Abstract

Transdermal extraction of interstitial fluid (ISF) offers an attractive method for minimally invasive blood glucose monitoring. However, only a minute volume of ISF could be transdermally extracted, which is required to be diluted to form a manipulable volume of fluid for easy collection, transportation, and glucose detection. Therefore, a high-resolution glucose detection method is required for detecting glucose concentration in diluted ISF. In this paper, an optical surface plasmon resonance (SPR) sensor modified by the glucose/galactose-binding (GGB) protein which has good affinity to glucose molecules was presented for specific and sensitive glucose detection. The GGB protein was mutated at different sites for thiol coupling with the SPR surface and adjusting the affinity between glucose molecules and GGB protein. And the immobilization process of the GGB protein onto the surface of SPR sensor was optimized. Then, the stability of the SPR sensor modified with GGB protein was tested immediately and two weeks after immobilization. The coefficient of variation for glucose concentration measurement was less than 4.5%. By further mutation of the GGB protein at the A213S and L238S sites, the measurement range of the SPR sensor was adjusted to 0.1-100 mg/dL, which matches the glucose concentration range of 5-10 times diluted ISF (3-100 mg/dL). These results suggest that the SPR biosensor immobilized with GGB protein has the potential for continuous glucose monitoring by integrating into the microfluidic ISF extraction chip.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation for terminal reflection optical fiber SPR glucose sensor and glucose sensitive membrane with immobilized GODs

Yinquan Yuan, Xi Yang, Dejing Gong, Fang Liu, Wenbin Hu, Weiquan Cai, Jun Huang, and Minghong Yang
Opt. Express 25(4) 3884-3898 (2017)

Novel glucose sensor based on enzyme-immobilized 81° tilted fiber grating

Binbin Luo, Zhijun Yan, Zhongyuan Sun, Jianfeng Li, and Lin Zhang
Opt. Express 22(25) 30571-30578 (2014)

Development of a highly specific amine-terminated aptamer functionalized surface plasmon resonance biosensor for blood protein detection

Rui Zheng, Byung-Wook Park, Dong-Shik Kim, and Brent D. Cameron
Biomed. Opt. Express 2(9) 2731-2740 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Koutny, “Modelling of glucose dynamics for diabetes,” in Bioinformatics and Biomedical Engineering: 5th International Work-Conference, I. Rojas and F. Ortuño, ed. (Springer, 2017), pp. 314–324.
  2. L. McGahan, “Continuous glucose monitoring in the management of diabetes mellitus,” Issues Emerg. Health Technol. 1–4(32), 1–4 (2002).
    [PubMed]
  3. C. Zecchin, A. Facchinetti, G. Sparacino, G. D. Nicolao, and C. Cobelli, “A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (IEEE, 2011), pp. 5653–5656.
  4. P. Domachuk, M. Hunter, R. Batorsky, M. Cronin-Golomb, F. Omenetto, A. Wang, A. K. George, and J. C. Knight, “A path for non-invasive glucose detection using mid-IR supercontinuum,” in Proceedings of IEEE Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.
  5. L. Malinin, “Development of a non-invasive blood glucose monitor based on impedance measurements,” Int. J. Biomed. Eng. Technol. 8(1), 60–81 (2012).
  6. M. S. Talary, F. Dewarrat, D. Huber, L. Falco-Jonasson, and A. Caduff, “Non-invasive impedance based continuous glucose monitoring system,” in Proceedings of 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, Graz, Austria, ed. (Springer, 2007), pp. 636–639.
  7. R. Baghbani, M. A. Rad, and A. Pourziad, “Microwave sensor for non-invasive glucose measurements design and implementation of a novel linear,” IET Wirel. Sens. Syst. 5(2), 51–57 (2015).
  8. R. J. Buford, E. C. Green, and M. J. McClung, “A microwave frequency sensor for non-invasive blood-glucose measurement,” in Proceedings of IEEE Conference on Sensors Applications Symposium (IEEE, 2008), pp. 4–7.
  9. N. Jahangiri, A. Bahrampour, and M. Taraz, “Non-invasive optical techniques for determination of blood glucose levels: A Review Article,” Iran. J. Med. Phys. 11(2), 224–232 (2014).
  10. N. Tsuruoka, K. Ishii, T. Matsunaga, R. Nagatomi, and Y. Haga, “Lactate and glucose measurement in subepidermal tissue using minimally invasive microperfusion needle,” Biomed. Microdevices 18(1), 19 (2016).
    [PubMed]
  11. G. Wang, M. D. Poscente, S. S. Park, C. N. Andrews, O. Yadid-Pecht, and M. P. Mintchev, “Minimally invasive pseudo-continuous blood glucose monitoring: results from in-vitro and in-vivo testing of the e-mosquito,” in Proceedings of IEEE International Symposium on Circuits and Systems (IEEE, 2016), pp. 321–324.
  12. J. J. Mastrototaro, K. W. Cooper, G. Soundararajan, J. B. Sanders, and R. V. Shah, “Clinical experience with an integrated continuous glucose sensor/insulin pump platform: A feasibility study,” Adv. Ther. 23(5), 725–732 (2006).
    [PubMed]
  13. J. Mastrototaro, J. Shin, A. Marcus, G. Sulur, and STAR 1 Clinical Trial Investigators, “The accuracy and efficacy of real-time continuous glucose monitoring sensor in patients with type 1 diabetes,” Diabetes Technol. Ther. 10(5), 385–390 (2008).
    [PubMed]
  14. R. L. Weinstein, S. L. Schwartz, R. L. Brazg, J. R. Bugler, T. A. Peyser, and G. V. McGarraugh, “Accuracy of the 5-day freestyle navigator continuous glucose monitoring system: comparison with frequent laboratory reference measurements,” Diabetes Care 30(5), 1125–1130 (2007).
    [PubMed]
  15. D. M. Wilson, R. W. Beck, W. V. Tamborlane, M. J. Dontchev, C. Kollman, P. Chase, L. A. Fox, K. J. Ruedy, E. Tsalikian, S. A. Weinzimer, and DirecNet Study Group, “The accuracy of the freestyle navigator continuous glucose monitoring system in children with type 1 diabetes,” Diabetes Care 30(1), 59–64 (2007).
    [PubMed]
  16. N. Wisniewski, F. Moussy, and W. M. Reichert, “Characterization of implantable biosensor membrane biofouling,” Fresenius J. Anal. Chem. 366(6-7), 611–621 (2000).
    [PubMed]
  17. N. Wisniewski and M. Reichert, “Methods for reducing biosensor membrane biofouling,” Colloids Surf. B Biointerfaces 18(3-4), 197–219 (2000).
    [PubMed]
  18. C. Sun, Y. Niu, F. Tong, C. Mao, X. Huang, B. Zhao, and J. Shen, “Preparation of novel electrochemical glucose biosensors for whole blood based on antibiofouling polyurethane-heparin nanoparticles,” Electrochim. Acta 97, 349–356 (2013).
  19. D. A. Gough, J. Y. Lucisano, and P. H. Tse, “Two-dimensional enzyme electrode sensor for glucose,” Anal. Chem. 57(12), 2351–2357 (1985).
    [PubMed]
  20. M. D. Raicopol, C. Andronescu, R. Atasiei, A. Hanganu, E. Vasile, A. M. Brezoiu, and L. Pilan, “Organic layers via aryl diazonium electrochemistry: towards modifying platinum electrodes for interference free glucose biosensors,” Electrochim. Acta 206, 226–237 (2016).
  21. J. Kojima, S. Hosoya, C. Suminaka, N. Hori, and T. Sato, “An integrated glucose sensor with an all-solid-state sodium ion-selective electrode for a minimally invasive glucose monitoring system,” Micromachines (Basel) 6(7), 831–841 (2015).
  22. K. Y. Hwa, B. Subramani, P. W. Chang, M. Chien, and J. T. Huang, “Transdermal microneedle array-based sensor for real time continuous glucose monitoring,” Int. J. Electrochem. Sci. 10(3), 2455–2466 (2015).
  23. F. Ribet, G. Stemme, and N. Roxhed, “Ultra-miniaturization of a planar amperometric sensor targeting continuous intradermal glucose monitoring,” Biosens. Bioelectron. 90, 577–583 (2017).
    [PubMed]
  24. M. J. Tierney, J. A. Tamada, R. O. Potts, L. Jovanovic, S. Garg, and Cygnus Research Team, “Clinical evaluation of the GlucoWatch biographer: a continual, non-invasive glucose monitor for patients with diabetes,” Biosens. Bioelectron. 16(9-12), 621–629 (2001).
    [PubMed]
  25. S. Mitragotri, M. Coleman, J. Kost, and R. Langer, “Transdermal extraction of analytes using low-frequency ultrasound,” Pharm. Res. 17(4), 466–470 (2000).
    [PubMed]
  26. A. Jina, M. J. Tierney, J. A. Tamada, S. McGill, S. Desai, B. Chua, A. Chang, and M. Christiansen, “Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor,” J. Diabetes Sci. Technol. 8(3), 483–487 (2014).
    [PubMed]
  27. H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “An interstitial fluid transdermal extraction system for continuous glucose monitoring,” J. Microelectromech. Syst. 21(4), 917–925 (2012).
  28. H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
    [PubMed]
  29. R. P. Liang, G. H. Yao, L. X. Fan, and J. D. Qiu, “Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein,” Anal. Chim. Acta 737, 22–28 (2012).
    [PubMed]
  30. R. Ballerstadt and J. S. Schultz, “Kinetics of dissolution of Concanavalin A/Dextran sols in response to glucose measured by surface plasmon resonance,” Sens. Actuators B Chem. 46(1), 50–55 (1998).
  31. J. W. Mannhalter, D. G. Gilliland, and R. J. Collier, “A hybrid toxin containing fragment A from diphtheria toxin linked to the B protomer of cholera toxin,” Biochim. Biophys. Acta 626(2), 443–450 (1980).
    [PubMed]
  32. D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuators A Phys. 222, 58–66 (2015).
  33. M. N. Vyas, N. K. Vyas, and F. A. Quiocho, “Crystallographic Analysis of the Epimeric and Anomeric Specificity of the Periplasmic Transport/Chemosensory Protein Receptor for D-Glucose and D-Galactose,” Biochemistry 33(16), 4762–4768 (1994).
    [PubMed]
  34. D. M. Miller, J. S. Olson, and F. A. Quiocho, “The mechanism of sugar binding to the periplasmic receptor for galactose chemotaxis and transport in Escherichia coli,” J. Biol. Chem. 255(6), 2465–2471 (1980).
    [PubMed]
  35. N. K. Vyas, M. N. Vyas, and F. A. Quiocho, “Sugar and signal-transducer binding sites of the escherichia coli galactose chemoreceptor protein,” Science 242(4883), 1290–1295 (1988).
    [PubMed]
  36. N. K. Vyas, M. N. Vyas, and F. A. Quiocho, “A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis,” Nature 327(6123), 635–638 (1987).
    [PubMed]
  37. J. Y. Zou, M. M. Flocco, and S. L. Mowbray, “The 1.7 A Refined X-ray Structure of the Periplasmic Glucose/Galactose Receptor from Salmonella typhimurium,” J. Mol. Biol. 233(4), 739–752 (1993).
    [PubMed]
  38. K. Weidemaier, A. Lastovich, S. Keith, J. B. Pitner, M. Sistare, R. Jacobson, and D. Kurisko, “Multi-day pre-clinical demonstration of glucose/galactose binding protein-based fiber optic sensor,” Biosens. Bioelectron. 26(10), 4117–4123 (2011).
    [PubMed]
  39. H. V. Hsieh, D. B. Sherman, S. A. Andaluz, T. J. Amiss, and J. B. Pitner, “Fluorescence resonance energy transfer glucose sensor from site-specific dual labeling of glucose/galactose binding protein using ligand protection,” J. Diabetes Sci. Technol. 6(6), 1286–1295 (2012).
    [PubMed]
  40. A. V. Nashchekin, O. A. Usov, and K. K. Turoverov, “Waveguide-type localized plasmon resonance biosensor for noninvasive glucose concentration detection,” Proc. SPIE 8427, 842739 (2012).
  41. T. J. Amiss, D. B. Sherman, C. M. Nycz, S. A. Andaluz, and J. B. Pitner, “Engineering and rapid selection of a low-affinity glucose/galactose-binding protein for a glucose biosensor,” Protein Sci. 16(11), 2350–2359 (2007).
    [PubMed]
  42. H. V. Hsieh, Z. A. Pfeiffer, T. J. Amiss, D. B. Sherman, and J. B. Pitner, “Direct detection of glucose by surface plasmon resonance with bacterial glucose/galactose-binding protein,” Biosens. Bioelectron. 19(7), 653–660 (2004).
    [PubMed]
  43. P. A. Berntsson, “Structure and function of substrate-binding proteins of ABC-transporters,” University of Groningen (2010).
  44. S. Núñez, J. Venhorst, and C. G. Kruse, “Target-drug interactions: first principles and their application to drug discovery,” Drug Discov. Today 17(1-2), 10–22 (2012).
    [PubMed]

2017 (1)

F. Ribet, G. Stemme, and N. Roxhed, “Ultra-miniaturization of a planar amperometric sensor targeting continuous intradermal glucose monitoring,” Biosens. Bioelectron. 90, 577–583 (2017).
[PubMed]

2016 (2)

M. D. Raicopol, C. Andronescu, R. Atasiei, A. Hanganu, E. Vasile, A. M. Brezoiu, and L. Pilan, “Organic layers via aryl diazonium electrochemistry: towards modifying platinum electrodes for interference free glucose biosensors,” Electrochim. Acta 206, 226–237 (2016).

N. Tsuruoka, K. Ishii, T. Matsunaga, R. Nagatomi, and Y. Haga, “Lactate and glucose measurement in subepidermal tissue using minimally invasive microperfusion needle,” Biomed. Microdevices 18(1), 19 (2016).
[PubMed]

2015 (5)

J. Kojima, S. Hosoya, C. Suminaka, N. Hori, and T. Sato, “An integrated glucose sensor with an all-solid-state sodium ion-selective electrode for a minimally invasive glucose monitoring system,” Micromachines (Basel) 6(7), 831–841 (2015).

K. Y. Hwa, B. Subramani, P. W. Chang, M. Chien, and J. T. Huang, “Transdermal microneedle array-based sensor for real time continuous glucose monitoring,” Int. J. Electrochem. Sci. 10(3), 2455–2466 (2015).

R. Baghbani, M. A. Rad, and A. Pourziad, “Microwave sensor for non-invasive glucose measurements design and implementation of a novel linear,” IET Wirel. Sens. Syst. 5(2), 51–57 (2015).

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuators A Phys. 222, 58–66 (2015).

2014 (2)

A. Jina, M. J. Tierney, J. A. Tamada, S. McGill, S. Desai, B. Chua, A. Chang, and M. Christiansen, “Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor,” J. Diabetes Sci. Technol. 8(3), 483–487 (2014).
[PubMed]

N. Jahangiri, A. Bahrampour, and M. Taraz, “Non-invasive optical techniques for determination of blood glucose levels: A Review Article,” Iran. J. Med. Phys. 11(2), 224–232 (2014).

2013 (1)

C. Sun, Y. Niu, F. Tong, C. Mao, X. Huang, B. Zhao, and J. Shen, “Preparation of novel electrochemical glucose biosensors for whole blood based on antibiofouling polyurethane-heparin nanoparticles,” Electrochim. Acta 97, 349–356 (2013).

2012 (6)

L. Malinin, “Development of a non-invasive blood glucose monitor based on impedance measurements,” Int. J. Biomed. Eng. Technol. 8(1), 60–81 (2012).

H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “An interstitial fluid transdermal extraction system for continuous glucose monitoring,” J. Microelectromech. Syst. 21(4), 917–925 (2012).

R. P. Liang, G. H. Yao, L. X. Fan, and J. D. Qiu, “Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein,” Anal. Chim. Acta 737, 22–28 (2012).
[PubMed]

H. V. Hsieh, D. B. Sherman, S. A. Andaluz, T. J. Amiss, and J. B. Pitner, “Fluorescence resonance energy transfer glucose sensor from site-specific dual labeling of glucose/galactose binding protein using ligand protection,” J. Diabetes Sci. Technol. 6(6), 1286–1295 (2012).
[PubMed]

A. V. Nashchekin, O. A. Usov, and K. K. Turoverov, “Waveguide-type localized plasmon resonance biosensor for noninvasive glucose concentration detection,” Proc. SPIE 8427, 842739 (2012).

S. Núñez, J. Venhorst, and C. G. Kruse, “Target-drug interactions: first principles and their application to drug discovery,” Drug Discov. Today 17(1-2), 10–22 (2012).
[PubMed]

2011 (1)

K. Weidemaier, A. Lastovich, S. Keith, J. B. Pitner, M. Sistare, R. Jacobson, and D. Kurisko, “Multi-day pre-clinical demonstration of glucose/galactose binding protein-based fiber optic sensor,” Biosens. Bioelectron. 26(10), 4117–4123 (2011).
[PubMed]

2008 (1)

J. Mastrototaro, J. Shin, A. Marcus, G. Sulur, and STAR 1 Clinical Trial Investigators, “The accuracy and efficacy of real-time continuous glucose monitoring sensor in patients with type 1 diabetes,” Diabetes Technol. Ther. 10(5), 385–390 (2008).
[PubMed]

2007 (3)

R. L. Weinstein, S. L. Schwartz, R. L. Brazg, J. R. Bugler, T. A. Peyser, and G. V. McGarraugh, “Accuracy of the 5-day freestyle navigator continuous glucose monitoring system: comparison with frequent laboratory reference measurements,” Diabetes Care 30(5), 1125–1130 (2007).
[PubMed]

D. M. Wilson, R. W. Beck, W. V. Tamborlane, M. J. Dontchev, C. Kollman, P. Chase, L. A. Fox, K. J. Ruedy, E. Tsalikian, S. A. Weinzimer, and DirecNet Study Group, “The accuracy of the freestyle navigator continuous glucose monitoring system in children with type 1 diabetes,” Diabetes Care 30(1), 59–64 (2007).
[PubMed]

T. J. Amiss, D. B. Sherman, C. M. Nycz, S. A. Andaluz, and J. B. Pitner, “Engineering and rapid selection of a low-affinity glucose/galactose-binding protein for a glucose biosensor,” Protein Sci. 16(11), 2350–2359 (2007).
[PubMed]

2006 (1)

J. J. Mastrototaro, K. W. Cooper, G. Soundararajan, J. B. Sanders, and R. V. Shah, “Clinical experience with an integrated continuous glucose sensor/insulin pump platform: A feasibility study,” Adv. Ther. 23(5), 725–732 (2006).
[PubMed]

2004 (1)

H. V. Hsieh, Z. A. Pfeiffer, T. J. Amiss, D. B. Sherman, and J. B. Pitner, “Direct detection of glucose by surface plasmon resonance with bacterial glucose/galactose-binding protein,” Biosens. Bioelectron. 19(7), 653–660 (2004).
[PubMed]

2002 (1)

L. McGahan, “Continuous glucose monitoring in the management of diabetes mellitus,” Issues Emerg. Health Technol. 1–4(32), 1–4 (2002).
[PubMed]

2001 (1)

M. J. Tierney, J. A. Tamada, R. O. Potts, L. Jovanovic, S. Garg, and Cygnus Research Team, “Clinical evaluation of the GlucoWatch biographer: a continual, non-invasive glucose monitor for patients with diabetes,” Biosens. Bioelectron. 16(9-12), 621–629 (2001).
[PubMed]

2000 (3)

S. Mitragotri, M. Coleman, J. Kost, and R. Langer, “Transdermal extraction of analytes using low-frequency ultrasound,” Pharm. Res. 17(4), 466–470 (2000).
[PubMed]

N. Wisniewski, F. Moussy, and W. M. Reichert, “Characterization of implantable biosensor membrane biofouling,” Fresenius J. Anal. Chem. 366(6-7), 611–621 (2000).
[PubMed]

N. Wisniewski and M. Reichert, “Methods for reducing biosensor membrane biofouling,” Colloids Surf. B Biointerfaces 18(3-4), 197–219 (2000).
[PubMed]

1998 (1)

R. Ballerstadt and J. S. Schultz, “Kinetics of dissolution of Concanavalin A/Dextran sols in response to glucose measured by surface plasmon resonance,” Sens. Actuators B Chem. 46(1), 50–55 (1998).

1994 (1)

M. N. Vyas, N. K. Vyas, and F. A. Quiocho, “Crystallographic Analysis of the Epimeric and Anomeric Specificity of the Periplasmic Transport/Chemosensory Protein Receptor for D-Glucose and D-Galactose,” Biochemistry 33(16), 4762–4768 (1994).
[PubMed]

1993 (1)

J. Y. Zou, M. M. Flocco, and S. L. Mowbray, “The 1.7 A Refined X-ray Structure of the Periplasmic Glucose/Galactose Receptor from Salmonella typhimurium,” J. Mol. Biol. 233(4), 739–752 (1993).
[PubMed]

1988 (1)

N. K. Vyas, M. N. Vyas, and F. A. Quiocho, “Sugar and signal-transducer binding sites of the escherichia coli galactose chemoreceptor protein,” Science 242(4883), 1290–1295 (1988).
[PubMed]

1987 (1)

N. K. Vyas, M. N. Vyas, and F. A. Quiocho, “A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis,” Nature 327(6123), 635–638 (1987).
[PubMed]

1985 (1)

D. A. Gough, J. Y. Lucisano, and P. H. Tse, “Two-dimensional enzyme electrode sensor for glucose,” Anal. Chem. 57(12), 2351–2357 (1985).
[PubMed]

1980 (2)

D. M. Miller, J. S. Olson, and F. A. Quiocho, “The mechanism of sugar binding to the periplasmic receptor for galactose chemotaxis and transport in Escherichia coli,” J. Biol. Chem. 255(6), 2465–2471 (1980).
[PubMed]

J. W. Mannhalter, D. G. Gilliland, and R. J. Collier, “A hybrid toxin containing fragment A from diphtheria toxin linked to the B protomer of cholera toxin,” Biochim. Biophys. Acta 626(2), 443–450 (1980).
[PubMed]

Amiss, T. J.

H. V. Hsieh, D. B. Sherman, S. A. Andaluz, T. J. Amiss, and J. B. Pitner, “Fluorescence resonance energy transfer glucose sensor from site-specific dual labeling of glucose/galactose binding protein using ligand protection,” J. Diabetes Sci. Technol. 6(6), 1286–1295 (2012).
[PubMed]

T. J. Amiss, D. B. Sherman, C. M. Nycz, S. A. Andaluz, and J. B. Pitner, “Engineering and rapid selection of a low-affinity glucose/galactose-binding protein for a glucose biosensor,” Protein Sci. 16(11), 2350–2359 (2007).
[PubMed]

H. V. Hsieh, Z. A. Pfeiffer, T. J. Amiss, D. B. Sherman, and J. B. Pitner, “Direct detection of glucose by surface plasmon resonance with bacterial glucose/galactose-binding protein,” Biosens. Bioelectron. 19(7), 653–660 (2004).
[PubMed]

Andaluz, S. A.

H. V. Hsieh, D. B. Sherman, S. A. Andaluz, T. J. Amiss, and J. B. Pitner, “Fluorescence resonance energy transfer glucose sensor from site-specific dual labeling of glucose/galactose binding protein using ligand protection,” J. Diabetes Sci. Technol. 6(6), 1286–1295 (2012).
[PubMed]

T. J. Amiss, D. B. Sherman, C. M. Nycz, S. A. Andaluz, and J. B. Pitner, “Engineering and rapid selection of a low-affinity glucose/galactose-binding protein for a glucose biosensor,” Protein Sci. 16(11), 2350–2359 (2007).
[PubMed]

Andrews, C. N.

G. Wang, M. D. Poscente, S. S. Park, C. N. Andrews, O. Yadid-Pecht, and M. P. Mintchev, “Minimally invasive pseudo-continuous blood glucose monitoring: results from in-vitro and in-vivo testing of the e-mosquito,” in Proceedings of IEEE International Symposium on Circuits and Systems (IEEE, 2016), pp. 321–324.

Andronescu, C.

M. D. Raicopol, C. Andronescu, R. Atasiei, A. Hanganu, E. Vasile, A. M. Brezoiu, and L. Pilan, “Organic layers via aryl diazonium electrochemistry: towards modifying platinum electrodes for interference free glucose biosensors,” Electrochim. Acta 206, 226–237 (2016).

Atasiei, R.

M. D. Raicopol, C. Andronescu, R. Atasiei, A. Hanganu, E. Vasile, A. M. Brezoiu, and L. Pilan, “Organic layers via aryl diazonium electrochemistry: towards modifying platinum electrodes for interference free glucose biosensors,” Electrochim. Acta 206, 226–237 (2016).

Baghbani, R.

R. Baghbani, M. A. Rad, and A. Pourziad, “Microwave sensor for non-invasive glucose measurements design and implementation of a novel linear,” IET Wirel. Sens. Syst. 5(2), 51–57 (2015).

Bahrampour, A.

N. Jahangiri, A. Bahrampour, and M. Taraz, “Non-invasive optical techniques for determination of blood glucose levels: A Review Article,” Iran. J. Med. Phys. 11(2), 224–232 (2014).

Ballerstadt, R.

R. Ballerstadt and J. S. Schultz, “Kinetics of dissolution of Concanavalin A/Dextran sols in response to glucose measured by surface plasmon resonance,” Sens. Actuators B Chem. 46(1), 50–55 (1998).

Batorsky, R.

P. Domachuk, M. Hunter, R. Batorsky, M. Cronin-Golomb, F. Omenetto, A. Wang, A. K. George, and J. C. Knight, “A path for non-invasive glucose detection using mid-IR supercontinuum,” in Proceedings of IEEE Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.

Beck, R. W.

D. M. Wilson, R. W. Beck, W. V. Tamborlane, M. J. Dontchev, C. Kollman, P. Chase, L. A. Fox, K. J. Ruedy, E. Tsalikian, S. A. Weinzimer, and DirecNet Study Group, “The accuracy of the freestyle navigator continuous glucose monitoring system in children with type 1 diabetes,” Diabetes Care 30(1), 59–64 (2007).
[PubMed]

Bocková, M.

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

Brazg, R. L.

R. L. Weinstein, S. L. Schwartz, R. L. Brazg, J. R. Bugler, T. A. Peyser, and G. V. McGarraugh, “Accuracy of the 5-day freestyle navigator continuous glucose monitoring system: comparison with frequent laboratory reference measurements,” Diabetes Care 30(5), 1125–1130 (2007).
[PubMed]

Brezoiu, A. M.

M. D. Raicopol, C. Andronescu, R. Atasiei, A. Hanganu, E. Vasile, A. M. Brezoiu, and L. Pilan, “Organic layers via aryl diazonium electrochemistry: towards modifying platinum electrodes for interference free glucose biosensors,” Electrochim. Acta 206, 226–237 (2016).

Buford, R. J.

R. J. Buford, E. C. Green, and M. J. McClung, “A microwave frequency sensor for non-invasive blood-glucose measurement,” in Proceedings of IEEE Conference on Sensors Applications Symposium (IEEE, 2008), pp. 4–7.

Bugler, J. R.

R. L. Weinstein, S. L. Schwartz, R. L. Brazg, J. R. Bugler, T. A. Peyser, and G. V. McGarraugh, “Accuracy of the 5-day freestyle navigator continuous glucose monitoring system: comparison with frequent laboratory reference measurements,” Diabetes Care 30(5), 1125–1130 (2007).
[PubMed]

Chang, A.

A. Jina, M. J. Tierney, J. A. Tamada, S. McGill, S. Desai, B. Chua, A. Chang, and M. Christiansen, “Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor,” J. Diabetes Sci. Technol. 8(3), 483–487 (2014).
[PubMed]

Chang, P. W.

K. Y. Hwa, B. Subramani, P. W. Chang, M. Chien, and J. T. Huang, “Transdermal microneedle array-based sensor for real time continuous glucose monitoring,” Int. J. Electrochem. Sci. 10(3), 2455–2466 (2015).

Chase, P.

D. M. Wilson, R. W. Beck, W. V. Tamborlane, M. J. Dontchev, C. Kollman, P. Chase, L. A. Fox, K. J. Ruedy, E. Tsalikian, S. A. Weinzimer, and DirecNet Study Group, “The accuracy of the freestyle navigator continuous glucose monitoring system in children with type 1 diabetes,” Diabetes Care 30(1), 59–64 (2007).
[PubMed]

Chien, M.

K. Y. Hwa, B. Subramani, P. W. Chang, M. Chien, and J. T. Huang, “Transdermal microneedle array-based sensor for real time continuous glucose monitoring,” Int. J. Electrochem. Sci. 10(3), 2455–2466 (2015).

Chrastinová, L.

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

Christiansen, M.

A. Jina, M. J. Tierney, J. A. Tamada, S. McGill, S. Desai, B. Chua, A. Chang, and M. Christiansen, “Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor,” J. Diabetes Sci. Technol. 8(3), 483–487 (2014).
[PubMed]

Chua, B.

A. Jina, M. J. Tierney, J. A. Tamada, S. McGill, S. Desai, B. Chua, A. Chang, and M. Christiansen, “Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor,” J. Diabetes Sci. Technol. 8(3), 483–487 (2014).
[PubMed]

Cobelli, C.

C. Zecchin, A. Facchinetti, G. Sparacino, G. D. Nicolao, and C. Cobelli, “A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (IEEE, 2011), pp. 5653–5656.

Coleman, M.

S. Mitragotri, M. Coleman, J. Kost, and R. Langer, “Transdermal extraction of analytes using low-frequency ultrasound,” Pharm. Res. 17(4), 466–470 (2000).
[PubMed]

Collier, R. J.

J. W. Mannhalter, D. G. Gilliland, and R. J. Collier, “A hybrid toxin containing fragment A from diphtheria toxin linked to the B protomer of cholera toxin,” Biochim. Biophys. Acta 626(2), 443–450 (1980).
[PubMed]

Cooper, K. W.

J. J. Mastrototaro, K. W. Cooper, G. Soundararajan, J. B. Sanders, and R. V. Shah, “Clinical experience with an integrated continuous glucose sensor/insulin pump platform: A feasibility study,” Adv. Ther. 23(5), 725–732 (2006).
[PubMed]

Cronin-Golomb, M.

P. Domachuk, M. Hunter, R. Batorsky, M. Cronin-Golomb, F. Omenetto, A. Wang, A. K. George, and J. C. Knight, “A path for non-invasive glucose detection using mid-IR supercontinuum,” in Proceedings of IEEE Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.

Desai, S.

A. Jina, M. J. Tierney, J. A. Tamada, S. McGill, S. Desai, B. Chua, A. Chang, and M. Christiansen, “Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor,” J. Diabetes Sci. Technol. 8(3), 483–487 (2014).
[PubMed]

Domachuk, P.

P. Domachuk, M. Hunter, R. Batorsky, M. Cronin-Golomb, F. Omenetto, A. Wang, A. K. George, and J. C. Knight, “A path for non-invasive glucose detection using mid-IR supercontinuum,” in Proceedings of IEEE Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.

Dontchev, M. J.

D. M. Wilson, R. W. Beck, W. V. Tamborlane, M. J. Dontchev, C. Kollman, P. Chase, L. A. Fox, K. J. Ruedy, E. Tsalikian, S. A. Weinzimer, and DirecNet Study Group, “The accuracy of the freestyle navigator continuous glucose monitoring system in children with type 1 diabetes,” Diabetes Care 30(1), 59–64 (2007).
[PubMed]

Dostálová Merkerová, M.

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

Dyr, J. E.

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

Ermini, M. L.

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

Facchinetti, A.

C. Zecchin, A. Facchinetti, G. Sparacino, G. D. Nicolao, and C. Cobelli, “A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (IEEE, 2011), pp. 5653–5656.

Fan, L. X.

R. P. Liang, G. H. Yao, L. X. Fan, and J. D. Qiu, “Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein,” Anal. Chim. Acta 737, 22–28 (2012).
[PubMed]

Flocco, M. M.

J. Y. Zou, M. M. Flocco, and S. L. Mowbray, “The 1.7 A Refined X-ray Structure of the Periplasmic Glucose/Galactose Receptor from Salmonella typhimurium,” J. Mol. Biol. 233(4), 739–752 (1993).
[PubMed]

Fox, L. A.

D. M. Wilson, R. W. Beck, W. V. Tamborlane, M. J. Dontchev, C. Kollman, P. Chase, L. A. Fox, K. J. Ruedy, E. Tsalikian, S. A. Weinzimer, and DirecNet Study Group, “The accuracy of the freestyle navigator continuous glucose monitoring system in children with type 1 diabetes,” Diabetes Care 30(1), 59–64 (2007).
[PubMed]

Garg, S.

M. J. Tierney, J. A. Tamada, R. O. Potts, L. Jovanovic, S. Garg, and Cygnus Research Team, “Clinical evaluation of the GlucoWatch biographer: a continual, non-invasive glucose monitor for patients with diabetes,” Biosens. Bioelectron. 16(9-12), 621–629 (2001).
[PubMed]

George, A. K.

P. Domachuk, M. Hunter, R. Batorsky, M. Cronin-Golomb, F. Omenetto, A. Wang, A. K. George, and J. C. Knight, “A path for non-invasive glucose detection using mid-IR supercontinuum,” in Proceedings of IEEE Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.

Gilliland, D. G.

J. W. Mannhalter, D. G. Gilliland, and R. J. Collier, “A hybrid toxin containing fragment A from diphtheria toxin linked to the B protomer of cholera toxin,” Biochim. Biophys. Acta 626(2), 443–450 (1980).
[PubMed]

Gough, D. A.

D. A. Gough, J. Y. Lucisano, and P. H. Tse, “Two-dimensional enzyme electrode sensor for glucose,” Anal. Chem. 57(12), 2351–2357 (1985).
[PubMed]

Green, E. C.

R. J. Buford, E. C. Green, and M. J. McClung, “A microwave frequency sensor for non-invasive blood-glucose measurement,” in Proceedings of IEEE Conference on Sensors Applications Symposium (IEEE, 2008), pp. 4–7.

Haga, Y.

N. Tsuruoka, K. Ishii, T. Matsunaga, R. Nagatomi, and Y. Haga, “Lactate and glucose measurement in subepidermal tissue using minimally invasive microperfusion needle,” Biomed. Microdevices 18(1), 19 (2016).
[PubMed]

Hanganu, A.

M. D. Raicopol, C. Andronescu, R. Atasiei, A. Hanganu, E. Vasile, A. M. Brezoiu, and L. Pilan, “Organic layers via aryl diazonium electrochemistry: towards modifying platinum electrodes for interference free glucose biosensors,” Electrochim. Acta 206, 226–237 (2016).

Homola, J.

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

Hori, N.

J. Kojima, S. Hosoya, C. Suminaka, N. Hori, and T. Sato, “An integrated glucose sensor with an all-solid-state sodium ion-selective electrode for a minimally invasive glucose monitoring system,” Micromachines (Basel) 6(7), 831–841 (2015).

Hosoya, S.

J. Kojima, S. Hosoya, C. Suminaka, N. Hori, and T. Sato, “An integrated glucose sensor with an all-solid-state sodium ion-selective electrode for a minimally invasive glucose monitoring system,” Micromachines (Basel) 6(7), 831–841 (2015).

Hsieh, H. V.

H. V. Hsieh, D. B. Sherman, S. A. Andaluz, T. J. Amiss, and J. B. Pitner, “Fluorescence resonance energy transfer glucose sensor from site-specific dual labeling of glucose/galactose binding protein using ligand protection,” J. Diabetes Sci. Technol. 6(6), 1286–1295 (2012).
[PubMed]

H. V. Hsieh, Z. A. Pfeiffer, T. J. Amiss, D. B. Sherman, and J. B. Pitner, “Direct detection of glucose by surface plasmon resonance with bacterial glucose/galactose-binding protein,” Biosens. Bioelectron. 19(7), 653–660 (2004).
[PubMed]

Huang, J. T.

K. Y. Hwa, B. Subramani, P. W. Chang, M. Chien, and J. T. Huang, “Transdermal microneedle array-based sensor for real time continuous glucose monitoring,” Int. J. Electrochem. Sci. 10(3), 2455–2466 (2015).

Huang, X.

C. Sun, Y. Niu, F. Tong, C. Mao, X. Huang, B. Zhao, and J. Shen, “Preparation of novel electrochemical glucose biosensors for whole blood based on antibiofouling polyurethane-heparin nanoparticles,” Electrochim. Acta 97, 349–356 (2013).

Hunter, M.

P. Domachuk, M. Hunter, R. Batorsky, M. Cronin-Golomb, F. Omenetto, A. Wang, A. K. George, and J. C. Knight, “A path for non-invasive glucose detection using mid-IR supercontinuum,” in Proceedings of IEEE Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.

Hwa, K. Y.

K. Y. Hwa, B. Subramani, P. W. Chang, M. Chien, and J. T. Huang, “Transdermal microneedle array-based sensor for real time continuous glucose monitoring,” Int. J. Electrochem. Sci. 10(3), 2455–2466 (2015).

Ishii, K.

N. Tsuruoka, K. Ishii, T. Matsunaga, R. Nagatomi, and Y. Haga, “Lactate and glucose measurement in subepidermal tissue using minimally invasive microperfusion needle,” Biomed. Microdevices 18(1), 19 (2016).
[PubMed]

Jacobson, R.

K. Weidemaier, A. Lastovich, S. Keith, J. B. Pitner, M. Sistare, R. Jacobson, and D. Kurisko, “Multi-day pre-clinical demonstration of glucose/galactose binding protein-based fiber optic sensor,” Biosens. Bioelectron. 26(10), 4117–4123 (2011).
[PubMed]

Jahangiri, N.

N. Jahangiri, A. Bahrampour, and M. Taraz, “Non-invasive optical techniques for determination of blood glucose levels: A Review Article,” Iran. J. Med. Phys. 11(2), 224–232 (2014).

Jina, A.

A. Jina, M. J. Tierney, J. A. Tamada, S. McGill, S. Desai, B. Chua, A. Chang, and M. Christiansen, “Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor,” J. Diabetes Sci. Technol. 8(3), 483–487 (2014).
[PubMed]

Jovanovic, L.

M. J. Tierney, J. A. Tamada, R. O. Potts, L. Jovanovic, S. Garg, and Cygnus Research Team, “Clinical evaluation of the GlucoWatch biographer: a continual, non-invasive glucose monitor for patients with diabetes,” Biosens. Bioelectron. 16(9-12), 621–629 (2001).
[PubMed]

Keith, S.

K. Weidemaier, A. Lastovich, S. Keith, J. B. Pitner, M. Sistare, R. Jacobson, and D. Kurisko, “Multi-day pre-clinical demonstration of glucose/galactose binding protein-based fiber optic sensor,” Biosens. Bioelectron. 26(10), 4117–4123 (2011).
[PubMed]

Knight, J. C.

P. Domachuk, M. Hunter, R. Batorsky, M. Cronin-Golomb, F. Omenetto, A. Wang, A. K. George, and J. C. Knight, “A path for non-invasive glucose detection using mid-IR supercontinuum,” in Proceedings of IEEE Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.

Kojima, J.

J. Kojima, S. Hosoya, C. Suminaka, N. Hori, and T. Sato, “An integrated glucose sensor with an all-solid-state sodium ion-selective electrode for a minimally invasive glucose monitoring system,” Micromachines (Basel) 6(7), 831–841 (2015).

Kollman, C.

D. M. Wilson, R. W. Beck, W. V. Tamborlane, M. J. Dontchev, C. Kollman, P. Chase, L. A. Fox, K. J. Ruedy, E. Tsalikian, S. A. Weinzimer, and DirecNet Study Group, “The accuracy of the freestyle navigator continuous glucose monitoring system in children with type 1 diabetes,” Diabetes Care 30(1), 59–64 (2007).
[PubMed]

Kost, J.

S. Mitragotri, M. Coleman, J. Kost, and R. Langer, “Transdermal extraction of analytes using low-frequency ultrasound,” Pharm. Res. 17(4), 466–470 (2000).
[PubMed]

Krejcík, Z.

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

Kruse, C. G.

S. Núñez, J. Venhorst, and C. G. Kruse, “Target-drug interactions: first principles and their application to drug discovery,” Drug Discov. Today 17(1-2), 10–22 (2012).
[PubMed]

Kurisko, D.

K. Weidemaier, A. Lastovich, S. Keith, J. B. Pitner, M. Sistare, R. Jacobson, and D. Kurisko, “Multi-day pre-clinical demonstration of glucose/galactose binding protein-based fiber optic sensor,” Biosens. Bioelectron. 26(10), 4117–4123 (2011).
[PubMed]

Langer, R.

S. Mitragotri, M. Coleman, J. Kost, and R. Langer, “Transdermal extraction of analytes using low-frequency ultrasound,” Pharm. Res. 17(4), 466–470 (2000).
[PubMed]

Lastovich, A.

K. Weidemaier, A. Lastovich, S. Keith, J. B. Pitner, M. Sistare, R. Jacobson, and D. Kurisko, “Multi-day pre-clinical demonstration of glucose/galactose binding protein-based fiber optic sensor,” Biosens. Bioelectron. 26(10), 4117–4123 (2011).
[PubMed]

Li, D.

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuators A Phys. 222, 58–66 (2015).

H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “An interstitial fluid transdermal extraction system for continuous glucose monitoring,” J. Microelectromech. Syst. 21(4), 917–925 (2012).

Liang, R. P.

R. P. Liang, G. H. Yao, L. X. Fan, and J. D. Qiu, “Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein,” Anal. Chim. Acta 737, 22–28 (2012).
[PubMed]

Lin, Y.

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuators A Phys. 222, 58–66 (2015).

Lucisano, J. Y.

D. A. Gough, J. Y. Lucisano, and P. H. Tse, “Two-dimensional enzyme electrode sensor for glucose,” Anal. Chem. 57(12), 2351–2357 (1985).
[PubMed]

Malinin, L.

L. Malinin, “Development of a non-invasive blood glucose monitor based on impedance measurements,” Int. J. Biomed. Eng. Technol. 8(1), 60–81 (2012).

Mannhalter, J. W.

J. W. Mannhalter, D. G. Gilliland, and R. J. Collier, “A hybrid toxin containing fragment A from diphtheria toxin linked to the B protomer of cholera toxin,” Biochim. Biophys. Acta 626(2), 443–450 (1980).
[PubMed]

Mao, C.

C. Sun, Y. Niu, F. Tong, C. Mao, X. Huang, B. Zhao, and J. Shen, “Preparation of novel electrochemical glucose biosensors for whole blood based on antibiofouling polyurethane-heparin nanoparticles,” Electrochim. Acta 97, 349–356 (2013).

Marcus, A.

J. Mastrototaro, J. Shin, A. Marcus, G. Sulur, and STAR 1 Clinical Trial Investigators, “The accuracy and efficacy of real-time continuous glucose monitoring sensor in patients with type 1 diabetes,” Diabetes Technol. Ther. 10(5), 385–390 (2008).
[PubMed]

Mastrototaro, J.

J. Mastrototaro, J. Shin, A. Marcus, G. Sulur, and STAR 1 Clinical Trial Investigators, “The accuracy and efficacy of real-time continuous glucose monitoring sensor in patients with type 1 diabetes,” Diabetes Technol. Ther. 10(5), 385–390 (2008).
[PubMed]

Mastrototaro, J. J.

J. J. Mastrototaro, K. W. Cooper, G. Soundararajan, J. B. Sanders, and R. V. Shah, “Clinical experience with an integrated continuous glucose sensor/insulin pump platform: A feasibility study,” Adv. Ther. 23(5), 725–732 (2006).
[PubMed]

Matsunaga, T.

N. Tsuruoka, K. Ishii, T. Matsunaga, R. Nagatomi, and Y. Haga, “Lactate and glucose measurement in subepidermal tissue using minimally invasive microperfusion needle,” Biomed. Microdevices 18(1), 19 (2016).
[PubMed]

McClung, M. J.

R. J. Buford, E. C. Green, and M. J. McClung, “A microwave frequency sensor for non-invasive blood-glucose measurement,” in Proceedings of IEEE Conference on Sensors Applications Symposium (IEEE, 2008), pp. 4–7.

McGahan, L.

L. McGahan, “Continuous glucose monitoring in the management of diabetes mellitus,” Issues Emerg. Health Technol. 1–4(32), 1–4 (2002).
[PubMed]

McGarraugh, G. V.

R. L. Weinstein, S. L. Schwartz, R. L. Brazg, J. R. Bugler, T. A. Peyser, and G. V. McGarraugh, “Accuracy of the 5-day freestyle navigator continuous glucose monitoring system: comparison with frequent laboratory reference measurements,” Diabetes Care 30(5), 1125–1130 (2007).
[PubMed]

McGill, S.

A. Jina, M. J. Tierney, J. A. Tamada, S. McGill, S. Desai, B. Chua, A. Chang, and M. Christiansen, “Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor,” J. Diabetes Sci. Technol. 8(3), 483–487 (2014).
[PubMed]

Miller, D. M.

D. M. Miller, J. S. Olson, and F. A. Quiocho, “The mechanism of sugar binding to the periplasmic receptor for galactose chemotaxis and transport in Escherichia coli,” J. Biol. Chem. 255(6), 2465–2471 (1980).
[PubMed]

Mintchev, M. P.

G. Wang, M. D. Poscente, S. S. Park, C. N. Andrews, O. Yadid-Pecht, and M. P. Mintchev, “Minimally invasive pseudo-continuous blood glucose monitoring: results from in-vitro and in-vivo testing of the e-mosquito,” in Proceedings of IEEE International Symposium on Circuits and Systems (IEEE, 2016), pp. 321–324.

Mitragotri, S.

S. Mitragotri, M. Coleman, J. Kost, and R. Langer, “Transdermal extraction of analytes using low-frequency ultrasound,” Pharm. Res. 17(4), 466–470 (2000).
[PubMed]

Moussy, F.

N. Wisniewski, F. Moussy, and W. M. Reichert, “Characterization of implantable biosensor membrane biofouling,” Fresenius J. Anal. Chem. 366(6-7), 611–621 (2000).
[PubMed]

Mowbray, S. L.

J. Y. Zou, M. M. Flocco, and S. L. Mowbray, “The 1.7 A Refined X-ray Structure of the Periplasmic Glucose/Galactose Receptor from Salmonella typhimurium,” J. Mol. Biol. 233(4), 739–752 (1993).
[PubMed]

Nagatomi, R.

N. Tsuruoka, K. Ishii, T. Matsunaga, R. Nagatomi, and Y. Haga, “Lactate and glucose measurement in subepidermal tissue using minimally invasive microperfusion needle,” Biomed. Microdevices 18(1), 19 (2016).
[PubMed]

Nashchekin, A. V.

A. V. Nashchekin, O. A. Usov, and K. K. Turoverov, “Waveguide-type localized plasmon resonance biosensor for noninvasive glucose concentration detection,” Proc. SPIE 8427, 842739 (2012).

Nicolao, G. D.

C. Zecchin, A. Facchinetti, G. Sparacino, G. D. Nicolao, and C. Cobelli, “A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (IEEE, 2011), pp. 5653–5656.

Niu, Y.

C. Sun, Y. Niu, F. Tong, C. Mao, X. Huang, B. Zhao, and J. Shen, “Preparation of novel electrochemical glucose biosensors for whole blood based on antibiofouling polyurethane-heparin nanoparticles,” Electrochim. Acta 97, 349–356 (2013).

Núñez, S.

S. Núñez, J. Venhorst, and C. G. Kruse, “Target-drug interactions: first principles and their application to drug discovery,” Drug Discov. Today 17(1-2), 10–22 (2012).
[PubMed]

Nycz, C. M.

T. J. Amiss, D. B. Sherman, C. M. Nycz, S. A. Andaluz, and J. B. Pitner, “Engineering and rapid selection of a low-affinity glucose/galactose-binding protein for a glucose biosensor,” Protein Sci. 16(11), 2350–2359 (2007).
[PubMed]

Olson, J. S.

D. M. Miller, J. S. Olson, and F. A. Quiocho, “The mechanism of sugar binding to the periplasmic receptor for galactose chemotaxis and transport in Escherichia coli,” J. Biol. Chem. 255(6), 2465–2471 (1980).
[PubMed]

Omenetto, F.

P. Domachuk, M. Hunter, R. Batorsky, M. Cronin-Golomb, F. Omenetto, A. Wang, A. K. George, and J. C. Knight, “A path for non-invasive glucose detection using mid-IR supercontinuum,” in Proceedings of IEEE Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.

Park, S. S.

G. Wang, M. D. Poscente, S. S. Park, C. N. Andrews, O. Yadid-Pecht, and M. P. Mintchev, “Minimally invasive pseudo-continuous blood glucose monitoring: results from in-vitro and in-vivo testing of the e-mosquito,” in Proceedings of IEEE International Symposium on Circuits and Systems (IEEE, 2016), pp. 321–324.

Pastva, O.

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

Peyser, T. A.

R. L. Weinstein, S. L. Schwartz, R. L. Brazg, J. R. Bugler, T. A. Peyser, and G. V. McGarraugh, “Accuracy of the 5-day freestyle navigator continuous glucose monitoring system: comparison with frequent laboratory reference measurements,” Diabetes Care 30(5), 1125–1130 (2007).
[PubMed]

Pfeiffer, Z. A.

H. V. Hsieh, Z. A. Pfeiffer, T. J. Amiss, D. B. Sherman, and J. B. Pitner, “Direct detection of glucose by surface plasmon resonance with bacterial glucose/galactose-binding protein,” Biosens. Bioelectron. 19(7), 653–660 (2004).
[PubMed]

Pilan, L.

M. D. Raicopol, C. Andronescu, R. Atasiei, A. Hanganu, E. Vasile, A. M. Brezoiu, and L. Pilan, “Organic layers via aryl diazonium electrochemistry: towards modifying platinum electrodes for interference free glucose biosensors,” Electrochim. Acta 206, 226–237 (2016).

Pimková, K.

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

Pitner, J. B.

H. V. Hsieh, D. B. Sherman, S. A. Andaluz, T. J. Amiss, and J. B. Pitner, “Fluorescence resonance energy transfer glucose sensor from site-specific dual labeling of glucose/galactose binding protein using ligand protection,” J. Diabetes Sci. Technol. 6(6), 1286–1295 (2012).
[PubMed]

K. Weidemaier, A. Lastovich, S. Keith, J. B. Pitner, M. Sistare, R. Jacobson, and D. Kurisko, “Multi-day pre-clinical demonstration of glucose/galactose binding protein-based fiber optic sensor,” Biosens. Bioelectron. 26(10), 4117–4123 (2011).
[PubMed]

T. J. Amiss, D. B. Sherman, C. M. Nycz, S. A. Andaluz, and J. B. Pitner, “Engineering and rapid selection of a low-affinity glucose/galactose-binding protein for a glucose biosensor,” Protein Sci. 16(11), 2350–2359 (2007).
[PubMed]

H. V. Hsieh, Z. A. Pfeiffer, T. J. Amiss, D. B. Sherman, and J. B. Pitner, “Direct detection of glucose by surface plasmon resonance with bacterial glucose/galactose-binding protein,” Biosens. Bioelectron. 19(7), 653–660 (2004).
[PubMed]

Poscente, M. D.

G. Wang, M. D. Poscente, S. S. Park, C. N. Andrews, O. Yadid-Pecht, and M. P. Mintchev, “Minimally invasive pseudo-continuous blood glucose monitoring: results from in-vitro and in-vivo testing of the e-mosquito,” in Proceedings of IEEE International Symposium on Circuits and Systems (IEEE, 2016), pp. 321–324.

Potts, R. O.

M. J. Tierney, J. A. Tamada, R. O. Potts, L. Jovanovic, S. Garg, and Cygnus Research Team, “Clinical evaluation of the GlucoWatch biographer: a continual, non-invasive glucose monitor for patients with diabetes,” Biosens. Bioelectron. 16(9-12), 621–629 (2001).
[PubMed]

Pourziad, A.

R. Baghbani, M. A. Rad, and A. Pourziad, “Microwave sensor for non-invasive glucose measurements design and implementation of a novel linear,” IET Wirel. Sens. Syst. 5(2), 51–57 (2015).

Qiu, J. D.

R. P. Liang, G. H. Yao, L. X. Fan, and J. D. Qiu, “Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein,” Anal. Chim. Acta 737, 22–28 (2012).
[PubMed]

Quiocho, F. A.

M. N. Vyas, N. K. Vyas, and F. A. Quiocho, “Crystallographic Analysis of the Epimeric and Anomeric Specificity of the Periplasmic Transport/Chemosensory Protein Receptor for D-Glucose and D-Galactose,” Biochemistry 33(16), 4762–4768 (1994).
[PubMed]

N. K. Vyas, M. N. Vyas, and F. A. Quiocho, “Sugar and signal-transducer binding sites of the escherichia coli galactose chemoreceptor protein,” Science 242(4883), 1290–1295 (1988).
[PubMed]

N. K. Vyas, M. N. Vyas, and F. A. Quiocho, “A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis,” Nature 327(6123), 635–638 (1987).
[PubMed]

D. M. Miller, J. S. Olson, and F. A. Quiocho, “The mechanism of sugar binding to the periplasmic receptor for galactose chemotaxis and transport in Escherichia coli,” J. Biol. Chem. 255(6), 2465–2471 (1980).
[PubMed]

Rad, M. A.

R. Baghbani, M. A. Rad, and A. Pourziad, “Microwave sensor for non-invasive glucose measurements design and implementation of a novel linear,” IET Wirel. Sens. Syst. 5(2), 51–57 (2015).

Raicopol, M. D.

M. D. Raicopol, C. Andronescu, R. Atasiei, A. Hanganu, E. Vasile, A. M. Brezoiu, and L. Pilan, “Organic layers via aryl diazonium electrochemistry: towards modifying platinum electrodes for interference free glucose biosensors,” Electrochim. Acta 206, 226–237 (2016).

Reichert, M.

N. Wisniewski and M. Reichert, “Methods for reducing biosensor membrane biofouling,” Colloids Surf. B Biointerfaces 18(3-4), 197–219 (2000).
[PubMed]

Reichert, W. M.

N. Wisniewski, F. Moussy, and W. M. Reichert, “Characterization of implantable biosensor membrane biofouling,” Fresenius J. Anal. Chem. 366(6-7), 611–621 (2000).
[PubMed]

Ribet, F.

F. Ribet, G. Stemme, and N. Roxhed, “Ultra-miniaturization of a planar amperometric sensor targeting continuous intradermal glucose monitoring,” Biosens. Bioelectron. 90, 577–583 (2017).
[PubMed]

Roberts, R. C.

H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “An interstitial fluid transdermal extraction system for continuous glucose monitoring,” J. Microelectromech. Syst. 21(4), 917–925 (2012).

Roxhed, N.

F. Ribet, G. Stemme, and N. Roxhed, “Ultra-miniaturization of a planar amperometric sensor targeting continuous intradermal glucose monitoring,” Biosens. Bioelectron. 90, 577–583 (2017).
[PubMed]

Ruedy, K. J.

D. M. Wilson, R. W. Beck, W. V. Tamborlane, M. J. Dontchev, C. Kollman, P. Chase, L. A. Fox, K. J. Ruedy, E. Tsalikian, S. A. Weinzimer, and DirecNet Study Group, “The accuracy of the freestyle navigator continuous glucose monitoring system in children with type 1 diabetes,” Diabetes Care 30(1), 59–64 (2007).
[PubMed]

Sanders, J. B.

J. J. Mastrototaro, K. W. Cooper, G. Soundararajan, J. B. Sanders, and R. V. Shah, “Clinical experience with an integrated continuous glucose sensor/insulin pump platform: A feasibility study,” Adv. Ther. 23(5), 725–732 (2006).
[PubMed]

Sato, T.

J. Kojima, S. Hosoya, C. Suminaka, N. Hori, and T. Sato, “An integrated glucose sensor with an all-solid-state sodium ion-selective electrode for a minimally invasive glucose monitoring system,” Micromachines (Basel) 6(7), 831–841 (2015).

Schultz, J. S.

R. Ballerstadt and J. S. Schultz, “Kinetics of dissolution of Concanavalin A/Dextran sols in response to glucose measured by surface plasmon resonance,” Sens. Actuators B Chem. 46(1), 50–55 (1998).

Schwartz, S. L.

R. L. Weinstein, S. L. Schwartz, R. L. Brazg, J. R. Bugler, T. A. Peyser, and G. V. McGarraugh, “Accuracy of the 5-day freestyle navigator continuous glucose monitoring system: comparison with frequent laboratory reference measurements,” Diabetes Care 30(5), 1125–1130 (2007).
[PubMed]

Shah, R. V.

J. J. Mastrototaro, K. W. Cooper, G. Soundararajan, J. B. Sanders, and R. V. Shah, “Clinical experience with an integrated continuous glucose sensor/insulin pump platform: A feasibility study,” Adv. Ther. 23(5), 725–732 (2006).
[PubMed]

Shen, J.

C. Sun, Y. Niu, F. Tong, C. Mao, X. Huang, B. Zhao, and J. Shen, “Preparation of novel electrochemical glucose biosensors for whole blood based on antibiofouling polyurethane-heparin nanoparticles,” Electrochim. Acta 97, 349–356 (2013).

Sherman, D. B.

H. V. Hsieh, D. B. Sherman, S. A. Andaluz, T. J. Amiss, and J. B. Pitner, “Fluorescence resonance energy transfer glucose sensor from site-specific dual labeling of glucose/galactose binding protein using ligand protection,” J. Diabetes Sci. Technol. 6(6), 1286–1295 (2012).
[PubMed]

T. J. Amiss, D. B. Sherman, C. M. Nycz, S. A. Andaluz, and J. B. Pitner, “Engineering and rapid selection of a low-affinity glucose/galactose-binding protein for a glucose biosensor,” Protein Sci. 16(11), 2350–2359 (2007).
[PubMed]

H. V. Hsieh, Z. A. Pfeiffer, T. J. Amiss, D. B. Sherman, and J. B. Pitner, “Direct detection of glucose by surface plasmon resonance with bacterial glucose/galactose-binding protein,” Biosens. Bioelectron. 19(7), 653–660 (2004).
[PubMed]

Shin, J.

J. Mastrototaro, J. Shin, A. Marcus, G. Sulur, and STAR 1 Clinical Trial Investigators, “The accuracy and efficacy of real-time continuous glucose monitoring sensor in patients with type 1 diabetes,” Diabetes Technol. Ther. 10(5), 385–390 (2008).
[PubMed]

Šípová, H.

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

Sistare, M.

K. Weidemaier, A. Lastovich, S. Keith, J. B. Pitner, M. Sistare, R. Jacobson, and D. Kurisko, “Multi-day pre-clinical demonstration of glucose/galactose binding protein-based fiber optic sensor,” Biosens. Bioelectron. 26(10), 4117–4123 (2011).
[PubMed]

Song, X.

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

Soundararajan, G.

J. J. Mastrototaro, K. W. Cooper, G. Soundararajan, J. B. Sanders, and R. V. Shah, “Clinical experience with an integrated continuous glucose sensor/insulin pump platform: A feasibility study,” Adv. Ther. 23(5), 725–732 (2006).
[PubMed]

Sparacino, G.

C. Zecchin, A. Facchinetti, G. Sparacino, G. D. Nicolao, and C. Cobelli, “A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (IEEE, 2011), pp. 5653–5656.

Špringer, T.

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

Stemme, G.

F. Ribet, G. Stemme, and N. Roxhed, “Ultra-miniaturization of a planar amperometric sensor targeting continuous intradermal glucose monitoring,” Biosens. Bioelectron. 90, 577–583 (2017).
[PubMed]

Subramani, B.

K. Y. Hwa, B. Subramani, P. W. Chang, M. Chien, and J. T. Huang, “Transdermal microneedle array-based sensor for real time continuous glucose monitoring,” Int. J. Electrochem. Sci. 10(3), 2455–2466 (2015).

Sulur, G.

J. Mastrototaro, J. Shin, A. Marcus, G. Sulur, and STAR 1 Clinical Trial Investigators, “The accuracy and efficacy of real-time continuous glucose monitoring sensor in patients with type 1 diabetes,” Diabetes Technol. Ther. 10(5), 385–390 (2008).
[PubMed]

Suminaka, C.

J. Kojima, S. Hosoya, C. Suminaka, N. Hori, and T. Sato, “An integrated glucose sensor with an all-solid-state sodium ion-selective electrode for a minimally invasive glucose monitoring system,” Micromachines (Basel) 6(7), 831–841 (2015).

Sun, C.

C. Sun, Y. Niu, F. Tong, C. Mao, X. Huang, B. Zhao, and J. Shen, “Preparation of novel electrochemical glucose biosensors for whole blood based on antibiofouling polyurethane-heparin nanoparticles,” Electrochim. Acta 97, 349–356 (2013).

Sun, Y.

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuators A Phys. 222, 58–66 (2015).

Tamada, J. A.

A. Jina, M. J. Tierney, J. A. Tamada, S. McGill, S. Desai, B. Chua, A. Chang, and M. Christiansen, “Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor,” J. Diabetes Sci. Technol. 8(3), 483–487 (2014).
[PubMed]

M. J. Tierney, J. A. Tamada, R. O. Potts, L. Jovanovic, S. Garg, and Cygnus Research Team, “Clinical evaluation of the GlucoWatch biographer: a continual, non-invasive glucose monitor for patients with diabetes,” Biosens. Bioelectron. 16(9-12), 621–629 (2001).
[PubMed]

Tamborlane, W. V.

D. M. Wilson, R. W. Beck, W. V. Tamborlane, M. J. Dontchev, C. Kollman, P. Chase, L. A. Fox, K. J. Ruedy, E. Tsalikian, S. A. Weinzimer, and DirecNet Study Group, “The accuracy of the freestyle navigator continuous glucose monitoring system in children with type 1 diabetes,” Diabetes Care 30(1), 59–64 (2007).
[PubMed]

Taraz, M.

N. Jahangiri, A. Bahrampour, and M. Taraz, “Non-invasive optical techniques for determination of blood glucose levels: A Review Article,” Iran. J. Med. Phys. 11(2), 224–232 (2014).

Tien, N. C.

H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “An interstitial fluid transdermal extraction system for continuous glucose monitoring,” J. Microelectromech. Syst. 21(4), 917–925 (2012).

Tierney, M. J.

A. Jina, M. J. Tierney, J. A. Tamada, S. McGill, S. Desai, B. Chua, A. Chang, and M. Christiansen, “Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor,” J. Diabetes Sci. Technol. 8(3), 483–487 (2014).
[PubMed]

M. J. Tierney, J. A. Tamada, R. O. Potts, L. Jovanovic, S. Garg, and Cygnus Research Team, “Clinical evaluation of the GlucoWatch biographer: a continual, non-invasive glucose monitor for patients with diabetes,” Biosens. Bioelectron. 16(9-12), 621–629 (2001).
[PubMed]

Tong, F.

C. Sun, Y. Niu, F. Tong, C. Mao, X. Huang, B. Zhao, and J. Shen, “Preparation of novel electrochemical glucose biosensors for whole blood based on antibiofouling polyurethane-heparin nanoparticles,” Electrochim. Acta 97, 349–356 (2013).

Tsalikian, E.

D. M. Wilson, R. W. Beck, W. V. Tamborlane, M. J. Dontchev, C. Kollman, P. Chase, L. A. Fox, K. J. Ruedy, E. Tsalikian, S. A. Weinzimer, and DirecNet Study Group, “The accuracy of the freestyle navigator continuous glucose monitoring system in children with type 1 diabetes,” Diabetes Care 30(1), 59–64 (2007).
[PubMed]

Tse, P. H.

D. A. Gough, J. Y. Lucisano, and P. H. Tse, “Two-dimensional enzyme electrode sensor for glucose,” Anal. Chem. 57(12), 2351–2357 (1985).
[PubMed]

Tsuruoka, N.

N. Tsuruoka, K. Ishii, T. Matsunaga, R. Nagatomi, and Y. Haga, “Lactate and glucose measurement in subepidermal tissue using minimally invasive microperfusion needle,” Biomed. Microdevices 18(1), 19 (2016).
[PubMed]

Turoverov, K. K.

A. V. Nashchekin, O. A. Usov, and K. K. Turoverov, “Waveguide-type localized plasmon resonance biosensor for noninvasive glucose concentration detection,” Proc. SPIE 8427, 842739 (2012).

Usov, O. A.

A. V. Nashchekin, O. A. Usov, and K. K. Turoverov, “Waveguide-type localized plasmon resonance biosensor for noninvasive glucose concentration detection,” Proc. SPIE 8427, 842739 (2012).

Vaisocherová, H.

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

Vasile, E.

M. D. Raicopol, C. Andronescu, R. Atasiei, A. Hanganu, E. Vasile, A. M. Brezoiu, and L. Pilan, “Organic layers via aryl diazonium electrochemistry: towards modifying platinum electrodes for interference free glucose biosensors,” Electrochim. Acta 206, 226–237 (2016).

Venhorst, J.

S. Núñez, J. Venhorst, and C. G. Kruse, “Target-drug interactions: first principles and their application to drug discovery,” Drug Discov. Today 17(1-2), 10–22 (2012).
[PubMed]

Víšová, I.

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

Vyas, M. N.

M. N. Vyas, N. K. Vyas, and F. A. Quiocho, “Crystallographic Analysis of the Epimeric and Anomeric Specificity of the Periplasmic Transport/Chemosensory Protein Receptor for D-Glucose and D-Galactose,” Biochemistry 33(16), 4762–4768 (1994).
[PubMed]

N. K. Vyas, M. N. Vyas, and F. A. Quiocho, “Sugar and signal-transducer binding sites of the escherichia coli galactose chemoreceptor protein,” Science 242(4883), 1290–1295 (1988).
[PubMed]

N. K. Vyas, M. N. Vyas, and F. A. Quiocho, “A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis,” Nature 327(6123), 635–638 (1987).
[PubMed]

Vyas, N. K.

M. N. Vyas, N. K. Vyas, and F. A. Quiocho, “Crystallographic Analysis of the Epimeric and Anomeric Specificity of the Periplasmic Transport/Chemosensory Protein Receptor for D-Glucose and D-Galactose,” Biochemistry 33(16), 4762–4768 (1994).
[PubMed]

N. K. Vyas, M. N. Vyas, and F. A. Quiocho, “Sugar and signal-transducer binding sites of the escherichia coli galactose chemoreceptor protein,” Science 242(4883), 1290–1295 (1988).
[PubMed]

N. K. Vyas, M. N. Vyas, and F. A. Quiocho, “A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis,” Nature 327(6123), 635–638 (1987).
[PubMed]

Wang, A.

P. Domachuk, M. Hunter, R. Batorsky, M. Cronin-Golomb, F. Omenetto, A. Wang, A. K. George, and J. C. Knight, “A path for non-invasive glucose detection using mid-IR supercontinuum,” in Proceedings of IEEE Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.

Wang, G.

G. Wang, M. D. Poscente, S. S. Park, C. N. Andrews, O. Yadid-Pecht, and M. P. Mintchev, “Minimally invasive pseudo-continuous blood glucose monitoring: results from in-vitro and in-vivo testing of the e-mosquito,” in Proceedings of IEEE International Symposium on Circuits and Systems (IEEE, 2016), pp. 321–324.

Weidemaier, K.

K. Weidemaier, A. Lastovich, S. Keith, J. B. Pitner, M. Sistare, R. Jacobson, and D. Kurisko, “Multi-day pre-clinical demonstration of glucose/galactose binding protein-based fiber optic sensor,” Biosens. Bioelectron. 26(10), 4117–4123 (2011).
[PubMed]

Weinstein, R. L.

R. L. Weinstein, S. L. Schwartz, R. L. Brazg, J. R. Bugler, T. A. Peyser, and G. V. McGarraugh, “Accuracy of the 5-day freestyle navigator continuous glucose monitoring system: comparison with frequent laboratory reference measurements,” Diabetes Care 30(5), 1125–1130 (2007).
[PubMed]

Weinzimer, S. A.

D. M. Wilson, R. W. Beck, W. V. Tamborlane, M. J. Dontchev, C. Kollman, P. Chase, L. A. Fox, K. J. Ruedy, E. Tsalikian, S. A. Weinzimer, and DirecNet Study Group, “The accuracy of the freestyle navigator continuous glucose monitoring system in children with type 1 diabetes,” Diabetes Care 30(1), 59–64 (2007).
[PubMed]

Wilson, D. M.

D. M. Wilson, R. W. Beck, W. V. Tamborlane, M. J. Dontchev, C. Kollman, P. Chase, L. A. Fox, K. J. Ruedy, E. Tsalikian, S. A. Weinzimer, and DirecNet Study Group, “The accuracy of the freestyle navigator continuous glucose monitoring system in children with type 1 diabetes,” Diabetes Care 30(1), 59–64 (2007).
[PubMed]

Wisniewski, N.

N. Wisniewski, F. Moussy, and W. M. Reichert, “Characterization of implantable biosensor membrane biofouling,” Fresenius J. Anal. Chem. 366(6-7), 611–621 (2000).
[PubMed]

N. Wisniewski and M. Reichert, “Methods for reducing biosensor membrane biofouling,” Colloids Surf. B Biointerfaces 18(3-4), 197–219 (2000).
[PubMed]

Xu, K.

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuators A Phys. 222, 58–66 (2015).

H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “An interstitial fluid transdermal extraction system for continuous glucose monitoring,” J. Microelectromech. Syst. 21(4), 917–925 (2012).

Yadid-Pecht, O.

G. Wang, M. D. Poscente, S. S. Park, C. N. Andrews, O. Yadid-Pecht, and M. P. Mintchev, “Minimally invasive pseudo-continuous blood glucose monitoring: results from in-vitro and in-vivo testing of the e-mosquito,” in Proceedings of IEEE International Symposium on Circuits and Systems (IEEE, 2016), pp. 321–324.

Yang, D.

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuators A Phys. 222, 58–66 (2015).

Yang, J.

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuators A Phys. 222, 58–66 (2015).

Yao, G. H.

R. P. Liang, G. H. Yao, L. X. Fan, and J. D. Qiu, “Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein,” Anal. Chim. Acta 737, 22–28 (2012).
[PubMed]

Yu, H.

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuators A Phys. 222, 58–66 (2015).

H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “An interstitial fluid transdermal extraction system for continuous glucose monitoring,” J. Microelectromech. Syst. 21(4), 917–925 (2012).

Zecchin, C.

C. Zecchin, A. Facchinetti, G. Sparacino, G. D. Nicolao, and C. Cobelli, “A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (IEEE, 2011), pp. 5653–5656.

Zhao, B.

C. Sun, Y. Niu, F. Tong, C. Mao, X. Huang, B. Zhao, and J. Shen, “Preparation of novel electrochemical glucose biosensors for whole blood based on antibiofouling polyurethane-heparin nanoparticles,” Electrochim. Acta 97, 349–356 (2013).

Zou, J. Y.

J. Y. Zou, M. M. Flocco, and S. L. Mowbray, “The 1.7 A Refined X-ray Structure of the Periplasmic Glucose/Galactose Receptor from Salmonella typhimurium,” J. Mol. Biol. 233(4), 739–752 (1993).
[PubMed]

Adv. Ther. (1)

J. J. Mastrototaro, K. W. Cooper, G. Soundararajan, J. B. Sanders, and R. V. Shah, “Clinical experience with an integrated continuous glucose sensor/insulin pump platform: A feasibility study,” Adv. Ther. 23(5), 725–732 (2006).
[PubMed]

Anal. Chem. (1)

D. A. Gough, J. Y. Lucisano, and P. H. Tse, “Two-dimensional enzyme electrode sensor for glucose,” Anal. Chem. 57(12), 2351–2357 (1985).
[PubMed]

Anal. Chim. Acta (1)

R. P. Liang, G. H. Yao, L. X. Fan, and J. D. Qiu, “Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein,” Anal. Chim. Acta 737, 22–28 (2012).
[PubMed]

Biochemistry (1)

M. N. Vyas, N. K. Vyas, and F. A. Quiocho, “Crystallographic Analysis of the Epimeric and Anomeric Specificity of the Periplasmic Transport/Chemosensory Protein Receptor for D-Glucose and D-Galactose,” Biochemistry 33(16), 4762–4768 (1994).
[PubMed]

Biochim. Biophys. Acta (1)

J. W. Mannhalter, D. G. Gilliland, and R. J. Collier, “A hybrid toxin containing fragment A from diphtheria toxin linked to the B protomer of cholera toxin,” Biochim. Biophys. Acta 626(2), 443–450 (1980).
[PubMed]

Biomed. Microdevices (1)

N. Tsuruoka, K. Ishii, T. Matsunaga, R. Nagatomi, and Y. Haga, “Lactate and glucose measurement in subepidermal tissue using minimally invasive microperfusion needle,” Biomed. Microdevices 18(1), 19 (2016).
[PubMed]

Biosens. Bioelectron. (5)

F. Ribet, G. Stemme, and N. Roxhed, “Ultra-miniaturization of a planar amperometric sensor targeting continuous intradermal glucose monitoring,” Biosens. Bioelectron. 90, 577–583 (2017).
[PubMed]

M. J. Tierney, J. A. Tamada, R. O. Potts, L. Jovanovic, S. Garg, and Cygnus Research Team, “Clinical evaluation of the GlucoWatch biographer: a continual, non-invasive glucose monitor for patients with diabetes,” Biosens. Bioelectron. 16(9-12), 621–629 (2001).
[PubMed]

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, M. L. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, J. E. Dyr, and J. Homola, “Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor,” Biosens. Bioelectron. 70, 226–231 (2015).
[PubMed]

K. Weidemaier, A. Lastovich, S. Keith, J. B. Pitner, M. Sistare, R. Jacobson, and D. Kurisko, “Multi-day pre-clinical demonstration of glucose/galactose binding protein-based fiber optic sensor,” Biosens. Bioelectron. 26(10), 4117–4123 (2011).
[PubMed]

H. V. Hsieh, Z. A. Pfeiffer, T. J. Amiss, D. B. Sherman, and J. B. Pitner, “Direct detection of glucose by surface plasmon resonance with bacterial glucose/galactose-binding protein,” Biosens. Bioelectron. 19(7), 653–660 (2004).
[PubMed]

Colloids Surf. B Biointerfaces (1)

N. Wisniewski and M. Reichert, “Methods for reducing biosensor membrane biofouling,” Colloids Surf. B Biointerfaces 18(3-4), 197–219 (2000).
[PubMed]

Diabetes Care (2)

R. L. Weinstein, S. L. Schwartz, R. L. Brazg, J. R. Bugler, T. A. Peyser, and G. V. McGarraugh, “Accuracy of the 5-day freestyle navigator continuous glucose monitoring system: comparison with frequent laboratory reference measurements,” Diabetes Care 30(5), 1125–1130 (2007).
[PubMed]

D. M. Wilson, R. W. Beck, W. V. Tamborlane, M. J. Dontchev, C. Kollman, P. Chase, L. A. Fox, K. J. Ruedy, E. Tsalikian, S. A. Weinzimer, and DirecNet Study Group, “The accuracy of the freestyle navigator continuous glucose monitoring system in children with type 1 diabetes,” Diabetes Care 30(1), 59–64 (2007).
[PubMed]

Diabetes Technol. Ther. (1)

J. Mastrototaro, J. Shin, A. Marcus, G. Sulur, and STAR 1 Clinical Trial Investigators, “The accuracy and efficacy of real-time continuous glucose monitoring sensor in patients with type 1 diabetes,” Diabetes Technol. Ther. 10(5), 385–390 (2008).
[PubMed]

Drug Discov. Today (1)

S. Núñez, J. Venhorst, and C. G. Kruse, “Target-drug interactions: first principles and their application to drug discovery,” Drug Discov. Today 17(1-2), 10–22 (2012).
[PubMed]

Electrochim. Acta (2)

C. Sun, Y. Niu, F. Tong, C. Mao, X. Huang, B. Zhao, and J. Shen, “Preparation of novel electrochemical glucose biosensors for whole blood based on antibiofouling polyurethane-heparin nanoparticles,” Electrochim. Acta 97, 349–356 (2013).

M. D. Raicopol, C. Andronescu, R. Atasiei, A. Hanganu, E. Vasile, A. M. Brezoiu, and L. Pilan, “Organic layers via aryl diazonium electrochemistry: towards modifying platinum electrodes for interference free glucose biosensors,” Electrochim. Acta 206, 226–237 (2016).

Fresenius J. Anal. Chem. (1)

N. Wisniewski, F. Moussy, and W. M. Reichert, “Characterization of implantable biosensor membrane biofouling,” Fresenius J. Anal. Chem. 366(6-7), 611–621 (2000).
[PubMed]

IET Wirel. Sens. Syst. (1)

R. Baghbani, M. A. Rad, and A. Pourziad, “Microwave sensor for non-invasive glucose measurements design and implementation of a novel linear,” IET Wirel. Sens. Syst. 5(2), 51–57 (2015).

Int. J. Biomed. Eng. Technol. (1)

L. Malinin, “Development of a non-invasive blood glucose monitor based on impedance measurements,” Int. J. Biomed. Eng. Technol. 8(1), 60–81 (2012).

Int. J. Electrochem. Sci. (1)

K. Y. Hwa, B. Subramani, P. W. Chang, M. Chien, and J. T. Huang, “Transdermal microneedle array-based sensor for real time continuous glucose monitoring,” Int. J. Electrochem. Sci. 10(3), 2455–2466 (2015).

Iran. J. Med. Phys. (1)

N. Jahangiri, A. Bahrampour, and M. Taraz, “Non-invasive optical techniques for determination of blood glucose levels: A Review Article,” Iran. J. Med. Phys. 11(2), 224–232 (2014).

Issues Emerg. Health Technol. (1)

L. McGahan, “Continuous glucose monitoring in the management of diabetes mellitus,” Issues Emerg. Health Technol. 1–4(32), 1–4 (2002).
[PubMed]

J. Biol. Chem. (1)

D. M. Miller, J. S. Olson, and F. A. Quiocho, “The mechanism of sugar binding to the periplasmic receptor for galactose chemotaxis and transport in Escherichia coli,” J. Biol. Chem. 255(6), 2465–2471 (1980).
[PubMed]

J. Diabetes Sci. Technol. (2)

A. Jina, M. J. Tierney, J. A. Tamada, S. McGill, S. Desai, B. Chua, A. Chang, and M. Christiansen, “Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor,” J. Diabetes Sci. Technol. 8(3), 483–487 (2014).
[PubMed]

H. V. Hsieh, D. B. Sherman, S. A. Andaluz, T. J. Amiss, and J. B. Pitner, “Fluorescence resonance energy transfer glucose sensor from site-specific dual labeling of glucose/galactose binding protein using ligand protection,” J. Diabetes Sci. Technol. 6(6), 1286–1295 (2012).
[PubMed]

J. Microelectromech. Syst. (1)

H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “An interstitial fluid transdermal extraction system for continuous glucose monitoring,” J. Microelectromech. Syst. 21(4), 917–925 (2012).

J. Mol. Biol. (1)

J. Y. Zou, M. M. Flocco, and S. L. Mowbray, “The 1.7 A Refined X-ray Structure of the Periplasmic Glucose/Galactose Receptor from Salmonella typhimurium,” J. Mol. Biol. 233(4), 739–752 (1993).
[PubMed]

Micromachines (Basel) (1)

J. Kojima, S. Hosoya, C. Suminaka, N. Hori, and T. Sato, “An integrated glucose sensor with an all-solid-state sodium ion-selective electrode for a minimally invasive glucose monitoring system,” Micromachines (Basel) 6(7), 831–841 (2015).

Nature (1)

N. K. Vyas, M. N. Vyas, and F. A. Quiocho, “A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis,” Nature 327(6123), 635–638 (1987).
[PubMed]

Pharm. Res. (1)

S. Mitragotri, M. Coleman, J. Kost, and R. Langer, “Transdermal extraction of analytes using low-frequency ultrasound,” Pharm. Res. 17(4), 466–470 (2000).
[PubMed]

Proc. SPIE (1)

A. V. Nashchekin, O. A. Usov, and K. K. Turoverov, “Waveguide-type localized plasmon resonance biosensor for noninvasive glucose concentration detection,” Proc. SPIE 8427, 842739 (2012).

Protein Sci. (1)

T. J. Amiss, D. B. Sherman, C. M. Nycz, S. A. Andaluz, and J. B. Pitner, “Engineering and rapid selection of a low-affinity glucose/galactose-binding protein for a glucose biosensor,” Protein Sci. 16(11), 2350–2359 (2007).
[PubMed]

Science (1)

N. K. Vyas, M. N. Vyas, and F. A. Quiocho, “Sugar and signal-transducer binding sites of the escherichia coli galactose chemoreceptor protein,” Science 242(4883), 1290–1295 (1988).
[PubMed]

Sens. Actuators A Phys. (1)

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuators A Phys. 222, 58–66 (2015).

Sens. Actuators B Chem. (1)

R. Ballerstadt and J. S. Schultz, “Kinetics of dissolution of Concanavalin A/Dextran sols in response to glucose measured by surface plasmon resonance,” Sens. Actuators B Chem. 46(1), 50–55 (1998).

Other (7)

C. Zecchin, A. Facchinetti, G. Sparacino, G. D. Nicolao, and C. Cobelli, “A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (IEEE, 2011), pp. 5653–5656.

P. Domachuk, M. Hunter, R. Batorsky, M. Cronin-Golomb, F. Omenetto, A. Wang, A. K. George, and J. C. Knight, “A path for non-invasive glucose detection using mid-IR supercontinuum,” in Proceedings of IEEE Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.

M. S. Talary, F. Dewarrat, D. Huber, L. Falco-Jonasson, and A. Caduff, “Non-invasive impedance based continuous glucose monitoring system,” in Proceedings of 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, Graz, Austria, ed. (Springer, 2007), pp. 636–639.

T. Koutny, “Modelling of glucose dynamics for diabetes,” in Bioinformatics and Biomedical Engineering: 5th International Work-Conference, I. Rojas and F. Ortuño, ed. (Springer, 2017), pp. 314–324.

R. J. Buford, E. C. Green, and M. J. McClung, “A microwave frequency sensor for non-invasive blood-glucose measurement,” in Proceedings of IEEE Conference on Sensors Applications Symposium (IEEE, 2008), pp. 4–7.

G. Wang, M. D. Poscente, S. S. Park, C. N. Andrews, O. Yadid-Pecht, and M. P. Mintchev, “Minimally invasive pseudo-continuous blood glucose monitoring: results from in-vitro and in-vivo testing of the e-mosquito,” in Proceedings of IEEE International Symposium on Circuits and Systems (IEEE, 2016), pp. 321–324.

P. A. Berntsson, “Structure and function of substrate-binding proteins of ABC-transporters,” University of Groningen (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The SAM structure of the SPR-gold surface. A, B, C, D and E represent the prism, the gold film, the self-assembled layer, GGB protein and glucose molecules, respectively. (b) Immobilization process of GGB protein on the gold surface of SPR sensor chip. (c)The response curve of GGB protein immobilization process.
Fig. 2
Fig. 2 Influence of pH on the affinity between the surface and protein
Fig. 3
Fig. 3 Response of GGB protein at different pH values.
Fig. 4
Fig. 4 Influence of pH values on protein binding effect.
Fig. 5
Fig. 5 Response of different GGB protein concentrations.
Fig. 6
Fig. 6 Influence of protein concentrations on binding effect.
Fig. 7
Fig. 7 Linear fitting curve between the difference of refractive index and glucose concentration.
Fig. 8
Fig. 8 Fitting curve between the difference of refractive index and glucose concentration.

Tables (2)

Tables Icon

Table 1 Measurements of glucose concentrations using SPR sensor immobilized with single site mutant GGB protein

Tables Icon

Table 2 The measured differences of refractive index for glucose solutions (unit: RU)

Metrics