.

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Willmann, J. K.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[Crossref] [PubMed]

Wu, B. Y.

B. Y. Wu, H. F. Wang, J. T. Chen, and X. P. Yan, “Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles,” J. Am. Chem. Soc. 133(4), 686–688 (2011).
[Crossref] [PubMed]

Yan, G.

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16(4), 225–234 (2008).

Yan, X. P.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

B. Y. Wu, H. F. Wang, J. T. Chen, and X. P. Yan, “Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles,” J. Am. Chem. Soc. 133(4), 686–688 (2011).
[Crossref] [PubMed]

Yao, N.

H. Chen, Y. C. Zhang, C. Chen, Z. L. Wang, and N. Yao, “The Research of Solvothermal Method Preparation of Y2O2S:Eu3+0.06, Mg2+0.04,Ti4+0.01 Water-Soluble Red Afterglow Materials,” Applied Mechanics and Materials 513–517, 138–142 (2014).
[Crossref]

Ylä-Herttuala, S.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

Zabner, J.

Zhang, Y. C.

H. Chen, Y. C. Zhang, C. Chen, Z. L. Wang, and N. Yao, “The Research of Solvothermal Method Preparation of Y2O2S:Eu3+0.06, Mg2+0.04,Ti4+0.01 Water-Soluble Red Afterglow Materials,” Applied Mechanics and Materials 513–517, 138–142 (2014).
[Crossref]

Zhao, Q.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

Zhu, S.

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16(4), 225–234 (2008).

ACS Nano (1)

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Applied Mechanics and Materials (1)

H. Chen, Y. C. Zhang, C. Chen, Z. L. Wang, and N. Yao, “The Research of Solvothermal Method Preparation of Y2O2S:Eu3+0.06, Mg2+0.04,Ti4+0.01 Water-Soluble Red Afterglow Materials,” Applied Mechanics and Materials 513–517, 138–142 (2014).
[Crossref]

Bioconjug. Chem. (1)

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[Crossref] [PubMed]

Found. Comput. Math. (1)

V. Temlyakov, “Nonlinear methods of approximation,” Found. Comput. Math. 3(1), 33–107 (2003).
[Crossref]

Genes Dev. (1)

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17(5), 545–580 (2003).
[Crossref] [PubMed]

IEEE Trans. Inf. Theory (1)

J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007).
[Crossref]

Inverse Probl. (1)

A. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), 41–93 (1999).
[Crossref]

J. Am. Chem. Soc. (2)

B. Y. Wu, H. F. Wang, J. T. Chen, and X. P. Yan, “Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles,” J. Am. Chem. Soc. 133(4), 686–688 (2011).
[Crossref] [PubMed]

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

J. Electrochem. Soc. (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

J. Solid State Chem. (1)

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1–2), 114–122 (2003).
[Crossref]

J. XRay Sci. Technol. (1)

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16(4), 225–234 (2008).

Med. Phys. (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Nat. Biotechnol. (2)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

J. V. Frangioni, “Self-illuminating quantum dots light the way,” Nat. Biotechnol. 24(3), 326–328 (2006).
[Crossref] [PubMed]

Nat. Mater. (2)

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Nat. Rev. Drug Discov. (1)

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051917 (2001).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Flow chart of PLT.
Fig. 2
Fig. 2 Emission spectrum of Y2O2S:Eu3+,Ti2+, and Mg4+.
Fig. 3
Fig. 3 Image comparisons between PLI and FI. The first row is the setups for different depths. The second row is PLI images for different depths of PLNPs. The last three rows are original FI, subtracted FI and noise of FI images for different depths of fluorescent targets, respectively.
Fig. 4
Fig. 4 Resolution comparisons between PLI and FI images. The right profiles of PLI, original and subtracted FI images for different depths were acquired along vertical lines defined in the left diagrams.
Fig. 5
Fig. 5 Comparisons between PLI and FI for phantom experiments. (a) Fused PLI image with the white light image. (b) Fused original FI image with the white light image. (c) Fused subtracted FI image with the white light image. (d) Fused noise of FI image with the white light image.
Fig. 6
Fig. 6 Reconstructed results for the phantom experiment. (a) 2D sections (left) and 3D renderings (right) fused with CT images for PLT. (b) 2D sections (left) and 3D volume renderings (right) fused with CT images for FT.
Fig. 7
Fig. 7 Comparisons between PLI and FI for mouse experiments. (a) Fused PLI image with the white light image. (b) Fused original FI image with the white light image. (c) Fused subtracted FI image with the white light image. (d) Fused noise of FI image with the white light image.
Fig. 8
Fig. 8 Reconstructed results for the mouse experiment. (a) 2D sections (left) and 3D renderings (right) fused with the CT images for PLT. (b) 2D sections (left) and 3D volume renderings (right) fused with the CT images for FT.

Tables (2)

Tables Icon

Table 1 Quantitative analysis for PLT and FT reconstructions of the phantom experiment

Tables Icon

Table 2 Quantitative analysis for PLT and FT reconstructions of the mouse experiment.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{ - [ D m ( r ) Φ m ( r ) ] + μ a m ( r ) Φ m ( r ) = X ( r ) r Ω Φ m ( r ) + 2 A D m ( r ) Φ m ( r ) n ^ = 0 r Ω .
W X = Φ
W N X N = Φ .
D I C = 2 | R R R s | | R R | + | R s | .

Metrics