N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21, 066001 (2016).

[Crossref]

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3, 613 (2016).

[Crossref]
[PubMed]

J. J. Bravo, K. D. Paulsen, D. W. Roberts, and S. C. Kanick, “Sub-diffuse optical biomarkers characterize localized microstructure and function of cortex and malignant tumor,” Opt. Lett. 41, 781 (2016).

[Crossref]
[PubMed]

M. Ivančič, P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Extraction of optical properties from hyperspectral images by Monte Carlo light propagation model,” “Proc. SPIE 9706, 97061 (2016).

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of Cerebral Hemodynamics and Tissue Morphology of In Vivo Rat Brain Using Spectral Diffuse Reflectance Imaging,” Appl. Spectrosc. 69, 03702816657569 (2016).

P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21, 095003 (2016).

[Crossref]

N. Bodenschatz, P. Krauter, A. Liemert, and A. Kienle, “Quantifying phase function influence in subdiffusively backscattered light,” J. Biomed. Opt. 21, 035002 (2016).

[Crossref]

A. Eshein, W. Wu, T.-Q. Nguyen, A. J. Radosevich, and V. Backman, “A fiber optic probe to measure spatially resolved diffuse reflectance in the sub-diffusion regime for in-vivo use,” Proc. SPIE 9703, 970317 (2016).

[Crossref]

P. Naglič, M. Bregar, F. Pernuš, B. Likar, and M. Bürmen, “Accuracy of experimental data and Monte Carlo simulation lookup table-based inverse models for assessment of turbid media optical properties with diffuse reflectance spectroscopy,” Proc. SPIE 9333, 933310 (2015).

[Crossref]

B. Majaron, M. Milanič, and J. Premru, “Monte Carlo simulation of radiation transport in human skin with rigorous treatment of curved tissue boundaries,” J. Biomed. Opt. 20, 015002 (2015).

[Crossref]
[PubMed]

P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance,” Biomed. Opt. Express 6, 3973 (2015).

[Crossref]

B. Cugmas, M. Bregar, M. Bürmen, F. Pernuš, and B. Likar, “Impact of contact pressure–induced spectral changes on soft-tissue classification in diffuse reflectance spectroscopy: Problems and solutions,” J. Biomed. Opt. 19, 037002 (2014).

[Crossref]

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: Review of current formalisms and novel observations,” J. Biomed. Opt. 19, 075005 (2014).

[Crossref]

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure–aided spectroscopy,” J. Biomed. Opt. 19, 020501 (2014).

[Crossref]

B. Yu, A. Shah, V. K. Nagarajan, and D. G. Ferris, “Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe,” Biomed. Opt. Express 5, 675–689 (2014).

[Crossref]
[PubMed]

S. L. Jacques, “Optical properties of biological tissues: A review,” Phys. Med. Biol. 58, 5007 (2013).

[Crossref]

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5, 40–53 (2013).

[Crossref]

C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18, 050902 (2013).

[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18, 037003 (2013).

[Crossref]
[PubMed]

A. Liemert and A. Kienle, “Exact and efficient solution of the radiative transport equation for the semi-infinite medium,” Sci. Rep. 3, 2018 (2013).

[Crossref]
[PubMed]

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).

[Crossref]

P. Usenik, M. Bürmen, A. Fidler, F. Pernuš, and B. Likar, “Automated Classification and Visualization of Healthy and Diseased Hard Dental Tissues by Near-Infrared Hyperspectral Imaging,” Appl. Spectrosc. 66, 1067–1074 (2012).

[Crossref]

I. Fredriksson, M. Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17, 047004 (2012).

[Crossref]
[PubMed]

B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17, 057001 (2012).

[Crossref]
[PubMed]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Heal. Sci. 04, 9–38 (2011).

[Crossref]

T. Y. Tseng, C. Y. Chen, Y. S. Li, and K. B. Sung, “Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy,” Biomed. Opt. Express 2, 901 (2011).

[Crossref]
[PubMed]

S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: Fiber diameter and phase function dependence,” Biomed. Opt. Express 2, 1687–1702 (2011).

[Crossref]
[PubMed]

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82, 103104 (2011).

[Crossref]
[PubMed]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).

[Crossref]
[PubMed]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).

[Crossref]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907 (2008).

[Crossref]
[PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).

[Crossref]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).

[Crossref]
[PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45, 1062 (2006).

[Crossref]
[PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).

[Crossref]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42, 3187–3197 (2003).

[Crossref]
[PubMed]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Optical properties effects upon the collection efficiency of optical fibers in different probe configurations,” IEEE J. Sel. Top. Quantum Electron. 9, 314–321 (2003).

[Crossref]

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).

[Crossref]
[PubMed]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8, 495–503 (2003).

[Crossref]
[PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).

[Crossref]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

[Crossref]
[PubMed]

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo Model of Light Propagation in Tissue,” “SPIE Series Vol. 5, 102–111” (1989).

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).

[Crossref]

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure–aided spectroscopy,” J. Biomed. Opt. 19, 020501 (2014).

[Crossref]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).

[Crossref]

A. Eshein, W. Wu, T.-Q. Nguyen, A. J. Radosevich, and V. Backman, “A fiber optic probe to measure spatially resolved diffuse reflectance in the sub-diffusion regime for in-vivo use,” Proc. SPIE 9703, 970317 (2016).

[Crossref]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42, 3187–3197 (2003).

[Crossref]
[PubMed]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Optical properties effects upon the collection efficiency of optical fibers in different probe configurations,” IEEE J. Sel. Top. Quantum Electron. 9, 314–321 (2003).

[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Heal. Sci. 04, 9–38 (2011).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8, 495–503 (2003).

[Crossref]
[PubMed]

F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 2935 (1999).

[Crossref]

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: Review of current formalisms and novel observations,” J. Biomed. Opt. 19, 075005 (2014).

[Crossref]

N. Bodenschatz, P. Krauter, A. Liemert, and A. Kienle, “Quantifying phase function influence in subdiffusively backscattered light,” J. Biomed. Opt. 21, 035002 (2016).

[Crossref]

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21, 066001 (2016).

[Crossref]

P. Naglič, M. Bregar, F. Pernuš, B. Likar, and M. Bürmen, “Accuracy of experimental data and Monte Carlo simulation lookup table-based inverse models for assessment of turbid media optical properties with diffuse reflectance spectroscopy,” Proc. SPIE 9333, 933310 (2015).

[Crossref]

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure–aided spectroscopy,” J. Biomed. Opt. 19, 020501 (2014).

[Crossref]

B. Cugmas, M. Bregar, M. Bürmen, F. Pernuš, and B. Likar, “Impact of contact pressure–induced spectral changes on soft-tissue classification in diffuse reflectance spectroscopy: Problems and solutions,” J. Biomed. Opt. 19, 037002 (2014).

[Crossref]

P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21, 095003 (2016).

[Crossref]

M. Ivančič, P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Extraction of optical properties from hyperspectral images by Monte Carlo light propagation model,” “Proc. SPIE 9706, 97061 (2016).

P. Naglič, M. Bregar, F. Pernuš, B. Likar, and M. Bürmen, “Accuracy of experimental data and Monte Carlo simulation lookup table-based inverse models for assessment of turbid media optical properties with diffuse reflectance spectroscopy,” Proc. SPIE 9333, 933310 (2015).

[Crossref]

P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance,” Biomed. Opt. Express 6, 3973 (2015).

[Crossref]

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure–aided spectroscopy,” J. Biomed. Opt. 19, 020501 (2014).

[Crossref]

B. Cugmas, M. Bregar, M. Bürmen, F. Pernuš, and B. Likar, “Impact of contact pressure–induced spectral changes on soft-tissue classification in diffuse reflectance spectroscopy: Problems and solutions,” J. Biomed. Opt. 19, 037002 (2014).

[Crossref]

P. Usenik, M. Bürmen, A. Fidler, F. Pernuš, and B. Likar, “Automated Classification and Visualization of Healthy and Diseased Hard Dental Tissues by Near-Infrared Hyperspectral Imaging,” Appl. Spectrosc. 66, 1067–1074 (2012).

[Crossref]

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: Review of current formalisms and novel observations,” J. Biomed. Opt. 19, 075005 (2014).

[Crossref]

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21, 066001 (2016).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8, 495–503 (2003).

[Crossref]
[PubMed]

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3, 613 (2016).

[Crossref]
[PubMed]

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure–aided spectroscopy,” J. Biomed. Opt. 19, 020501 (2014).

[Crossref]

B. Cugmas, M. Bregar, M. Bürmen, F. Pernuš, and B. Likar, “Impact of contact pressure–induced spectral changes on soft-tissue classification in diffuse reflectance spectroscopy: Problems and solutions,” J. Biomed. Opt. 19, 037002 (2014).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8, 495–503 (2003).

[Crossref]
[PubMed]

F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 2935 (1999).

[Crossref]

A. Eshein, W. Wu, T.-Q. Nguyen, A. J. Radosevich, and V. Backman, “A fiber optic probe to measure spatially resolved diffuse reflectance in the sub-diffusion regime for in-vivo use,” Proc. SPIE 9703, 970317 (2016).

[Crossref]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

[Crossref]
[PubMed]

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82, 103104 (2011).

[Crossref]
[PubMed]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907 (2008).

[Crossref]
[PubMed]

I. Fredriksson, M. Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17, 047004 (2012).

[Crossref]
[PubMed]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Heal. Sci. 04, 9–38 (2011).

[Crossref]

J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems,” IEEE Des. Test 12, 66–73 (2010).

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).

[Crossref]
[PubMed]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).

[Crossref]
[PubMed]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18, 037003 (2013).

[Crossref]
[PubMed]

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5, 40–53 (2013).

[Crossref]

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3, 613 (2016).

[Crossref]
[PubMed]

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of Cerebral Hemodynamics and Tissue Morphology of In Vivo Rat Brain Using Spectral Diffuse Reflectance Imaging,” Appl. Spectrosc. 69, 03702816657569 (2016).

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).

[Crossref]
[PubMed]

M. Ivančič, P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Extraction of optical properties from hyperspectral images by Monte Carlo light propagation model,” “Proc. SPIE 9706, 97061 (2016).

S. L. Jacques, “Optical properties of biological tissues: A review,” Phys. Med. Biol. 58, 5007 (2013).

[Crossref]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42, 3187–3197 (2003).

[Crossref]
[PubMed]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Optical properties effects upon the collection efficiency of optical fibers in different probe configurations,” IEEE J. Sel. Top. Quantum Electron. 9, 314–321 (2003).

[Crossref]

L. Wang, S. L. Jacques, and L. Zheng, “Conv—convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Prog. Bio. 54, 141–150 (1997).

[Crossref]

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).

[Crossref]

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo Model of Light Propagation in Tissue,” “SPIE Series Vol. 5, 102–111” (1989).

L. Wang and S. L. Jacques, “Monte Carlo modeling of light transport in multi-layered tissues in standard C,” The University of Texas, MD Anderson Cancer Center, Houston (1992).

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82, 103104 (2011).

[Crossref]
[PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).

[Crossref]

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3, 613 (2016).

[Crossref]
[PubMed]

J. J. Bravo, K. D. Paulsen, D. W. Roberts, and S. C. Kanick, “Sub-diffuse optical biomarkers characterize localized microstructure and function of cortex and malignant tumor,” Opt. Lett. 41, 781 (2016).

[Crossref]
[PubMed]

S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: Fiber diameter and phase function dependence,” Biomed. Opt. Express 2, 1687–1702 (2011).

[Crossref]
[PubMed]

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of Cerebral Hemodynamics and Tissue Morphology of In Vivo Rat Brain Using Spectral Diffuse Reflectance Imaging,” Appl. Spectrosc. 69, 03702816657569 (2016).

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo Model of Light Propagation in Tissue,” “SPIE Series Vol. 5, 102–111” (1989).

N. Bodenschatz, P. Krauter, A. Liemert, and A. Kienle, “Quantifying phase function influence in subdiffusively backscattered light,” J. Biomed. Opt. 21, 035002 (2016).

[Crossref]

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21, 066001 (2016).

[Crossref]

A. Liemert and A. Kienle, “Exact and efficient solution of the radiative transport equation for the semi-infinite medium,” Sci. Rep. 3, 2018 (2013).

[Crossref]
[PubMed]

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82, 103104 (2011).

[Crossref]
[PubMed]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907 (2008).

[Crossref]
[PubMed]

A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246 (1997).

[Crossref]

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21, 066001 (2016).

[Crossref]

N. Bodenschatz, P. Krauter, A. Liemert, and A. Kienle, “Quantifying phase function influence in subdiffusively backscattered light,” J. Biomed. Opt. 21, 035002 (2016).

[Crossref]

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21, 066001 (2016).

[Crossref]

I. Fredriksson, M. Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17, 047004 (2012).

[Crossref]
[PubMed]

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21, 066001 (2016).

[Crossref]

N. Bodenschatz, P. Krauter, A. Liemert, and A. Kienle, “Quantifying phase function influence in subdiffusively backscattered light,” J. Biomed. Opt. 21, 035002 (2016).

[Crossref]

A. Liemert and A. Kienle, “Exact and efficient solution of the radiative transport equation for the semi-infinite medium,” Sci. Rep. 3, 2018 (2013).

[Crossref]
[PubMed]

P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21, 095003 (2016).

[Crossref]

M. Ivančič, P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Extraction of optical properties from hyperspectral images by Monte Carlo light propagation model,” “Proc. SPIE 9706, 97061 (2016).

P. Naglič, M. Bregar, F. Pernuš, B. Likar, and M. Bürmen, “Accuracy of experimental data and Monte Carlo simulation lookup table-based inverse models for assessment of turbid media optical properties with diffuse reflectance spectroscopy,” Proc. SPIE 9333, 933310 (2015).

[Crossref]

P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance,” Biomed. Opt. Express 6, 3973 (2015).

[Crossref]

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure–aided spectroscopy,” J. Biomed. Opt. 19, 020501 (2014).

[Crossref]

B. Cugmas, M. Bregar, M. Bürmen, F. Pernuš, and B. Likar, “Impact of contact pressure–induced spectral changes on soft-tissue classification in diffuse reflectance spectroscopy: Problems and solutions,” J. Biomed. Opt. 19, 037002 (2014).

[Crossref]

P. Usenik, M. Bürmen, A. Fidler, F. Pernuš, and B. Likar, “Automated Classification and Visualization of Healthy and Diseased Hard Dental Tissues by Near-Infrared Hyperspectral Imaging,” Appl. Spectrosc. 66, 1067–1074 (2012).

[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18, 037003 (2013).

[Crossref]
[PubMed]

C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18, 050902 (2013).

[Crossref]

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21, 066001 (2016).

[Crossref]

B. Majaron, M. Milanič, and J. Premru, “Monte Carlo simulation of radiation transport in human skin with rigorous treatment of curved tissue boundaries,” J. Biomed. Opt. 20, 015002 (2015).

[Crossref]
[PubMed]

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).

[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18, 037003 (2013).

[Crossref]
[PubMed]

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5, 40–53 (2013).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8, 495–503 (2003).

[Crossref]
[PubMed]

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21, 066001 (2016).

[Crossref]

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3, 613 (2016).

[Crossref]
[PubMed]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8, 495–503 (2003).

[Crossref]
[PubMed]

B. Majaron, M. Milanič, and J. Premru, “Monte Carlo simulation of radiation transport in human skin with rigorous treatment of curved tissue boundaries,” J. Biomed. Opt. 20, 015002 (2015).

[Crossref]
[PubMed]

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).

[Crossref]

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21, 066001 (2016).

[Crossref]

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of Cerebral Hemodynamics and Tissue Morphology of In Vivo Rat Brain Using Spectral Diffuse Reflectance Imaging,” Appl. Spectrosc. 69, 03702816657569 (2016).

P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21, 095003 (2016).

[Crossref]

M. Ivančič, P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Extraction of optical properties from hyperspectral images by Monte Carlo light propagation model,” “Proc. SPIE 9706, 97061 (2016).

P. Naglič, M. Bregar, F. Pernuš, B. Likar, and M. Bürmen, “Accuracy of experimental data and Monte Carlo simulation lookup table-based inverse models for assessment of turbid media optical properties with diffuse reflectance spectroscopy,” Proc. SPIE 9333, 933310 (2015).

[Crossref]

P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance,” Biomed. Opt. Express 6, 3973 (2015).

[Crossref]

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).

[Crossref]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).

[Crossref]

A. Eshein, W. Wu, T.-Q. Nguyen, A. J. Radosevich, and V. Backman, “A fiber optic probe to measure spatially resolved diffuse reflectance in the sub-diffusion regime for in-vivo use,” Proc. SPIE 9703, 970317 (2016).

[Crossref]

B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17, 057001 (2012).

[Crossref]
[PubMed]

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of Cerebral Hemodynamics and Tissue Morphology of In Vivo Rat Brain Using Spectral Diffuse Reflectance Imaging,” Appl. Spectrosc. 69, 03702816657569 (2016).

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8, 495–503 (2003).

[Crossref]
[PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).

[Crossref]
[PubMed]

A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246 (1997).

[Crossref]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

[Crossref]
[PubMed]

J. J. Bravo, K. D. Paulsen, D. W. Roberts, and S. C. Kanick, “Sub-diffuse optical biomarkers characterize localized microstructure and function of cortex and malignant tumor,” Opt. Lett. 41, 781 (2016).

[Crossref]
[PubMed]

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3, 613 (2016).

[Crossref]
[PubMed]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).

[Crossref]
[PubMed]

P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21, 095003 (2016).

[Crossref]

M. Ivančič, P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Extraction of optical properties from hyperspectral images by Monte Carlo light propagation model,” “Proc. SPIE 9706, 97061 (2016).

P. Naglič, M. Bregar, F. Pernuš, B. Likar, and M. Bürmen, “Accuracy of experimental data and Monte Carlo simulation lookup table-based inverse models for assessment of turbid media optical properties with diffuse reflectance spectroscopy,” Proc. SPIE 9333, 933310 (2015).

[Crossref]

P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance,” Biomed. Opt. Express 6, 3973 (2015).

[Crossref]

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure–aided spectroscopy,” J. Biomed. Opt. 19, 020501 (2014).

[Crossref]

B. Cugmas, M. Bregar, M. Bürmen, F. Pernuš, and B. Likar, “Impact of contact pressure–induced spectral changes on soft-tissue classification in diffuse reflectance spectroscopy: Problems and solutions,” J. Biomed. Opt. 19, 037002 (2014).

[Crossref]

P. Usenik, M. Bürmen, A. Fidler, F. Pernuš, and B. Likar, “Automated Classification and Visualization of Healthy and Diseased Hard Dental Tissues by Near-Infrared Hyperspectral Imaging,” Appl. Spectrosc. 66, 1067–1074 (2012).

[Crossref]

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3, 613 (2016).

[Crossref]
[PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).

[Crossref]
[PubMed]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42, 3187–3197 (2003).

[Crossref]
[PubMed]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Optical properties effects upon the collection efficiency of optical fibers in different probe configurations,” IEEE J. Sel. Top. Quantum Electron. 9, 314–321 (2003).

[Crossref]

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo Model of Light Propagation in Tissue,” “SPIE Series Vol. 5, 102–111” (1989).

B. Majaron, M. Milanič, and J. Premru, “Monte Carlo simulation of radiation transport in human skin with rigorous treatment of curved tissue boundaries,” J. Biomed. Opt. 20, 015002 (2015).

[Crossref]
[PubMed]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).

[Crossref]
[PubMed]

A. Eshein, W. Wu, T.-Q. Nguyen, A. J. Radosevich, and V. Backman, “A fiber optic probe to measure spatially resolved diffuse reflectance in the sub-diffusion regime for in-vivo use,” Proc. SPIE 9703, 970317 (2016).

[Crossref]

B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17, 057001 (2012).

[Crossref]
[PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).

[Crossref]

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).

[Crossref]

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).

[Crossref]
[PubMed]

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3, 613 (2016).

[Crossref]
[PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).

[Crossref]

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of Cerebral Hemodynamics and Tissue Morphology of In Vivo Rat Brain Using Spectral Diffuse Reflectance Imaging,” Appl. Spectrosc. 69, 03702816657569 (2016).

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of Cerebral Hemodynamics and Tissue Morphology of In Vivo Rat Brain Using Spectral Diffuse Reflectance Imaging,” Appl. Spectrosc. 69, 03702816657569 (2016).

J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems,” IEEE Des. Test 12, 66–73 (2010).

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8, 495–503 (2003).

[Crossref]
[PubMed]

J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems,” IEEE Des. Test 12, 66–73 (2010).

I. Fredriksson, M. Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17, 047004 (2012).

[Crossref]
[PubMed]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8, 495–503 (2003).

[Crossref]
[PubMed]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Heal. Sci. 04, 9–38 (2011).

[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18, 037003 (2013).

[Crossref]
[PubMed]

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5, 40–53 (2013).

[Crossref]

B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17, 057001 (2012).

[Crossref]
[PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).

[Crossref]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).

[Crossref]
[PubMed]

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).

[Crossref]
[PubMed]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8, 495–503 (2003).

[Crossref]
[PubMed]

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).

[Crossref]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).

[Crossref]
[PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “Conv—convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Prog. Bio. 54, 141–150 (1997).

[Crossref]

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).

[Crossref]

L. Wang and S. L. Jacques, “Monte Carlo modeling of light transport in multi-layered tissues in standard C,” The University of Texas, MD Anderson Cancer Center, Houston (1992).

L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging, 1st ed. (Wiley-Interscience, Hoboken, New Jersey, USA, 2007).

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo Model of Light Propagation in Tissue,” “SPIE Series Vol. 5, 102–111” (1989).

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3, 613 (2016).

[Crossref]
[PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

[Crossref]
[PubMed]

L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging, 1st ed. (Wiley-Interscience, Hoboken, New Jersey, USA, 2007).

A. Eshein, W. Wu, T.-Q. Nguyen, A. J. Radosevich, and V. Backman, “A fiber optic probe to measure spatially resolved diffuse reflectance in the sub-diffusion regime for in-vivo use,” Proc. SPIE 9703, 970317 (2016).

[Crossref]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).

[Crossref]

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of Cerebral Hemodynamics and Tissue Morphology of In Vivo Rat Brain Using Spectral Diffuse Reflectance Imaging,” Appl. Spectrosc. 69, 03702816657569 (2016).

L. Wang, S. L. Jacques, and L. Zheng, “Conv—convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Prog. Bio. 54, 141–150 (1997).

[Crossref]

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).

[Crossref]

C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18, 050902 (2013).

[Crossref]

P. Usenik, M. Bürmen, A. Fidler, F. Pernuš, and B. Likar, “Automated Classification and Visualization of Healthy and Diseased Hard Dental Tissues by Near-Infrared Hyperspectral Imaging,” Appl. Spectrosc. 66, 1067–1074 (2012).

[Crossref]

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of Cerebral Hemodynamics and Tissue Morphology of In Vivo Rat Brain Using Spectral Diffuse Reflectance Imaging,” Appl. Spectrosc. 69, 03702816657569 (2016).

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5, 40–53 (2013).

[Crossref]

T. Y. Tseng, C. Y. Chen, Y. S. Li, and K. B. Sung, “Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy,” Biomed. Opt. Express 2, 901 (2011).

[Crossref]
[PubMed]

P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance,” Biomed. Opt. Express 6, 3973 (2015).

[Crossref]

S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: Fiber diameter and phase function dependence,” Biomed. Opt. Express 2, 1687–1702 (2011).

[Crossref]
[PubMed]

B. Yu, A. Shah, V. K. Nagarajan, and D. G. Ferris, “Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe,” Biomed. Opt. Express 5, 675–689 (2014).

[Crossref]
[PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “Conv—convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Prog. Bio. 54, 141–150 (1997).

[Crossref]

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).

[Crossref]

J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems,” IEEE Des. Test 12, 66–73 (2010).

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Optical properties effects upon the collection efficiency of optical fibers in different probe configurations,” IEEE J. Sel. Top. Quantum Electron. 9, 314–321 (2003).

[Crossref]

C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18, 050902 (2013).

[Crossref]

B. Majaron, M. Milanič, and J. Premru, “Monte Carlo simulation of radiation transport in human skin with rigorous treatment of curved tissue boundaries,” J. Biomed. Opt. 20, 015002 (2015).

[Crossref]
[PubMed]

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure–aided spectroscopy,” J. Biomed. Opt. 19, 020501 (2014).

[Crossref]

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).

[Crossref]
[PubMed]

P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21, 095003 (2016).

[Crossref]

B. Cugmas, M. Bregar, M. Bürmen, F. Pernuš, and B. Likar, “Impact of contact pressure–induced spectral changes on soft-tissue classification in diffuse reflectance spectroscopy: Problems and solutions,” J. Biomed. Opt. 19, 037002 (2014).

[Crossref]

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: Review of current formalisms and novel observations,” J. Biomed. Opt. 19, 075005 (2014).

[Crossref]

N. Bodenschatz, P. Krauter, A. Liemert, and A. Kienle, “Quantifying phase function influence in subdiffusively backscattered light,” J. Biomed. Opt. 21, 035002 (2016).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8, 495–503 (2003).

[Crossref]
[PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).

[Crossref]

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21, 066001 (2016).

[Crossref]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).

[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18, 037003 (2013).

[Crossref]
[PubMed]

I. Fredriksson, M. Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17, 047004 (2012).

[Crossref]
[PubMed]

B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17, 057001 (2012).

[Crossref]
[PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).

[Crossref]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).

[Crossref]
[PubMed]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Heal. Sci. 04, 9–38 (2011).

[Crossref]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

[Crossref]
[PubMed]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).

[Crossref]
[PubMed]

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3, 613 (2016).

[Crossref]
[PubMed]

S. L. Jacques, “Optical properties of biological tissues: A review,” Phys. Med. Biol. 58, 5007 (2013).

[Crossref]

A. Eshein, W. Wu, T.-Q. Nguyen, A. J. Radosevich, and V. Backman, “A fiber optic probe to measure spatially resolved diffuse reflectance in the sub-diffusion regime for in-vivo use,” Proc. SPIE 9703, 970317 (2016).

[Crossref]

P. Naglič, M. Bregar, F. Pernuš, B. Likar, and M. Bürmen, “Accuracy of experimental data and Monte Carlo simulation lookup table-based inverse models for assessment of turbid media optical properties with diffuse reflectance spectroscopy,” Proc. SPIE 9333, 933310 (2015).

[Crossref]

M. Ivančič, P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Extraction of optical properties from hyperspectral images by Monte Carlo light propagation model,” “Proc. SPIE 9706, 97061 (2016).

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).

[Crossref]

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum. 82, 103104 (2011).

[Crossref]
[PubMed]

A. Liemert and A. Kienle, “Exact and efficient solution of the radiative transport equation for the semi-infinite medium,” Sci. Rep. 3, 2018 (2013).

[Crossref]
[PubMed]

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo Model of Light Propagation in Tissue,” “SPIE Series Vol. 5, 102–111” (1989).

L. Wang and S. L. Jacques, “Monte Carlo modeling of light transport in multi-layered tissues in standard C,” The University of Texas, MD Anderson Cancer Center, Houston (1992).

L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging, 1st ed. (Wiley-Interscience, Hoboken, New Jersey, USA, 2007).