Abstract

Extinction coefficient (ε) is a critical parameter for quantification of oxy-, deoxy-, and total-hemoglobin concentrations (Δ[HbO2], Δ[Hb], Δ[tHb]) from optical measurements of Near-infrared spectroscopy (NIRS). There are several different ε data sets which were frequently used in NIRS quantification. A previous study reported that even a small variation in ε could cause a significant difference in hemodynamic measurements. Apparently the selection of an optimal ε data set is important for NIRS. We conducted oxygen-state-varied and blood-concentration-varied model experiments with 57 human blood samples to mimic tissue hemodynamic variations. Seven reported ε data sets were evaluated by comparisons between quantifications and assumed values. We found that the Moaveni et al (1970)’ ε data set was the optimal one, the NIRS quantification varied significantly among different ε data sets and parameter Δ[tHb] was most sensitive to ε data sets selection.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Alternations of hemodynamic parameters during Chinese cupping therapy assessed by an embedded near-infrared spectroscopy monitor

Chenyang Gao, Meng Wang, Ling He, Yanni He, and Ting Li
Biomed. Opt. Express 10(1) 196-203 (2019)

Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy

Hanli Liu, Yulin Song, Katherine L. Worden, Xin Jiang, Anca Constantinescu, and Ralph P. Mason
Appl. Opt. 39(28) 5231-5243 (2000)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(Suppl 1), i3–i13 (2009).
    [PubMed]
  2. S. B. Colak, M. B. Van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. Van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).
  3. D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Phil. Trans. Biol. Sci. 352(1354), 649–659 (2002).
  4. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
    [PubMed]
  5. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
    [PubMed]
  6. B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. Biol. Chem. 148(1), 173–183 (1943).
  7. J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52(20), 6295–6322 (2007).
    [PubMed]
  8. J. G. Kim, M. Xia, and H. Liu, “Extinction coefficients of hemoglobin for near-infrared spectroscopy of tissue,” IEEE Eng. Med. Biol. Mag. 24(2), 118–121 (2005).
    [PubMed]
  9. M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Department of Medical Physics and Bioengineering 342 (1991).
  10. S. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water,” Oregon Medical Laser Center, 4 (1998).
  11. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. Reynolds, and R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
    [PubMed]
  12. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
    [PubMed]
  13. M. K. Moaveni, “A multiple scattering field theory applied to whole blood,” Dept. of Electrical Engineering. University of Washington (1970).
  14. S. Takatani and M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26(12), 656–664 (1979).
    [PubMed]
  15. N. Kollias and W. B. Gratzer, “Tabulated molar extinction coefficient for hemoglobin in water,” Wellman Laboratories, Harvard Medical School, Boston 5, 150–161 (1999).
  16. W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, “Visible and near infrared absorption spectra of human and animal haemoglobin: determination and application,” VSP (2000).
  17. T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
    [PubMed]
  18. T. Li, M. Duan, K. Li, G. Yu, and Z. Ruan, “Bedside monitoring of patients with shock using a portable spatially-resolved near-infrared spectroscopy,” Biomed. Opt. Express 6(9), 3431–3436 (2015).
    [PubMed]
  19. T. Li, Y. Li, Y. Lin, and K. Li, “Significant and sustaining elevation in blood Oxygen of Chinese cupping therapy as assessed by functional near-infrared spectroscopy,” Biomed. Opt. Express 8(1), 276205 (2017).
    [PubMed]
  20. H. Sato, M. Kiguchi, F. Kawaguchi, and A. Maki, “Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy,” Neuroimage 21(4), 1554–1562 (2004).
    [PubMed]
  21. S. Fantini, M. Franceschinifantini, J. Maier, S. Walke, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).

2017 (1)

T. Li, Y. Li, Y. Lin, and K. Li, “Significant and sustaining elevation in blood Oxygen of Chinese cupping therapy as assessed by functional near-infrared spectroscopy,” Biomed. Opt. Express 8(1), 276205 (2017).
[PubMed]

2015 (1)

2009 (1)

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(Suppl 1), i3–i13 (2009).
[PubMed]

2007 (1)

J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52(20), 6295–6322 (2007).
[PubMed]

2005 (1)

J. G. Kim, M. Xia, and H. Liu, “Extinction coefficients of hemoglobin for near-infrared spectroscopy of tissue,” IEEE Eng. Med. Biol. Mag. 24(2), 118–121 (2005).
[PubMed]

2004 (1)

H. Sato, M. Kiguchi, F. Kawaguchi, and A. Maki, “Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy,” Neuroimage 21(4), 1554–1562 (2004).
[PubMed]

2003 (1)

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[PubMed]

2002 (1)

D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Phil. Trans. Biol. Sci. 352(1354), 649–659 (2002).

1999 (2)

S. B. Colak, M. B. Van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. Van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

N. Kollias and W. B. Gratzer, “Tabulated molar extinction coefficient for hemoglobin in water,” Wellman Laboratories, Harvard Medical School, Boston 5, 150–161 (1999).

1997 (1)

T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
[PubMed]

1995 (1)

S. Fantini, M. Franceschinifantini, J. Maier, S. Walke, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).

1991 (1)

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

1988 (1)

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. Reynolds, and R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
[PubMed]

1979 (1)

S. Takatani and M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26(12), 656–664 (1979).
[PubMed]

1977 (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
[PubMed]

1943 (1)

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. Biol. Chem. 148(1), 173–183 (1943).

Arango, M.

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(Suppl 1), i3–i13 (2009).
[PubMed]

Barbieri, B.

S. Fantini, M. Franceschinifantini, J. Maier, S. Walke, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).

Boas, D. A.

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[PubMed]

Buursma, A.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

Chance, B.

T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
[PubMed]

Colak, S. B.

S. B. Colak, M. B. Van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. Van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

Cope, M.

D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Phil. Trans. Biol. Sci. 352(1354), 649–659 (2002).

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. Reynolds, and R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
[PubMed]

Delpy, D. T.

D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Phil. Trans. Biol. Sci. 352(1354), 649–659 (2002).

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. Reynolds, and R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
[PubMed]

Duan, M.

Fantini, S.

S. Fantini, M. Franceschinifantini, J. Maier, S. Walke, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).

Franceschini, M. A.

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[PubMed]

Franceschinifantini, M.

S. Fantini, M. Franceschinifantini, J. Maier, S. Walke, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).

Graham, M. D.

S. Takatani and M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26(12), 656–664 (1979).
[PubMed]

Gratton, E.

S. Fantini, M. Franceschinifantini, J. Maier, S. Walke, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).

Gratzer, W. B.

N. Kollias and W. B. Gratzer, “Tabulated molar extinction coefficient for hemoglobin in water,” Wellman Laboratories, Harvard Medical School, Boston 5, 150–161 (1999).

Hooft, G. W.

S. B. Colak, M. B. Van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. Van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

Hoogenraad, J. H.

S. B. Colak, M. B. Van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. Van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

Horecker, B. L.

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. Biol. Chem. 148(1), 173–183 (1943).

Jöbsis, F. F.

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
[PubMed]

Kawaguchi, F.

H. Sato, M. Kiguchi, F. Kawaguchi, and A. Maki, “Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy,” Neuroimage 21(4), 1554–1562 (2004).
[PubMed]

Kiguchi, M.

H. Sato, M. Kiguchi, F. Kawaguchi, and A. Maki, “Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy,” Neuroimage 21(4), 1554–1562 (2004).
[PubMed]

Kim, J. G.

J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52(20), 6295–6322 (2007).
[PubMed]

J. G. Kim, M. Xia, and H. Liu, “Extinction coefficients of hemoglobin for near-infrared spectroscopy of tissue,” IEEE Eng. Med. Biol. Mag. 24(2), 118–121 (2005).
[PubMed]

Kollias, N.

N. Kollias and W. B. Gratzer, “Tabulated molar extinction coefficient for hemoglobin in water,” Wellman Laboratories, Harvard Medical School, Boston 5, 150–161 (1999).

Kuijpers, F. A.

S. B. Colak, M. B. Van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. Van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

Li, K.

T. Li, Y. Li, Y. Lin, and K. Li, “Significant and sustaining elevation in blood Oxygen of Chinese cupping therapy as assessed by functional near-infrared spectroscopy,” Biomed. Opt. Express 8(1), 276205 (2017).
[PubMed]

T. Li, M. Duan, K. Li, G. Yu, and Z. Ruan, “Bedside monitoring of patients with shock using a portable spatially-resolved near-infrared spectroscopy,” Biomed. Opt. Express 6(9), 3431–3436 (2015).
[PubMed]

Li, T.

T. Li, Y. Li, Y. Lin, and K. Li, “Significant and sustaining elevation in blood Oxygen of Chinese cupping therapy as assessed by functional near-infrared spectroscopy,” Biomed. Opt. Express 8(1), 276205 (2017).
[PubMed]

T. Li, M. Duan, K. Li, G. Yu, and Z. Ruan, “Bedside monitoring of patients with shock using a portable spatially-resolved near-infrared spectroscopy,” Biomed. Opt. Express 6(9), 3431–3436 (2015).
[PubMed]

Li, Y.

T. Li, Y. Li, Y. Lin, and K. Li, “Significant and sustaining elevation in blood Oxygen of Chinese cupping therapy as assessed by functional near-infrared spectroscopy,” Biomed. Opt. Express 8(1), 276205 (2017).
[PubMed]

Lin, Y.

T. Li, Y. Li, Y. Lin, and K. Li, “Significant and sustaining elevation in blood Oxygen of Chinese cupping therapy as assessed by functional near-infrared spectroscopy,” Biomed. Opt. Express 8(1), 276205 (2017).
[PubMed]

Liu, H.

J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52(20), 6295–6322 (2007).
[PubMed]

J. G. Kim, M. Xia, and H. Liu, “Extinction coefficients of hemoglobin for near-infrared spectroscopy of tissue,” IEEE Eng. Med. Biol. Mag. 24(2), 118–121 (2005).
[PubMed]

Maier, J.

S. Fantini, M. Franceschinifantini, J. Maier, S. Walke, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).

Maki, A.

H. Sato, M. Kiguchi, F. Kawaguchi, and A. Maki, “Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy,” Neuroimage 21(4), 1554–1562 (2004).
[PubMed]

Meeuwsen-van der Roest, W. P.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

Murkin, J. M.

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(Suppl 1), i3–i13 (2009).
[PubMed]

Nakase, Y.

T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
[PubMed]

Reynolds, E. O.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. Reynolds, and R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
[PubMed]

Reynolds, R.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. Reynolds, and R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
[PubMed]

Ruan, Z.

Sato, H.

H. Sato, M. Kiguchi, F. Kawaguchi, and A. Maki, “Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy,” Neuroimage 21(4), 1554–1562 (2004).
[PubMed]

Shiga, T.

T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
[PubMed]

Strangman, G.

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[PubMed]

Takatani, S.

S. Takatani and M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26(12), 656–664 (1979).
[PubMed]

Tanabe, K.

T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
[PubMed]

Van der Linden, E. S.

S. B. Colak, M. B. Van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. Van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

Van der Mark, M. B.

S. B. Colak, M. B. Van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. Van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

Walke, S.

S. Fantini, M. Franceschinifantini, J. Maier, S. Walke, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).

Wray, S.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. Reynolds, and R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
[PubMed]

Wyatt, J. S.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. Reynolds, and R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
[PubMed]

Xia, M.

J. G. Kim, M. Xia, and H. Liu, “Extinction coefficients of hemoglobin for near-infrared spectroscopy of tissue,” IEEE Eng. Med. Biol. Mag. 24(2), 118–121 (2005).
[PubMed]

Yamamoto, K.

T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
[PubMed]

Yu, G.

Zijlstra, W. G.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

Biochim. Biophys. Acta (1)

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. Reynolds, and R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
[PubMed]

Biomed. Opt. Express (2)

T. Li, Y. Li, Y. Lin, and K. Li, “Significant and sustaining elevation in blood Oxygen of Chinese cupping therapy as assessed by functional near-infrared spectroscopy,” Biomed. Opt. Express 8(1), 276205 (2017).
[PubMed]

T. Li, M. Duan, K. Li, G. Yu, and Z. Ruan, “Bedside monitoring of patients with shock using a portable spatially-resolved near-infrared spectroscopy,” Biomed. Opt. Express 6(9), 3431–3436 (2015).
[PubMed]

Br. J. Anaesth. (1)

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(Suppl 1), i3–i13 (2009).
[PubMed]

Clin. Chem. (1)

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

IEEE Eng. Med. Biol. Mag. (1)

J. G. Kim, M. Xia, and H. Liu, “Extinction coefficients of hemoglobin for near-infrared spectroscopy of tissue,” IEEE Eng. Med. Biol. Mag. 24(2), 118–121 (2005).
[PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

S. B. Colak, M. B. Van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. Van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

IEEE Trans. Biomed. Eng. (1)

S. Takatani and M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26(12), 656–664 (1979).
[PubMed]

J. Biol. Chem. (1)

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. Biol. Chem. 148(1), 173–183 (1943).

J. Biomed. Opt. (1)

T. Shiga, K. Yamamoto, K. Tanabe, Y. Nakase, and B. Chance, “Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter,” J. Biomed. Opt. 2(2), 154–161 (1997).
[PubMed]

Neuroimage (2)

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[PubMed]

H. Sato, M. Kiguchi, F. Kawaguchi, and A. Maki, “Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy,” Neuroimage 21(4), 1554–1562 (2004).
[PubMed]

Opt. Eng. (1)

S. Fantini, M. Franceschinifantini, J. Maier, S. Walke, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).

Phil. Trans. Biol. Sci. (1)

D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Phil. Trans. Biol. Sci. 352(1354), 649–659 (2002).

Phys. Med. Biol. (1)

J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52(20), 6295–6322 (2007).
[PubMed]

Science (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
[PubMed]

Wellman Laboratories, Harvard Medical School, Boston (1)

N. Kollias and W. B. Gratzer, “Tabulated molar extinction coefficient for hemoglobin in water,” Wellman Laboratories, Harvard Medical School, Boston 5, 150–161 (1999).

Other (4)

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, “Visible and near infrared absorption spectra of human and animal haemoglobin: determination and application,” VSP (2000).

M. K. Moaveni, “A multiple scattering field theory applied to whole blood,” Dept. of Electrical Engineering. University of Washington (1970).

M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Department of Medical Physics and Bioengineering 342 (1991).

S. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water,” Oregon Medical Laser Center, 4 (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Absorption spectra of HbO2 and Hb from Moaveni (1970), Tkatani et al (1979), Gratzer et al (1999), Cope et al (1991), Zijlstra et al (1991), Prahl et al (1998) and Wray et al (1988).
Fig. 2
Fig. 2 Experimental setup, including a tissue-like liquid phantom, a NIRS probe (a source and a detector), a functional module and a computer.
Fig. 3
Fig. 3 (a) An example of time-related ΔOD trace during the whole experiment process. The icon of 0.5ml  blood denotes every blood addition; O 2 bubbling denotes the start of pump oxygen and O 2 stopped is stopping the oxygen gas. (b) The sample-averaged ΔOD with error bar on both full-oxygenated and deoxygenated states for measured wavelengths.
Fig. 4
Fig. 4 The deviation evaluation of Δ[HbO2], Δ[Hb] and Δ[tHb] caused by using 7 different ε data sets during each state. Odd states represent fully-oxygenated states and even states are fully-deoxygenated states.
Fig. 5
Fig. 5 Sample-averaged assumed and measured hemodynamics for every state by using 7 different ε data sets, respectively. Odd-order state represents fully-oxygenated state and even-order state is fully-deoxygenated state. The standard deviation (SD) values were marked in red.
Fig. 6
Fig. 6 Time responses of assumed and measured Δ[tHb] variations.

Tables (1)

Tables Icon

Table 1 Correlations between 7 sets of quantified and assumed values for Δ[HbO2], Δ[Hb] and Δ[tHb].

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

OD λ =( ε HbO 2 λ [ HbO 2 ]+ ε Hb λ [ Hb ] ) DPF λ d+G,
( OD λ 1 OD λ 2 OD λ 3 )=( ε Hb λ 1 ε HbO 2 λ 1 ε Hb λ 2 ε HbO 2 λ 2 ε Hb λ 3 ε HbO 2 λ 3 )( [ Hb ] [ HbO 2 ] )DPFd,
( [ Hb ] [ HbO 2 ] )=  1 DPFd   ( ε Hb λ 1 ε HbO 2 λ 1 ε Hb λ 2 ε HbO 2 λ 2 ε Hb λ 3 ε HbO 2 λ 3 ) 1 ( OD λ 1 OD λ 2 OD λ 3 ).
Er= i=1 N ( M i S) 2 /n ,

Metrics