Abstract

Passive thermal imaging provides a limited differentiation between a tumor and neighboring tissue based on the temperature difference. We propose active thermodynamic contrast imaging (ATCI) with convection thermal modulators to provide more physiologically relevant parameters with high contrast such as the rate of temperature change, and thermal recovery time for tumor detection with a murine xenograft tumor model. With early stage tumors, we found the average rate of temperature change was higher in the tumor (0.22 ± 0.06 °C/sec) than that of neighboring tissue (0.13 ± 0.01 °C/sec) with heating modulation. With established tumors (volume > 100 mm3), this tendency was greater. On the other hand, the thermal recovery time was shorter in tumor tissue (τ = 7.30 ± 0.59 sec) than that of neighboring tissue (τ = 11.91 ± 2.22 sec). We also found distinct thermal contrast with cooling modulation. These data suggest ATCI is a potential tumor detection modality for clinical application with its inherently label-free and physiology-based approach. Furthermore, this strategy may find applications in endoscopic tumor detection in the future.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monitoring thermal-induced changes in tumor blood flow and microvessels with laser speckle contrast imaging

Dan Zhu, Wei Lu, Yang Weng, Han Cui, and Qingming Luo
Appl. Opt. 46(10) 1911-1917 (2007)

Methods for detecting host genetic modifiers of tumor vascular function using dynamic near-infrared fluorescence imaging

Jaidip Jagtap, Gayatri Sharma, Abdul K. Parchur, Venkateswara Gogineni, Carmen Bergom, Sarah White, Michael J. Flister, and Amit Joshi
Biomed. Opt. Express 9(2) 543-556 (2018)

In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration

David J. Cuccia, Frederic Bevilacqua, Anthony J. Durkin, Sean Merritt, Bruce J. Tromberg, Gultekin Gulsen, Hon Yu, Jun Wang, and Orhan Nalcioglu
Appl. Opt. 42(16) 2940-2950 (2003)

References

  • View by:
  • |
  • |
  • |

  1. G. Oh, Y. Park, S. W. Yoo, S. Hwang, A. V. D. Chin-Yu, Y.-M. Ryu, S.-Y. Kim, E.-J. Do, K. H. Kim, S. Kim, S. J. Myung, and E. Chung, “Clinically compatible flexible wide-field multi-color fluorescence endoscopy with a porcine colon model,” Biomed. Opt. Express 8(2), 764–775 (2017).
    [PubMed]
  2. M.B. Sturm and T.D. Wang,” Emerging optical methods for surveillance of Barrett's oesophagus,” Gut, gutjnl-2013–306706 (2015)
  3. N. A. Diakides, “Infrared Imaging: An Emerging Technology in Medicine,” IEEE Eng. Med. Biol. Mag. 17(4), 17–18 (1998).
    [PubMed]
  4. X. P. Maldague, Nondestructive evaluation of materials by infrared thermography (Springer Science & Business Media, 2012)
  5. E.-K. Ng, “A review of thermography as promising non-invasive detection modality for breast tumor,” Int. J. Therm. Sci. 48(5), 849–859 (2009).
  6. C. Herman, “The role of dynamic infrared imaging in melanoma diagnosis,” Expert. Rev. Dermatol. 8(2), 177–184 (2013).
    [PubMed]
  7. C. Herman and M. P. Cetingul, “Quantitative visualization and detection of skin cancer using dynamic thermal imaging,” J. Vis. Exp. 51, e2679 (2011).
    [PubMed]
  8. A. Renkielska, M. Kaczmarek, A. Nowakowski, J. Grudziński, P. Czapiewski, A. Krajewski, and I. Grobelny, “Active dynamic infrared thermal imaging in burn depth evaluation,” J. Burn Care Res. 35(5), e294–e303 (2014).
    [PubMed]
  9. C. Stefanadis, C. Chrysohoou, D. B. Panagiotakos, E. Passalidou, V. Katsi, V. Polychronopoulos, and P. K. Toutouzas, “Temperature differences are associated with malignancy on lung lesions: a clinical study,” BMC Cancer 3(1), 1 (2003).
    [PubMed]
  10. J. Wang, K.-J. Chang, C.-Y. Chen, K.-L. Chien, Y.-S. Tsai, Y.-M. Wu, Y.-C. Teng, and T. T.-F. Shih, “Evaluation of the diagnostic performance of infrared imaging of the breast: a preliminary study,” Biomed. Eng. Online 9(1), 3 (2010).
    [PubMed]
  11. J. F. Head, F. Wang, C. A. Lipari, and R. L. Elliott, “The important role of infrared imaging in breast cancer,” IEEE Eng. Med. Biol. Mag. 19(3), 52–57 (2000).
    [PubMed]
  12. J. R. Case, M. A. Young, D. Dréau, and S. R. Trammell, “Noninvasive enhanced mid-IR imaging of breast cancer development in vivo,” J. Biomed. Opt. 20(11), 116003 (2015).
    [PubMed]
  13. G. Oh, S. W. Yoo, Y. Jung, Y.-M. Ryu, Y. Park, S.-Y. Kim, K. H. Kim, S. Kim, S.-J. Myung, and E. Chung, “Intravital imaging of mouse colonic adenoma using MMP-based molecular probes with multi-channel fluorescence endoscopy,” Biomed. Opt. Express 5(5), 1677–1689 (2014).
    [PubMed]
  14. G. D. Ayers, E. T. McKinley, P. Zhao, J. M. Fritz, R. E. Metry, B. C. Deal, K. M. Adlerz, R. J. Coffey, and H. C. Manning, “Volume of preclinical xenograft tumors is more accurately assessed by ultrasound imaging than manual caliper measurements,” J. Ultrasound Med. 29(6), 891–901 (2010).
    [PubMed]
  15. S. W. Yoo, H.-J. Park, G. Oh, S. Hwang, M. Yun, T. Wang, Y.-S. Seo, J.-J. Min, K. H. Kim, and E.-S. Kim, “Non-ablative Fractional Thulium Laser Irradiation Suppresses Early Tumor Growth,” Curr. Opt. Photon. 1(1), 51–59 (2017).
  16. A. Renkielska, A. Nowakowski, M. Kaczmarek, and J. Ruminski, “Burn depths evaluation based on active dynamic IR thermal imaging-a preliminary study,” Burns 32(7), 867–875 (2006).
    [PubMed]
  17. G. M. Hahn, “Metabolic aspects of the role of hyperthermia in mammalian cell inactivation and their possible relevance to cancer treatment,” Cancer Res. 34(11), 3117–3123 (1974).
    [PubMed]
  18. S. Li, Y. Sun, and D. Gao, “Role of the nervous system in cancer metastasis,” Oncol. Lett. 5(4), 1101–1111 (2013).
    [PubMed]
  19. T. H. Benzinger, “Heat regulation: homeostasis of central temperature in man,” Physiol. Rev. 49(4), 671–759 (1969).
    [PubMed]
  20. T.-Y. Cheng and C. Herman, “Involuntary motion tracking for medical dynamic infrared thermography using a template-based algorithm,” Proc. SPIE 86692, 86692Q (2013).

2017 (2)

2015 (1)

J. R. Case, M. A. Young, D. Dréau, and S. R. Trammell, “Noninvasive enhanced mid-IR imaging of breast cancer development in vivo,” J. Biomed. Opt. 20(11), 116003 (2015).
[PubMed]

2014 (2)

G. Oh, S. W. Yoo, Y. Jung, Y.-M. Ryu, Y. Park, S.-Y. Kim, K. H. Kim, S. Kim, S.-J. Myung, and E. Chung, “Intravital imaging of mouse colonic adenoma using MMP-based molecular probes with multi-channel fluorescence endoscopy,” Biomed. Opt. Express 5(5), 1677–1689 (2014).
[PubMed]

A. Renkielska, M. Kaczmarek, A. Nowakowski, J. Grudziński, P. Czapiewski, A. Krajewski, and I. Grobelny, “Active dynamic infrared thermal imaging in burn depth evaluation,” J. Burn Care Res. 35(5), e294–e303 (2014).
[PubMed]

2013 (3)

C. Herman, “The role of dynamic infrared imaging in melanoma diagnosis,” Expert. Rev. Dermatol. 8(2), 177–184 (2013).
[PubMed]

S. Li, Y. Sun, and D. Gao, “Role of the nervous system in cancer metastasis,” Oncol. Lett. 5(4), 1101–1111 (2013).
[PubMed]

T.-Y. Cheng and C. Herman, “Involuntary motion tracking for medical dynamic infrared thermography using a template-based algorithm,” Proc. SPIE 86692, 86692Q (2013).

2011 (1)

C. Herman and M. P. Cetingul, “Quantitative visualization and detection of skin cancer using dynamic thermal imaging,” J. Vis. Exp. 51, e2679 (2011).
[PubMed]

2010 (2)

J. Wang, K.-J. Chang, C.-Y. Chen, K.-L. Chien, Y.-S. Tsai, Y.-M. Wu, Y.-C. Teng, and T. T.-F. Shih, “Evaluation of the diagnostic performance of infrared imaging of the breast: a preliminary study,” Biomed. Eng. Online 9(1), 3 (2010).
[PubMed]

G. D. Ayers, E. T. McKinley, P. Zhao, J. M. Fritz, R. E. Metry, B. C. Deal, K. M. Adlerz, R. J. Coffey, and H. C. Manning, “Volume of preclinical xenograft tumors is more accurately assessed by ultrasound imaging than manual caliper measurements,” J. Ultrasound Med. 29(6), 891–901 (2010).
[PubMed]

2009 (1)

E.-K. Ng, “A review of thermography as promising non-invasive detection modality for breast tumor,” Int. J. Therm. Sci. 48(5), 849–859 (2009).

2006 (1)

A. Renkielska, A. Nowakowski, M. Kaczmarek, and J. Ruminski, “Burn depths evaluation based on active dynamic IR thermal imaging-a preliminary study,” Burns 32(7), 867–875 (2006).
[PubMed]

2003 (1)

C. Stefanadis, C. Chrysohoou, D. B. Panagiotakos, E. Passalidou, V. Katsi, V. Polychronopoulos, and P. K. Toutouzas, “Temperature differences are associated with malignancy on lung lesions: a clinical study,” BMC Cancer 3(1), 1 (2003).
[PubMed]

2000 (1)

J. F. Head, F. Wang, C. A. Lipari, and R. L. Elliott, “The important role of infrared imaging in breast cancer,” IEEE Eng. Med. Biol. Mag. 19(3), 52–57 (2000).
[PubMed]

1998 (1)

N. A. Diakides, “Infrared Imaging: An Emerging Technology in Medicine,” IEEE Eng. Med. Biol. Mag. 17(4), 17–18 (1998).
[PubMed]

1974 (1)

G. M. Hahn, “Metabolic aspects of the role of hyperthermia in mammalian cell inactivation and their possible relevance to cancer treatment,” Cancer Res. 34(11), 3117–3123 (1974).
[PubMed]

1969 (1)

T. H. Benzinger, “Heat regulation: homeostasis of central temperature in man,” Physiol. Rev. 49(4), 671–759 (1969).
[PubMed]

Adlerz, K. M.

G. D. Ayers, E. T. McKinley, P. Zhao, J. M. Fritz, R. E. Metry, B. C. Deal, K. M. Adlerz, R. J. Coffey, and H. C. Manning, “Volume of preclinical xenograft tumors is more accurately assessed by ultrasound imaging than manual caliper measurements,” J. Ultrasound Med. 29(6), 891–901 (2010).
[PubMed]

Ayers, G. D.

G. D. Ayers, E. T. McKinley, P. Zhao, J. M. Fritz, R. E. Metry, B. C. Deal, K. M. Adlerz, R. J. Coffey, and H. C. Manning, “Volume of preclinical xenograft tumors is more accurately assessed by ultrasound imaging than manual caliper measurements,” J. Ultrasound Med. 29(6), 891–901 (2010).
[PubMed]

Benzinger, T. H.

T. H. Benzinger, “Heat regulation: homeostasis of central temperature in man,” Physiol. Rev. 49(4), 671–759 (1969).
[PubMed]

Case, J. R.

J. R. Case, M. A. Young, D. Dréau, and S. R. Trammell, “Noninvasive enhanced mid-IR imaging of breast cancer development in vivo,” J. Biomed. Opt. 20(11), 116003 (2015).
[PubMed]

Cetingul, M. P.

C. Herman and M. P. Cetingul, “Quantitative visualization and detection of skin cancer using dynamic thermal imaging,” J. Vis. Exp. 51, e2679 (2011).
[PubMed]

Chang, K.-J.

J. Wang, K.-J. Chang, C.-Y. Chen, K.-L. Chien, Y.-S. Tsai, Y.-M. Wu, Y.-C. Teng, and T. T.-F. Shih, “Evaluation of the diagnostic performance of infrared imaging of the breast: a preliminary study,” Biomed. Eng. Online 9(1), 3 (2010).
[PubMed]

Chen, C.-Y.

J. Wang, K.-J. Chang, C.-Y. Chen, K.-L. Chien, Y.-S. Tsai, Y.-M. Wu, Y.-C. Teng, and T. T.-F. Shih, “Evaluation of the diagnostic performance of infrared imaging of the breast: a preliminary study,” Biomed. Eng. Online 9(1), 3 (2010).
[PubMed]

Cheng, T.-Y.

T.-Y. Cheng and C. Herman, “Involuntary motion tracking for medical dynamic infrared thermography using a template-based algorithm,” Proc. SPIE 86692, 86692Q (2013).

Chien, K.-L.

J. Wang, K.-J. Chang, C.-Y. Chen, K.-L. Chien, Y.-S. Tsai, Y.-M. Wu, Y.-C. Teng, and T. T.-F. Shih, “Evaluation of the diagnostic performance of infrared imaging of the breast: a preliminary study,” Biomed. Eng. Online 9(1), 3 (2010).
[PubMed]

Chin-Yu, A. V. D.

Chrysohoou, C.

C. Stefanadis, C. Chrysohoou, D. B. Panagiotakos, E. Passalidou, V. Katsi, V. Polychronopoulos, and P. K. Toutouzas, “Temperature differences are associated with malignancy on lung lesions: a clinical study,” BMC Cancer 3(1), 1 (2003).
[PubMed]

Chung, E.

Coffey, R. J.

G. D. Ayers, E. T. McKinley, P. Zhao, J. M. Fritz, R. E. Metry, B. C. Deal, K. M. Adlerz, R. J. Coffey, and H. C. Manning, “Volume of preclinical xenograft tumors is more accurately assessed by ultrasound imaging than manual caliper measurements,” J. Ultrasound Med. 29(6), 891–901 (2010).
[PubMed]

Czapiewski, P.

A. Renkielska, M. Kaczmarek, A. Nowakowski, J. Grudziński, P. Czapiewski, A. Krajewski, and I. Grobelny, “Active dynamic infrared thermal imaging in burn depth evaluation,” J. Burn Care Res. 35(5), e294–e303 (2014).
[PubMed]

Deal, B. C.

G. D. Ayers, E. T. McKinley, P. Zhao, J. M. Fritz, R. E. Metry, B. C. Deal, K. M. Adlerz, R. J. Coffey, and H. C. Manning, “Volume of preclinical xenograft tumors is more accurately assessed by ultrasound imaging than manual caliper measurements,” J. Ultrasound Med. 29(6), 891–901 (2010).
[PubMed]

Diakides, N. A.

N. A. Diakides, “Infrared Imaging: An Emerging Technology in Medicine,” IEEE Eng. Med. Biol. Mag. 17(4), 17–18 (1998).
[PubMed]

Do, E.-J.

Dréau, D.

J. R. Case, M. A. Young, D. Dréau, and S. R. Trammell, “Noninvasive enhanced mid-IR imaging of breast cancer development in vivo,” J. Biomed. Opt. 20(11), 116003 (2015).
[PubMed]

Elliott, R. L.

J. F. Head, F. Wang, C. A. Lipari, and R. L. Elliott, “The important role of infrared imaging in breast cancer,” IEEE Eng. Med. Biol. Mag. 19(3), 52–57 (2000).
[PubMed]

Fritz, J. M.

G. D. Ayers, E. T. McKinley, P. Zhao, J. M. Fritz, R. E. Metry, B. C. Deal, K. M. Adlerz, R. J. Coffey, and H. C. Manning, “Volume of preclinical xenograft tumors is more accurately assessed by ultrasound imaging than manual caliper measurements,” J. Ultrasound Med. 29(6), 891–901 (2010).
[PubMed]

Gao, D.

S. Li, Y. Sun, and D. Gao, “Role of the nervous system in cancer metastasis,” Oncol. Lett. 5(4), 1101–1111 (2013).
[PubMed]

Grobelny, I.

A. Renkielska, M. Kaczmarek, A. Nowakowski, J. Grudziński, P. Czapiewski, A. Krajewski, and I. Grobelny, “Active dynamic infrared thermal imaging in burn depth evaluation,” J. Burn Care Res. 35(5), e294–e303 (2014).
[PubMed]

Grudzinski, J.

A. Renkielska, M. Kaczmarek, A. Nowakowski, J. Grudziński, P. Czapiewski, A. Krajewski, and I. Grobelny, “Active dynamic infrared thermal imaging in burn depth evaluation,” J. Burn Care Res. 35(5), e294–e303 (2014).
[PubMed]

Hahn, G. M.

G. M. Hahn, “Metabolic aspects of the role of hyperthermia in mammalian cell inactivation and their possible relevance to cancer treatment,” Cancer Res. 34(11), 3117–3123 (1974).
[PubMed]

Head, J. F.

J. F. Head, F. Wang, C. A. Lipari, and R. L. Elliott, “The important role of infrared imaging in breast cancer,” IEEE Eng. Med. Biol. Mag. 19(3), 52–57 (2000).
[PubMed]

Herman, C.

C. Herman, “The role of dynamic infrared imaging in melanoma diagnosis,” Expert. Rev. Dermatol. 8(2), 177–184 (2013).
[PubMed]

T.-Y. Cheng and C. Herman, “Involuntary motion tracking for medical dynamic infrared thermography using a template-based algorithm,” Proc. SPIE 86692, 86692Q (2013).

C. Herman and M. P. Cetingul, “Quantitative visualization and detection of skin cancer using dynamic thermal imaging,” J. Vis. Exp. 51, e2679 (2011).
[PubMed]

Hwang, S.

Jung, Y.

Kaczmarek, M.

A. Renkielska, M. Kaczmarek, A. Nowakowski, J. Grudziński, P. Czapiewski, A. Krajewski, and I. Grobelny, “Active dynamic infrared thermal imaging in burn depth evaluation,” J. Burn Care Res. 35(5), e294–e303 (2014).
[PubMed]

A. Renkielska, A. Nowakowski, M. Kaczmarek, and J. Ruminski, “Burn depths evaluation based on active dynamic IR thermal imaging-a preliminary study,” Burns 32(7), 867–875 (2006).
[PubMed]

Katsi, V.

C. Stefanadis, C. Chrysohoou, D. B. Panagiotakos, E. Passalidou, V. Katsi, V. Polychronopoulos, and P. K. Toutouzas, “Temperature differences are associated with malignancy on lung lesions: a clinical study,” BMC Cancer 3(1), 1 (2003).
[PubMed]

Kim, E.-S.

Kim, K. H.

Kim, S.

Kim, S.-Y.

Krajewski, A.

A. Renkielska, M. Kaczmarek, A. Nowakowski, J. Grudziński, P. Czapiewski, A. Krajewski, and I. Grobelny, “Active dynamic infrared thermal imaging in burn depth evaluation,” J. Burn Care Res. 35(5), e294–e303 (2014).
[PubMed]

Li, S.

S. Li, Y. Sun, and D. Gao, “Role of the nervous system in cancer metastasis,” Oncol. Lett. 5(4), 1101–1111 (2013).
[PubMed]

Lipari, C. A.

J. F. Head, F. Wang, C. A. Lipari, and R. L. Elliott, “The important role of infrared imaging in breast cancer,” IEEE Eng. Med. Biol. Mag. 19(3), 52–57 (2000).
[PubMed]

Manning, H. C.

G. D. Ayers, E. T. McKinley, P. Zhao, J. M. Fritz, R. E. Metry, B. C. Deal, K. M. Adlerz, R. J. Coffey, and H. C. Manning, “Volume of preclinical xenograft tumors is more accurately assessed by ultrasound imaging than manual caliper measurements,” J. Ultrasound Med. 29(6), 891–901 (2010).
[PubMed]

McKinley, E. T.

G. D. Ayers, E. T. McKinley, P. Zhao, J. M. Fritz, R. E. Metry, B. C. Deal, K. M. Adlerz, R. J. Coffey, and H. C. Manning, “Volume of preclinical xenograft tumors is more accurately assessed by ultrasound imaging than manual caliper measurements,” J. Ultrasound Med. 29(6), 891–901 (2010).
[PubMed]

Metry, R. E.

G. D. Ayers, E. T. McKinley, P. Zhao, J. M. Fritz, R. E. Metry, B. C. Deal, K. M. Adlerz, R. J. Coffey, and H. C. Manning, “Volume of preclinical xenograft tumors is more accurately assessed by ultrasound imaging than manual caliper measurements,” J. Ultrasound Med. 29(6), 891–901 (2010).
[PubMed]

Min, J.-J.

Myung, S. J.

Myung, S.-J.

Ng, E.-K.

E.-K. Ng, “A review of thermography as promising non-invasive detection modality for breast tumor,” Int. J. Therm. Sci. 48(5), 849–859 (2009).

Nowakowski, A.

A. Renkielska, M. Kaczmarek, A. Nowakowski, J. Grudziński, P. Czapiewski, A. Krajewski, and I. Grobelny, “Active dynamic infrared thermal imaging in burn depth evaluation,” J. Burn Care Res. 35(5), e294–e303 (2014).
[PubMed]

A. Renkielska, A. Nowakowski, M. Kaczmarek, and J. Ruminski, “Burn depths evaluation based on active dynamic IR thermal imaging-a preliminary study,” Burns 32(7), 867–875 (2006).
[PubMed]

Oh, G.

Panagiotakos, D. B.

C. Stefanadis, C. Chrysohoou, D. B. Panagiotakos, E. Passalidou, V. Katsi, V. Polychronopoulos, and P. K. Toutouzas, “Temperature differences are associated with malignancy on lung lesions: a clinical study,” BMC Cancer 3(1), 1 (2003).
[PubMed]

Park, H.-J.

Park, Y.

Passalidou, E.

C. Stefanadis, C. Chrysohoou, D. B. Panagiotakos, E. Passalidou, V. Katsi, V. Polychronopoulos, and P. K. Toutouzas, “Temperature differences are associated with malignancy on lung lesions: a clinical study,” BMC Cancer 3(1), 1 (2003).
[PubMed]

Polychronopoulos, V.

C. Stefanadis, C. Chrysohoou, D. B. Panagiotakos, E. Passalidou, V. Katsi, V. Polychronopoulos, and P. K. Toutouzas, “Temperature differences are associated with malignancy on lung lesions: a clinical study,” BMC Cancer 3(1), 1 (2003).
[PubMed]

Renkielska, A.

A. Renkielska, M. Kaczmarek, A. Nowakowski, J. Grudziński, P. Czapiewski, A. Krajewski, and I. Grobelny, “Active dynamic infrared thermal imaging in burn depth evaluation,” J. Burn Care Res. 35(5), e294–e303 (2014).
[PubMed]

A. Renkielska, A. Nowakowski, M. Kaczmarek, and J. Ruminski, “Burn depths evaluation based on active dynamic IR thermal imaging-a preliminary study,” Burns 32(7), 867–875 (2006).
[PubMed]

Ruminski, J.

A. Renkielska, A. Nowakowski, M. Kaczmarek, and J. Ruminski, “Burn depths evaluation based on active dynamic IR thermal imaging-a preliminary study,” Burns 32(7), 867–875 (2006).
[PubMed]

Ryu, Y.-M.

Seo, Y.-S.

Shih, T. T.-F.

J. Wang, K.-J. Chang, C.-Y. Chen, K.-L. Chien, Y.-S. Tsai, Y.-M. Wu, Y.-C. Teng, and T. T.-F. Shih, “Evaluation of the diagnostic performance of infrared imaging of the breast: a preliminary study,” Biomed. Eng. Online 9(1), 3 (2010).
[PubMed]

Stefanadis, C.

C. Stefanadis, C. Chrysohoou, D. B. Panagiotakos, E. Passalidou, V. Katsi, V. Polychronopoulos, and P. K. Toutouzas, “Temperature differences are associated with malignancy on lung lesions: a clinical study,” BMC Cancer 3(1), 1 (2003).
[PubMed]

Sun, Y.

S. Li, Y. Sun, and D. Gao, “Role of the nervous system in cancer metastasis,” Oncol. Lett. 5(4), 1101–1111 (2013).
[PubMed]

Teng, Y.-C.

J. Wang, K.-J. Chang, C.-Y. Chen, K.-L. Chien, Y.-S. Tsai, Y.-M. Wu, Y.-C. Teng, and T. T.-F. Shih, “Evaluation of the diagnostic performance of infrared imaging of the breast: a preliminary study,” Biomed. Eng. Online 9(1), 3 (2010).
[PubMed]

Toutouzas, P. K.

C. Stefanadis, C. Chrysohoou, D. B. Panagiotakos, E. Passalidou, V. Katsi, V. Polychronopoulos, and P. K. Toutouzas, “Temperature differences are associated with malignancy on lung lesions: a clinical study,” BMC Cancer 3(1), 1 (2003).
[PubMed]

Trammell, S. R.

J. R. Case, M. A. Young, D. Dréau, and S. R. Trammell, “Noninvasive enhanced mid-IR imaging of breast cancer development in vivo,” J. Biomed. Opt. 20(11), 116003 (2015).
[PubMed]

Tsai, Y.-S.

J. Wang, K.-J. Chang, C.-Y. Chen, K.-L. Chien, Y.-S. Tsai, Y.-M. Wu, Y.-C. Teng, and T. T.-F. Shih, “Evaluation of the diagnostic performance of infrared imaging of the breast: a preliminary study,” Biomed. Eng. Online 9(1), 3 (2010).
[PubMed]

Wang, F.

J. F. Head, F. Wang, C. A. Lipari, and R. L. Elliott, “The important role of infrared imaging in breast cancer,” IEEE Eng. Med. Biol. Mag. 19(3), 52–57 (2000).
[PubMed]

Wang, J.

J. Wang, K.-J. Chang, C.-Y. Chen, K.-L. Chien, Y.-S. Tsai, Y.-M. Wu, Y.-C. Teng, and T. T.-F. Shih, “Evaluation of the diagnostic performance of infrared imaging of the breast: a preliminary study,” Biomed. Eng. Online 9(1), 3 (2010).
[PubMed]

Wang, T.

Wu, Y.-M.

J. Wang, K.-J. Chang, C.-Y. Chen, K.-L. Chien, Y.-S. Tsai, Y.-M. Wu, Y.-C. Teng, and T. T.-F. Shih, “Evaluation of the diagnostic performance of infrared imaging of the breast: a preliminary study,” Biomed. Eng. Online 9(1), 3 (2010).
[PubMed]

Yoo, S. W.

Young, M. A.

J. R. Case, M. A. Young, D. Dréau, and S. R. Trammell, “Noninvasive enhanced mid-IR imaging of breast cancer development in vivo,” J. Biomed. Opt. 20(11), 116003 (2015).
[PubMed]

Yun, M.

Zhao, P.

G. D. Ayers, E. T. McKinley, P. Zhao, J. M. Fritz, R. E. Metry, B. C. Deal, K. M. Adlerz, R. J. Coffey, and H. C. Manning, “Volume of preclinical xenograft tumors is more accurately assessed by ultrasound imaging than manual caliper measurements,” J. Ultrasound Med. 29(6), 891–901 (2010).
[PubMed]

Biomed. Eng. Online (1)

J. Wang, K.-J. Chang, C.-Y. Chen, K.-L. Chien, Y.-S. Tsai, Y.-M. Wu, Y.-C. Teng, and T. T.-F. Shih, “Evaluation of the diagnostic performance of infrared imaging of the breast: a preliminary study,” Biomed. Eng. Online 9(1), 3 (2010).
[PubMed]

Biomed. Opt. Express (2)

BMC Cancer (1)

C. Stefanadis, C. Chrysohoou, D. B. Panagiotakos, E. Passalidou, V. Katsi, V. Polychronopoulos, and P. K. Toutouzas, “Temperature differences are associated with malignancy on lung lesions: a clinical study,” BMC Cancer 3(1), 1 (2003).
[PubMed]

Burns (1)

A. Renkielska, A. Nowakowski, M. Kaczmarek, and J. Ruminski, “Burn depths evaluation based on active dynamic IR thermal imaging-a preliminary study,” Burns 32(7), 867–875 (2006).
[PubMed]

Cancer Res. (1)

G. M. Hahn, “Metabolic aspects of the role of hyperthermia in mammalian cell inactivation and their possible relevance to cancer treatment,” Cancer Res. 34(11), 3117–3123 (1974).
[PubMed]

Curr. Opt. Photon. (1)

Expert. Rev. Dermatol. (1)

C. Herman, “The role of dynamic infrared imaging in melanoma diagnosis,” Expert. Rev. Dermatol. 8(2), 177–184 (2013).
[PubMed]

IEEE Eng. Med. Biol. Mag. (2)

N. A. Diakides, “Infrared Imaging: An Emerging Technology in Medicine,” IEEE Eng. Med. Biol. Mag. 17(4), 17–18 (1998).
[PubMed]

J. F. Head, F. Wang, C. A. Lipari, and R. L. Elliott, “The important role of infrared imaging in breast cancer,” IEEE Eng. Med. Biol. Mag. 19(3), 52–57 (2000).
[PubMed]

Int. J. Therm. Sci. (1)

E.-K. Ng, “A review of thermography as promising non-invasive detection modality for breast tumor,” Int. J. Therm. Sci. 48(5), 849–859 (2009).

J. Biomed. Opt. (1)

J. R. Case, M. A. Young, D. Dréau, and S. R. Trammell, “Noninvasive enhanced mid-IR imaging of breast cancer development in vivo,” J. Biomed. Opt. 20(11), 116003 (2015).
[PubMed]

J. Burn Care Res. (1)

A. Renkielska, M. Kaczmarek, A. Nowakowski, J. Grudziński, P. Czapiewski, A. Krajewski, and I. Grobelny, “Active dynamic infrared thermal imaging in burn depth evaluation,” J. Burn Care Res. 35(5), e294–e303 (2014).
[PubMed]

J. Ultrasound Med. (1)

G. D. Ayers, E. T. McKinley, P. Zhao, J. M. Fritz, R. E. Metry, B. C. Deal, K. M. Adlerz, R. J. Coffey, and H. C. Manning, “Volume of preclinical xenograft tumors is more accurately assessed by ultrasound imaging than manual caliper measurements,” J. Ultrasound Med. 29(6), 891–901 (2010).
[PubMed]

J. Vis. Exp. (1)

C. Herman and M. P. Cetingul, “Quantitative visualization and detection of skin cancer using dynamic thermal imaging,” J. Vis. Exp. 51, e2679 (2011).
[PubMed]

Oncol. Lett. (1)

S. Li, Y. Sun, and D. Gao, “Role of the nervous system in cancer metastasis,” Oncol. Lett. 5(4), 1101–1111 (2013).
[PubMed]

Physiol. Rev. (1)

T. H. Benzinger, “Heat regulation: homeostasis of central temperature in man,” Physiol. Rev. 49(4), 671–759 (1969).
[PubMed]

Proc. SPIE (1)

T.-Y. Cheng and C. Herman, “Involuntary motion tracking for medical dynamic infrared thermography using a template-based algorithm,” Proc. SPIE 86692, 86692Q (2013).

Other (2)

M.B. Sturm and T.D. Wang,” Emerging optical methods for surveillance of Barrett's oesophagus,” Gut, gutjnl-2013–306706 (2015)

X. P. Maldague, Nondestructive evaluation of materials by infrared thermography (Springer Science & Business Media, 2012)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup of active thermodynamic contrast imaging (A) Schematic diagram of experimental setup. (B) Photograph of the setup consists of a thermal camera and a fluorescence imager. The thermal camera has a standard f 10 mm infrared imaging lens.
Fig. 2
Fig. 2 Active thermodynamic contrast imaging experimental procedure. (A) After generation of a subcutaneous tumor (SL4-DsRed cancer cell) to the right flank, the thermal imaging of sequential temperature distribution throughout the convection modulation on the skin with subcutaneous tumors. With the same animal, the data collection was performed when the tumor was at an early-stage and in its established stage using the thermal camera. After data collection, the time series of images were processed with custom-written software. (B) Region of interest of tumor and neighboring tissues. (C) An exemplary diagram for data analysis.
Fig. 3
Fig. 3 Thermal contrast imaging using convection thermal modulator with early-stage tumors. (A) Photograph of SL4-DsRed tumor-bearing mouse model. WL: white light image, FL: fluorescence image. (B, D) and (C, E) are representative sequential thermal images, and temperature changes over time in tumor and neighboring areas for heating and cooling, respectively from one animal. (F, G) shows the average and standard deviation in from all the animals in tumor and neighboring areas. The vertical shaded columns in F and G indicates the duration of thermal modulation for 10 secs for heating and cooling, respectively.
Fig. 4
Fig. 4 Thermal contrast imaging using convection thermal modulator with established tumors. (A) Photograph of SL4-DsRed tumor-bearing mouse model. WL: white light image, FL: fluorescence image. (B, D) and (C, E) are representative sequential thermal images, and temperature changes over time in tumor and neighboring areas for heating and cooling, respectively. (F, G) shows the average and standard deviation in from all the animals in tumor and neighboring areas. The vertical shaded columns in F and G indicates the duration of thermal modulation for 10 secs for heating and cooling, respectively.
Fig. 5
Fig. 5 The rate of temperature change and the thermal recovery time (τ) between tumor and neighboring tissue for active thermal imaging at xenograft mice model (n = 3). (A-D) Early-stage tumor and its neighboring tissue. (E-H) Established tumor and its neighboring tissue. (A-B) The comparison graph between early-stage tumor and neighboring tissue using heating modulation. (A) The rate of temperature change values. (B) Thermal recovery time during the recovery period. (C-D) The comparison graph between tumor and neighboring tissue using cooling modulation. (C) The rate of temperature change. (D) Thermal recovery time during the recovery period. (E-F) The comparison graph between established tumor and neighboring tissue using heating modulation. (E) The rate of temperature change values. (F) Thermal recovery time during the recovery period. (G-H) The comparison graph between established tumor and neighboring tissue using cooling modulation. (G) The rate of temperature change. (H) Thermal recovery time during the recovery period. The error bars are standard deviations from all the ROI data (i.e. total 3 for early-stage tumors and 9 for established tumors while 12 for all the neighboring tissues). * P < 0.05, ** P < 0.01, *** P < 0.001.
Fig. 6
Fig. 6 Histological features of the early-stage tumor. (A-C) Hematoxylin & Eosin (H&E) stain, (D-E) Immunohistochemical stain using smooth muscle actin antibody to highlight vascular structures. (magnifications A: × 80, B, C: × 200, D, E: × 400). Early-stage tumors (n = 3, size ranges 2.2 – 4.2 mm in diameter) show little signs of tumor necrosis (only one out of three tumors has localized necrosis). The tumor periphery (Box 1, B and D) shows relatively loose cell arrangement with tumoral capillaries highlighted with immunohistochemistry, while the central region (Box 2, C and E) shows compactly arranged tumor cells with slightly decreased capillary density with some collapsing signs in E.
Fig. 7
Fig. 7 Histological features of the established tumor. (A-C) Hematoxylin & Eosin (H&E) stain, (D-E) Immunohistochemical stain using smooth muscle actin antibody. (magnifications A: × 40, B, C: × 200, D, E: × 400). Established tumors (n = 4, size ranges 7.9 – 12.5 mm in diameter) show extensive tumor necrosis for all the tumor samples. The tumor periphery (Box 1, B and D) shows irregularly dilated staghorn-like blood vessels while the central region (Box 2, C and E) shows densely packed tumor cells with mostly collapsed vessels of low density that are barely recognized with immunohistochemistry.
Fig. 8
Fig. 8 Evidence of tumor necrosis from early-stage tumor (A), and established tumors (B-E) with Hematoxylin & Eosin (H&E) staining (magnification: × 100). Only one relatively small area of necrosis was found in the early-stage tumors (A) while extensive necrotic changes were observed from all the established tumors (B-E, images from all four tumors).

Metrics