Abstract

Raman spectroscopy is well suited for readily revealing information about bio-samples. As such, this technique has been applied to a wide range of areas, particularly in bio-medical diagnostics. Raman scattering in bio-samples typically has a low signal level due to the nature of inelastic scattering of photons. To achieve a high signal level, usually a high numerical aperture objective is employed. One drawback with these objectives is that their working distance is very short. However, in many cases of clinical diagnostics, a long working distance is preferable. We propose a practical solution to this problem by enhancing the Raman signal using a parabolic reflector. The high signal level is achieved through the large light collection solid angle of the parabolic reflector while the long working distance is ensured by the novel design of our microscope. The enhancement capability of the microscope was demonstrated on four types of samples. Among these samples, we find that this microscope design is most suitable for turbid samples.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection

Yinzhou Yan, Cheng Xing, Yanhua Jia, Yong Zeng, Yan Zhao, and Yijian Jiang
Opt. Express 23(20) 25854-25865 (2015)

Hyperspectral spatially offset Raman spectroscopy in a microfluidic channel

Moritz Matthiae and Anders Kristensen
Opt. Express 27(3) 3782-3790 (2019)

Snapshot depth sensitive Raman spectroscopy in layered tissues

Wei Liu, Yi Hong Ong, Xiao Jun Yu, Jian Ju, Clint Michael Perlaki, Lin Bo Liu, and Quan Liu
Opt. Express 24(25) 28312-28325 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. L. McCreery, Raman Spectroscopy for Chemical Analysis, vol. 225 (John Wiley & Sons, 2005).
  2. Y. Tian, M. J. Gray, H. Ji, R. J. Cava, and K. S. Burch, “Magneto-elastic coupling in a potential ferromagnetic 2d atomic crystal,” 2D Mater. 3(2), 025035 (2016).
    [Crossref]
  3. Y. Tian, G. B. Osterhoudt, S. Jia, R. Cava, and K. S. Burch, “Local phonon mode in thermoelectric Bi2Te2Se from charge neutral antisites,” Appl. Phys. Lett. 108(4), 041911 (2016).
    [Crossref]
  4. Y. Tian, S. Jia, R. Cava, R. Zhong, J. Schneeloch, G. Gu, and K. S. Burch, “Understanding the evolution of anomalous anharmonicity in Bi2 Te3−x Sex,” Phys. Rev. B 95(9), 094104 (2017).
    [Crossref]
  5. C. Perlaki, S. Lim, and Q. Liu, “Polarized Raman spectroscopy for enhanced quantification of protein concentrations in an aqueous mixture,” J. Raman Spectrosc. 46(9), 744–749 (2015).
    [Crossref]
  6. K. Chen, C. Yuen, Y. Aniweh, P. Preiser, and Q. Liu, “Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy,” Sci. Rep. 6, 20177–20186 (2016).
    [Crossref] [PubMed]
  7. C. M. Perlaki, Q. Liu, and M. Lim, “Raman spectroscopy based techniques in tissue engineering–an overview,” Appl. Spectrosc. Rev. 49(7), 513–532 (2014).
    [Crossref]
  8. G. McLaughlin, K. C. Doty, and I. K. Lednev, “Raman spectroscopy of blood for species identification,” Anal. Chem. 86(23), 11628–11633 (2014).
    [Crossref] [PubMed]
  9. M. Elshout, R. J. Erckens, C. A. Webers, H. J. Beckers, T. T. Berendschot, J. de Brabander, F. Hendrikse, and J. S. Schouten, “Detection of Raman spectra in ocular drugs for potential in vivo application of raman spectroscopy,” J. Ocul. Pharmacol. Th. 27, (5)445–451 (2011).
    [Crossref]
  10. N. J. Bauer, F. Hendrikse, and W. F. March, “In vivo confocal Raman spectroscopy of the human cornea,” Cornea 18(4), 483–488 (1999).
    [Crossref] [PubMed]
  11. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
    [Crossref] [PubMed]
  12. H.-U. Gremlich and B. Yan, Infrared and Raman Spectroscopy of Biological Materials (CRC Press, 2000).
  13. S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of raman spectra from narrow-band measurements based on wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
    [Crossref]
  14. D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and et al., “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc. 40(10), 1371–1376 (2009).
    [Crossref]
  15. A. Yu, D. Zuo, J. Gao, B. Li, and X. Wang, “Application of parabolic reflector on raman analysis of gas samples,” Proc. SPIE 9855, 98550A (2016).
    [Crossref]
  16. A. Ahmed, Y. Pang, G. Hajisalem, and R. Gordon, “Antenna design for directivity-enhanced raman spectroscopy,” Int. J. Opt. 2012, 729138 (2012).
  17. A. K. Misra, S. K. Sharma, L. Kamemoto, P. V. Zinin, Q. Yu, N. Hu, and L. Melnick, “Novel micro-cavity substrates for improving the raman signal from submicrometer size materials,” Appl. Spectrosc. 63(3), 373–377 (2009).
    [Crossref] [PubMed]
  18. G. Turrell and J. Corset, Raman Microscopy: Developments and Applications (Academic Press, 1996).
  19. K. Tanaka, M. T. Pacheco, J. F. Brennan, I. Itzkan, A. J. Berger, R. R. Dasari, and M. S. Feld, “Compound parabolic concentrator probe for efficient light collection in spectroscopy of biological tissue,” Appl. Opt. 35(4), 758–763 (1996).
    [Crossref] [PubMed]
  20. C.-R. Kong, I. Barman, N. C. Dingari, J. W. Kang, L. Galindo, R. R. Dasari, and M. S. Feld, “A novel non-imaging optics based raman spectroscopy device for transdermal blood analyte measurement,” AIP Adv. 1(3), 032175 (2011).
    [Crossref]
  21. J. Mathew, Y. Semenova, and G. Farrell, “A miniature optical breathing sensor,” Biomed. Opt. Express 3(12), 3325–3331 (2012).
    [Crossref] [PubMed]
  22. C. Yuen and Q. Liu, “Hollow agarose microneedle with silver coating for intradermal surface-enhanced raman measurements: a skin-mimicking phantom study,” J. Biomed. Opt. 20(6), 061102 (2015).
    [Crossref]
  23. R. Liu, M. Zhang, and C. Jin, “In vivo and in situ imaging of controlled-release dissolving silk microneedles into the skin by optical coherence tomography,” J. Biophotonics 10(6–7), 870–877 (2017).
    [Crossref]
  24. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological raman spectra,” Appl. Spectrosc. 57(11), 1363–1367 (2003).
    [Crossref] [PubMed]
  25. L. G. Coppel, N. Johansson, and M. Neuman, “Angular dependence of fluorescence from turbid media,” Opt. Express 23(15), 19552–19564 (2015).
    [Crossref] [PubMed]
  26. C. Mätzler, “Matlab functions for mie scattering and absorption, version 2,” IAP Res. Rep 8, 1–24 (2002).
  27. J. M. Geary, Introduction to Lens Design: With Practical ZEMAX Examples (Willmann-Bell Richmond, 2002).

2017 (2)

Y. Tian, S. Jia, R. Cava, R. Zhong, J. Schneeloch, G. Gu, and K. S. Burch, “Understanding the evolution of anomalous anharmonicity in Bi2 Te3−x Sex,” Phys. Rev. B 95(9), 094104 (2017).
[Crossref]

R. Liu, M. Zhang, and C. Jin, “In vivo and in situ imaging of controlled-release dissolving silk microneedles into the skin by optical coherence tomography,” J. Biophotonics 10(6–7), 870–877 (2017).
[Crossref]

2016 (4)

Y. Tian, M. J. Gray, H. Ji, R. J. Cava, and K. S. Burch, “Magneto-elastic coupling in a potential ferromagnetic 2d atomic crystal,” 2D Mater. 3(2), 025035 (2016).
[Crossref]

Y. Tian, G. B. Osterhoudt, S. Jia, R. Cava, and K. S. Burch, “Local phonon mode in thermoelectric Bi2Te2Se from charge neutral antisites,” Appl. Phys. Lett. 108(4), 041911 (2016).
[Crossref]

K. Chen, C. Yuen, Y. Aniweh, P. Preiser, and Q. Liu, “Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy,” Sci. Rep. 6, 20177–20186 (2016).
[Crossref] [PubMed]

A. Yu, D. Zuo, J. Gao, B. Li, and X. Wang, “Application of parabolic reflector on raman analysis of gas samples,” Proc. SPIE 9855, 98550A (2016).
[Crossref]

2015 (3)

C. Perlaki, S. Lim, and Q. Liu, “Polarized Raman spectroscopy for enhanced quantification of protein concentrations in an aqueous mixture,” J. Raman Spectrosc. 46(9), 744–749 (2015).
[Crossref]

C. Yuen and Q. Liu, “Hollow agarose microneedle with silver coating for intradermal surface-enhanced raman measurements: a skin-mimicking phantom study,” J. Biomed. Opt. 20(6), 061102 (2015).
[Crossref]

L. G. Coppel, N. Johansson, and M. Neuman, “Angular dependence of fluorescence from turbid media,” Opt. Express 23(15), 19552–19564 (2015).
[Crossref] [PubMed]

2014 (2)

C. M. Perlaki, Q. Liu, and M. Lim, “Raman spectroscopy based techniques in tissue engineering–an overview,” Appl. Spectrosc. Rev. 49(7), 513–532 (2014).
[Crossref]

G. McLaughlin, K. C. Doty, and I. K. Lednev, “Raman spectroscopy of blood for species identification,” Anal. Chem. 86(23), 11628–11633 (2014).
[Crossref] [PubMed]

2013 (1)

S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of raman spectra from narrow-band measurements based on wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
[Crossref]

2012 (2)

A. Ahmed, Y. Pang, G. Hajisalem, and R. Gordon, “Antenna design for directivity-enhanced raman spectroscopy,” Int. J. Opt. 2012, 729138 (2012).

J. Mathew, Y. Semenova, and G. Farrell, “A miniature optical breathing sensor,” Biomed. Opt. Express 3(12), 3325–3331 (2012).
[Crossref] [PubMed]

2011 (2)

C.-R. Kong, I. Barman, N. C. Dingari, J. W. Kang, L. Galindo, R. R. Dasari, and M. S. Feld, “A novel non-imaging optics based raman spectroscopy device for transdermal blood analyte measurement,” AIP Adv. 1(3), 032175 (2011).
[Crossref]

M. Elshout, R. J. Erckens, C. A. Webers, H. J. Beckers, T. T. Berendschot, J. de Brabander, F. Hendrikse, and J. S. Schouten, “Detection of Raman spectra in ocular drugs for potential in vivo application of raman spectroscopy,” J. Ocul. Pharmacol. Th. 27, (5)445–451 (2011).
[Crossref]

2009 (2)

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and et al., “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc. 40(10), 1371–1376 (2009).
[Crossref]

A. K. Misra, S. K. Sharma, L. Kamemoto, P. V. Zinin, Q. Yu, N. Hu, and L. Melnick, “Novel micro-cavity substrates for improving the raman signal from submicrometer size materials,” Appl. Spectrosc. 63(3), 373–377 (2009).
[Crossref] [PubMed]

2005 (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

2003 (1)

2002 (1)

C. Mätzler, “Matlab functions for mie scattering and absorption, version 2,” IAP Res. Rep 8, 1–24 (2002).

1999 (1)

N. J. Bauer, F. Hendrikse, and W. F. March, “In vivo confocal Raman spectroscopy of the human cornea,” Cornea 18(4), 483–488 (1999).
[Crossref] [PubMed]

1996 (1)

Ahmed, A.

A. Ahmed, Y. Pang, G. Hajisalem, and R. Gordon, “Antenna design for directivity-enhanced raman spectroscopy,” Int. J. Opt. 2012, 729138 (2012).

Aniweh, Y.

K. Chen, C. Yuen, Y. Aniweh, P. Preiser, and Q. Liu, “Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy,” Sci. Rep. 6, 20177–20186 (2016).
[Crossref] [PubMed]

Barman, I.

C.-R. Kong, I. Barman, N. C. Dingari, J. W. Kang, L. Galindo, R. R. Dasari, and M. S. Feld, “A novel non-imaging optics based raman spectroscopy device for transdermal blood analyte measurement,” AIP Adv. 1(3), 032175 (2011).
[Crossref]

Bauer, N. J.

N. J. Bauer, F. Hendrikse, and W. F. March, “In vivo confocal Raman spectroscopy of the human cornea,” Cornea 18(4), 483–488 (1999).
[Crossref] [PubMed]

Beckers, H. J.

M. Elshout, R. J. Erckens, C. A. Webers, H. J. Beckers, T. T. Berendschot, J. de Brabander, F. Hendrikse, and J. S. Schouten, “Detection of Raman spectra in ocular drugs for potential in vivo application of raman spectroscopy,” J. Ocul. Pharmacol. Th. 27, (5)445–451 (2011).
[Crossref]

Berendschot, T. T.

M. Elshout, R. J. Erckens, C. A. Webers, H. J. Beckers, T. T. Berendschot, J. de Brabander, F. Hendrikse, and J. S. Schouten, “Detection of Raman spectra in ocular drugs for potential in vivo application of raman spectroscopy,” J. Ocul. Pharmacol. Th. 27, (5)445–451 (2011).
[Crossref]

Berger, A. J.

Brabec, C. J.

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and et al., “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc. 40(10), 1371–1376 (2009).
[Crossref]

Braun, K.

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and et al., “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc. 40(10), 1371–1376 (2009).
[Crossref]

Brennan, J. F.

Burch, K. S.

Y. Tian, S. Jia, R. Cava, R. Zhong, J. Schneeloch, G. Gu, and K. S. Burch, “Understanding the evolution of anomalous anharmonicity in Bi2 Te3−x Sex,” Phys. Rev. B 95(9), 094104 (2017).
[Crossref]

Y. Tian, M. J. Gray, H. Ji, R. J. Cava, and K. S. Burch, “Magneto-elastic coupling in a potential ferromagnetic 2d atomic crystal,” 2D Mater. 3(2), 025035 (2016).
[Crossref]

Y. Tian, G. B. Osterhoudt, S. Jia, R. Cava, and K. S. Burch, “Local phonon mode in thermoelectric Bi2Te2Se from charge neutral antisites,” Appl. Phys. Lett. 108(4), 041911 (2016).
[Crossref]

Cava, R.

Y. Tian, S. Jia, R. Cava, R. Zhong, J. Schneeloch, G. Gu, and K. S. Burch, “Understanding the evolution of anomalous anharmonicity in Bi2 Te3−x Sex,” Phys. Rev. B 95(9), 094104 (2017).
[Crossref]

Y. Tian, G. B. Osterhoudt, S. Jia, R. Cava, and K. S. Burch, “Local phonon mode in thermoelectric Bi2Te2Se from charge neutral antisites,” Appl. Phys. Lett. 108(4), 041911 (2016).
[Crossref]

Cava, R. J.

Y. Tian, M. J. Gray, H. Ji, R. J. Cava, and K. S. Burch, “Magneto-elastic coupling in a potential ferromagnetic 2d atomic crystal,” 2D Mater. 3(2), 025035 (2016).
[Crossref]

Chen, K.

K. Chen, C. Yuen, Y. Aniweh, P. Preiser, and Q. Liu, “Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy,” Sci. Rep. 6, 20177–20186 (2016).
[Crossref] [PubMed]

Chen, S.

S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of raman spectra from narrow-band measurements based on wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
[Crossref]

Coppel, L. G.

Corset, J.

G. Turrell and J. Corset, Raman Microscopy: Developments and Applications (Academic Press, 1996).

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Dasari, R. R.

C.-R. Kong, I. Barman, N. C. Dingari, J. W. Kang, L. Galindo, R. R. Dasari, and M. S. Feld, “A novel non-imaging optics based raman spectroscopy device for transdermal blood analyte measurement,” AIP Adv. 1(3), 032175 (2011).
[Crossref]

K. Tanaka, M. T. Pacheco, J. F. Brennan, I. Itzkan, A. J. Berger, R. R. Dasari, and M. S. Feld, “Compound parabolic concentrator probe for efficient light collection in spectroscopy of biological tissue,” Appl. Opt. 35(4), 758–763 (1996).
[Crossref] [PubMed]

de Brabander, J.

M. Elshout, R. J. Erckens, C. A. Webers, H. J. Beckers, T. T. Berendschot, J. de Brabander, F. Hendrikse, and J. S. Schouten, “Detection of Raman spectra in ocular drugs for potential in vivo application of raman spectroscopy,” J. Ocul. Pharmacol. Th. 27, (5)445–451 (2011).
[Crossref]

Dingari, N. C.

C.-R. Kong, I. Barman, N. C. Dingari, J. W. Kang, L. Galindo, R. R. Dasari, and M. S. Feld, “A novel non-imaging optics based raman spectroscopy device for transdermal blood analyte measurement,” AIP Adv. 1(3), 032175 (2011).
[Crossref]

Doty, K. C.

G. McLaughlin, K. C. Doty, and I. K. Lednev, “Raman spectroscopy of blood for species identification,” Anal. Chem. 86(23), 11628–11633 (2014).
[Crossref] [PubMed]

Egelhaaf, H.-J.

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and et al., “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc. 40(10), 1371–1376 (2009).
[Crossref]

Elshout, M.

M. Elshout, R. J. Erckens, C. A. Webers, H. J. Beckers, T. T. Berendschot, J. de Brabander, F. Hendrikse, and J. S. Schouten, “Detection of Raman spectra in ocular drugs for potential in vivo application of raman spectroscopy,” J. Ocul. Pharmacol. Th. 27, (5)445–451 (2011).
[Crossref]

Erckens, R. J.

M. Elshout, R. J. Erckens, C. A. Webers, H. J. Beckers, T. T. Berendschot, J. de Brabander, F. Hendrikse, and J. S. Schouten, “Detection of Raman spectra in ocular drugs for potential in vivo application of raman spectroscopy,” J. Ocul. Pharmacol. Th. 27, (5)445–451 (2011).
[Crossref]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Farrell, G.

Feld, M. S.

C.-R. Kong, I. Barman, N. C. Dingari, J. W. Kang, L. Galindo, R. R. Dasari, and M. S. Feld, “A novel non-imaging optics based raman spectroscopy device for transdermal blood analyte measurement,” AIP Adv. 1(3), 032175 (2011).
[Crossref]

K. Tanaka, M. T. Pacheco, J. F. Brennan, I. Itzkan, A. J. Berger, R. R. Dasari, and M. S. Feld, “Compound parabolic concentrator probe for efficient light collection in spectroscopy of biological tissue,” Appl. Opt. 35(4), 758–763 (1996).
[Crossref] [PubMed]

Fleischer, M.

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and et al., “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc. 40(10), 1371–1376 (2009).
[Crossref]

Galindo, L.

C.-R. Kong, I. Barman, N. C. Dingari, J. W. Kang, L. Galindo, R. R. Dasari, and M. S. Feld, “A novel non-imaging optics based raman spectroscopy device for transdermal blood analyte measurement,” AIP Adv. 1(3), 032175 (2011).
[Crossref]

Gao, J.

A. Yu, D. Zuo, J. Gao, B. Li, and X. Wang, “Application of parabolic reflector on raman analysis of gas samples,” Proc. SPIE 9855, 98550A (2016).
[Crossref]

Geary, J. M.

J. M. Geary, Introduction to Lens Design: With Practical ZEMAX Examples (Willmann-Bell Richmond, 2002).

Gordon, R.

A. Ahmed, Y. Pang, G. Hajisalem, and R. Gordon, “Antenna design for directivity-enhanced raman spectroscopy,” Int. J. Opt. 2012, 729138 (2012).

Gray, M. J.

Y. Tian, M. J. Gray, H. Ji, R. J. Cava, and K. S. Burch, “Magneto-elastic coupling in a potential ferromagnetic 2d atomic crystal,” 2D Mater. 3(2), 025035 (2016).
[Crossref]

Gremlich, H.-U.

H.-U. Gremlich and B. Yan, Infrared and Raman Spectroscopy of Biological Materials (CRC Press, 2000).

Gu, G.

Y. Tian, S. Jia, R. Cava, R. Zhong, J. Schneeloch, G. Gu, and K. S. Burch, “Understanding the evolution of anomalous anharmonicity in Bi2 Te3−x Sex,” Phys. Rev. B 95(9), 094104 (2017).
[Crossref]

Hajisalem, G.

A. Ahmed, Y. Pang, G. Hajisalem, and R. Gordon, “Antenna design for directivity-enhanced raman spectroscopy,” Int. J. Opt. 2012, 729138 (2012).

Hendrikse, F.

M. Elshout, R. J. Erckens, C. A. Webers, H. J. Beckers, T. T. Berendschot, J. de Brabander, F. Hendrikse, and J. S. Schouten, “Detection of Raman spectra in ocular drugs for potential in vivo application of raman spectroscopy,” J. Ocul. Pharmacol. Th. 27, (5)445–451 (2011).
[Crossref]

N. J. Bauer, F. Hendrikse, and W. F. March, “In vivo confocal Raman spectroscopy of the human cornea,” Cornea 18(4), 483–488 (1999).
[Crossref] [PubMed]

Hennemann, L.

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and et al., “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc. 40(10), 1371–1376 (2009).
[Crossref]

Hintz, H.

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and et al., “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc. 40(10), 1371–1376 (2009).
[Crossref]

Hu, N.

Itzkan, I.

Ji, H.

Y. Tian, M. J. Gray, H. Ji, R. J. Cava, and K. S. Burch, “Magneto-elastic coupling in a potential ferromagnetic 2d atomic crystal,” 2D Mater. 3(2), 025035 (2016).
[Crossref]

Jia, S.

Y. Tian, S. Jia, R. Cava, R. Zhong, J. Schneeloch, G. Gu, and K. S. Burch, “Understanding the evolution of anomalous anharmonicity in Bi2 Te3−x Sex,” Phys. Rev. B 95(9), 094104 (2017).
[Crossref]

Y. Tian, G. B. Osterhoudt, S. Jia, R. Cava, and K. S. Burch, “Local phonon mode in thermoelectric Bi2Te2Se from charge neutral antisites,” Appl. Phys. Lett. 108(4), 041911 (2016).
[Crossref]

Jin, C.

R. Liu, M. Zhang, and C. Jin, “In vivo and in situ imaging of controlled-release dissolving silk microneedles into the skin by optical coherence tomography,” J. Biophotonics 10(6–7), 870–877 (2017).
[Crossref]

Johansson, N.

Kamemoto, L.

Kang, J. W.

C.-R. Kong, I. Barman, N. C. Dingari, J. W. Kang, L. Galindo, R. R. Dasari, and M. S. Feld, “A novel non-imaging optics based raman spectroscopy device for transdermal blood analyte measurement,” AIP Adv. 1(3), 032175 (2011).
[Crossref]

Kern, D. P.

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and et al., “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc. 40(10), 1371–1376 (2009).
[Crossref]

Kong, C.-R.

C.-R. Kong, I. Barman, N. C. Dingari, J. W. Kang, L. Galindo, R. R. Dasari, and M. S. Feld, “A novel non-imaging optics based raman spectroscopy device for transdermal blood analyte measurement,” AIP Adv. 1(3), 032175 (2011).
[Crossref]

Lednev, I. K.

G. McLaughlin, K. C. Doty, and I. K. Lednev, “Raman spectroscopy of blood for species identification,” Anal. Chem. 86(23), 11628–11633 (2014).
[Crossref] [PubMed]

Li, B.

A. Yu, D. Zuo, J. Gao, B. Li, and X. Wang, “Application of parabolic reflector on raman analysis of gas samples,” Proc. SPIE 9855, 98550A (2016).
[Crossref]

Lieber, C. A.

Lim, M.

C. M. Perlaki, Q. Liu, and M. Lim, “Raman spectroscopy based techniques in tissue engineering–an overview,” Appl. Spectrosc. Rev. 49(7), 513–532 (2014).
[Crossref]

Lim, S.

C. Perlaki, S. Lim, and Q. Liu, “Polarized Raman spectroscopy for enhanced quantification of protein concentrations in an aqueous mixture,” J. Raman Spectrosc. 46(9), 744–749 (2015).
[Crossref]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Liu, Q.

K. Chen, C. Yuen, Y. Aniweh, P. Preiser, and Q. Liu, “Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy,” Sci. Rep. 6, 20177–20186 (2016).
[Crossref] [PubMed]

C. Perlaki, S. Lim, and Q. Liu, “Polarized Raman spectroscopy for enhanced quantification of protein concentrations in an aqueous mixture,” J. Raman Spectrosc. 46(9), 744–749 (2015).
[Crossref]

C. Yuen and Q. Liu, “Hollow agarose microneedle with silver coating for intradermal surface-enhanced raman measurements: a skin-mimicking phantom study,” J. Biomed. Opt. 20(6), 061102 (2015).
[Crossref]

C. M. Perlaki, Q. Liu, and M. Lim, “Raman spectroscopy based techniques in tissue engineering–an overview,” Appl. Spectrosc. Rev. 49(7), 513–532 (2014).
[Crossref]

S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of raman spectra from narrow-band measurements based on wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
[Crossref]

Liu, R.

R. Liu, M. Zhang, and C. Jin, “In vivo and in situ imaging of controlled-release dissolving silk microneedles into the skin by optical coherence tomography,” J. Biophotonics 10(6–7), 870–877 (2017).
[Crossref]

Mahadevan-Jansen, A.

March, W. F.

N. J. Bauer, F. Hendrikse, and W. F. March, “In vivo confocal Raman spectroscopy of the human cornea,” Cornea 18(4), 483–488 (1999).
[Crossref] [PubMed]

Mathew, J.

Mätzler, C.

C. Mätzler, “Matlab functions for mie scattering and absorption, version 2,” IAP Res. Rep 8, 1–24 (2002).

McCreery, R. L.

R. L. McCreery, Raman Spectroscopy for Chemical Analysis, vol. 225 (John Wiley & Sons, 2005).

McLaughlin, G.

G. McLaughlin, K. C. Doty, and I. K. Lednev, “Raman spectroscopy of blood for species identification,” Anal. Chem. 86(23), 11628–11633 (2014).
[Crossref] [PubMed]

Melnick, L.

Misra, A. K.

Neuman, M.

Ong, Y. H.

S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of raman spectra from narrow-band measurements based on wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
[Crossref]

Osterhoudt, G. B.

Y. Tian, G. B. Osterhoudt, S. Jia, R. Cava, and K. S. Burch, “Local phonon mode in thermoelectric Bi2Te2Se from charge neutral antisites,” Appl. Phys. Lett. 108(4), 041911 (2016).
[Crossref]

Pacheco, M. T.

Pang, Y.

A. Ahmed, Y. Pang, G. Hajisalem, and R. Gordon, “Antenna design for directivity-enhanced raman spectroscopy,” Int. J. Opt. 2012, 729138 (2012).

Perlaki, C.

C. Perlaki, S. Lim, and Q. Liu, “Polarized Raman spectroscopy for enhanced quantification of protein concentrations in an aqueous mixture,” J. Raman Spectrosc. 46(9), 744–749 (2015).
[Crossref]

Perlaki, C. M.

C. M. Perlaki, Q. Liu, and M. Lim, “Raman spectroscopy based techniques in tissue engineering–an overview,” Appl. Spectrosc. Rev. 49(7), 513–532 (2014).
[Crossref]

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Preiser, P.

K. Chen, C. Yuen, Y. Aniweh, P. Preiser, and Q. Liu, “Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy,” Sci. Rep. 6, 20177–20186 (2016).
[Crossref] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Schneeloch, J.

Y. Tian, S. Jia, R. Cava, R. Zhong, J. Schneeloch, G. Gu, and K. S. Burch, “Understanding the evolution of anomalous anharmonicity in Bi2 Te3−x Sex,” Phys. Rev. B 95(9), 094104 (2017).
[Crossref]

Schouten, J. S.

M. Elshout, R. J. Erckens, C. A. Webers, H. J. Beckers, T. T. Berendschot, J. de Brabander, F. Hendrikse, and J. S. Schouten, “Detection of Raman spectra in ocular drugs for potential in vivo application of raman spectroscopy,” J. Ocul. Pharmacol. Th. 27, (5)445–451 (2011).
[Crossref]

Semenova, Y.

Sharma, S. K.

Stanciu, C.

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and et al., “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc. 40(10), 1371–1376 (2009).
[Crossref]

Tanaka, K.

Tian, Y.

Y. Tian, S. Jia, R. Cava, R. Zhong, J. Schneeloch, G. Gu, and K. S. Burch, “Understanding the evolution of anomalous anharmonicity in Bi2 Te3−x Sex,” Phys. Rev. B 95(9), 094104 (2017).
[Crossref]

Y. Tian, G. B. Osterhoudt, S. Jia, R. Cava, and K. S. Burch, “Local phonon mode in thermoelectric Bi2Te2Se from charge neutral antisites,” Appl. Phys. Lett. 108(4), 041911 (2016).
[Crossref]

Y. Tian, M. J. Gray, H. Ji, R. J. Cava, and K. S. Burch, “Magneto-elastic coupling in a potential ferromagnetic 2d atomic crystal,” 2D Mater. 3(2), 025035 (2016).
[Crossref]

Turrell, G.

G. Turrell and J. Corset, Raman Microscopy: Developments and Applications (Academic Press, 1996).

Wang, X.

A. Yu, D. Zuo, J. Gao, B. Li, and X. Wang, “Application of parabolic reflector on raman analysis of gas samples,” Proc. SPIE 9855, 98550A (2016).
[Crossref]

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and et al., “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc. 40(10), 1371–1376 (2009).
[Crossref]

Webers, C. A.

M. Elshout, R. J. Erckens, C. A. Webers, H. J. Beckers, T. T. Berendschot, J. de Brabander, F. Hendrikse, and J. S. Schouten, “Detection of Raman spectra in ocular drugs for potential in vivo application of raman spectroscopy,” J. Ocul. Pharmacol. Th. 27, (5)445–451 (2011).
[Crossref]

Xie, X. S.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Yan, B.

H.-U. Gremlich and B. Yan, Infrared and Raman Spectroscopy of Biological Materials (CRC Press, 2000).

Yu, A.

A. Yu, D. Zuo, J. Gao, B. Li, and X. Wang, “Application of parabolic reflector on raman analysis of gas samples,” Proc. SPIE 9855, 98550A (2016).
[Crossref]

Yu, Q.

Yuen, C.

K. Chen, C. Yuen, Y. Aniweh, P. Preiser, and Q. Liu, “Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy,” Sci. Rep. 6, 20177–20186 (2016).
[Crossref] [PubMed]

C. Yuen and Q. Liu, “Hollow agarose microneedle with silver coating for intradermal surface-enhanced raman measurements: a skin-mimicking phantom study,” J. Biomed. Opt. 20(6), 061102 (2015).
[Crossref]

Zhang, D.

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and et al., “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc. 40(10), 1371–1376 (2009).
[Crossref]

Zhang, M.

R. Liu, M. Zhang, and C. Jin, “In vivo and in situ imaging of controlled-release dissolving silk microneedles into the skin by optical coherence tomography,” J. Biophotonics 10(6–7), 870–877 (2017).
[Crossref]

Zhong, R.

Y. Tian, S. Jia, R. Cava, R. Zhong, J. Schneeloch, G. Gu, and K. S. Burch, “Understanding the evolution of anomalous anharmonicity in Bi2 Te3−x Sex,” Phys. Rev. B 95(9), 094104 (2017).
[Crossref]

Zinin, P. V.

Zuo, D.

A. Yu, D. Zuo, J. Gao, B. Li, and X. Wang, “Application of parabolic reflector on raman analysis of gas samples,” Proc. SPIE 9855, 98550A (2016).
[Crossref]

2D Mater. (1)

Y. Tian, M. J. Gray, H. Ji, R. J. Cava, and K. S. Burch, “Magneto-elastic coupling in a potential ferromagnetic 2d atomic crystal,” 2D Mater. 3(2), 025035 (2016).
[Crossref]

AIP Adv. (1)

C.-R. Kong, I. Barman, N. C. Dingari, J. W. Kang, L. Galindo, R. R. Dasari, and M. S. Feld, “A novel non-imaging optics based raman spectroscopy device for transdermal blood analyte measurement,” AIP Adv. 1(3), 032175 (2011).
[Crossref]

Anal. Chem. (1)

G. McLaughlin, K. C. Doty, and I. K. Lednev, “Raman spectroscopy of blood for species identification,” Anal. Chem. 86(23), 11628–11633 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Tian, G. B. Osterhoudt, S. Jia, R. Cava, and K. S. Burch, “Local phonon mode in thermoelectric Bi2Te2Se from charge neutral antisites,” Appl. Phys. Lett. 108(4), 041911 (2016).
[Crossref]

Appl. Spectrosc. (2)

Appl. Spectrosc. Rev. (1)

C. M. Perlaki, Q. Liu, and M. Lim, “Raman spectroscopy based techniques in tissue engineering–an overview,” Appl. Spectrosc. Rev. 49(7), 513–532 (2014).
[Crossref]

Biomed. Opt. Express (1)

Cornea (1)

N. J. Bauer, F. Hendrikse, and W. F. March, “In vivo confocal Raman spectroscopy of the human cornea,” Cornea 18(4), 483–488 (1999).
[Crossref] [PubMed]

IAP Res. Rep (1)

C. Mätzler, “Matlab functions for mie scattering and absorption, version 2,” IAP Res. Rep 8, 1–24 (2002).

Int. J. Opt. (1)

A. Ahmed, Y. Pang, G. Hajisalem, and R. Gordon, “Antenna design for directivity-enhanced raman spectroscopy,” Int. J. Opt. 2012, 729138 (2012).

J. Biomed. Opt. (1)

C. Yuen and Q. Liu, “Hollow agarose microneedle with silver coating for intradermal surface-enhanced raman measurements: a skin-mimicking phantom study,” J. Biomed. Opt. 20(6), 061102 (2015).
[Crossref]

J. Biophotonics (1)

R. Liu, M. Zhang, and C. Jin, “In vivo and in situ imaging of controlled-release dissolving silk microneedles into the skin by optical coherence tomography,” J. Biophotonics 10(6–7), 870–877 (2017).
[Crossref]

J. Ocul. Pharmacol. Th. (1)

M. Elshout, R. J. Erckens, C. A. Webers, H. J. Beckers, T. T. Berendschot, J. de Brabander, F. Hendrikse, and J. S. Schouten, “Detection of Raman spectra in ocular drugs for potential in vivo application of raman spectroscopy,” J. Ocul. Pharmacol. Th. 27, (5)445–451 (2011).
[Crossref]

J. Raman Spectrosc. (3)

C. Perlaki, S. Lim, and Q. Liu, “Polarized Raman spectroscopy for enhanced quantification of protein concentrations in an aqueous mixture,” J. Raman Spectrosc. 46(9), 744–749 (2015).
[Crossref]

S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of raman spectra from narrow-band measurements based on wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
[Crossref]

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and et al., “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc. 40(10), 1371–1376 (2009).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

Y. Tian, S. Jia, R. Cava, R. Zhong, J. Schneeloch, G. Gu, and K. S. Burch, “Understanding the evolution of anomalous anharmonicity in Bi2 Te3−x Sex,” Phys. Rev. B 95(9), 094104 (2017).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Yu, D. Zuo, J. Gao, B. Li, and X. Wang, “Application of parabolic reflector on raman analysis of gas samples,” Proc. SPIE 9855, 98550A (2016).
[Crossref]

Sci. Rep. (1)

K. Chen, C. Yuen, Y. Aniweh, P. Preiser, and Q. Liu, “Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy,” Sci. Rep. 6, 20177–20186 (2016).
[Crossref] [PubMed]

Other (4)

R. L. McCreery, Raman Spectroscopy for Chemical Analysis, vol. 225 (John Wiley & Sons, 2005).

H.-U. Gremlich and B. Yan, Infrared and Raman Spectroscopy of Biological Materials (CRC Press, 2000).

G. Turrell and J. Corset, Raman Microscopy: Developments and Applications (Academic Press, 1996).

J. M. Geary, Introduction to Lens Design: With Practical ZEMAX Examples (Willmann-Bell Richmond, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the customized Raman microscope. The laser (represented by the blue ray) from the right side is directed downwards by the dichroic mirror. The Raman photons are represented by the red rays. The optical path shared by the laser and Raman photons is shown in magenta. Abbreviations refer to the following: dichroic mirror (DM), beam expander (BE which consists of four lens, see Appendix 6.2 for the detailed design), long-pass filter (LPF), collection lens (CL), Raman photons (RP), objective lens (OBJ), and parabolic reflector (PR).
Fig. 2
Fig. 2 Raman spectra taken with the PR (red), without the PR (green), and the high-NA objective (blue). The enhancement factors with the standard errors from fits are shown in text in the plot. The red and blue texts are for the spectra taken with the PR and with the high NA objective respectively. (a): a hydrotalcite tablet. (b): Rhodamine 6G dissolved in an agarose gel media. (c): a piece of bacon fat. (d): a piece of crystalline silicon.
Fig. 3
Fig. 3 (a). Raman spectra of pure PDMS. The enhancement factor obtained with Eqn. 1 is shown in text. (b). Turbidity dependence of the enhancement factor for PDMS mixed with TiO2 microbeads. The turbidity (represented by the reduced scattering coefficient) of the samples was varied by changing the volume fraction of the microbeads.
Fig. 4
Fig. 4 Schematics of the designed beam expander. Abbreviations refer to the following: collection lens (CL) and parabolic reflector (PR).
Fig. 5
Fig. 5 The spot diagram ray-tracing results at the imaging plane. There are five patterns, the central (blue) one is the spot diagram generated at the focal point of the PR. The other four are the points 5 or −5 µm away from the focal point along the x or y direction.
Fig. 6
Fig. 6 (a) Schematics of the alignment procedures of PR. If the optical axis is well aligned, the collimated light travelling down would be reflected by the PR towards the focus. After travelling through the focus, the light is reflected again on the opposite side of the PR and collimated upwards. (b) The optical image of the scattered laser light by a piece of paper. The RMS of the spot size was determined to be 150 µm, agreeing reasonably well with the ray-tracing results.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R P R + O B J ( v ) = α × R O B J ( v )

Metrics