Abstract

Quantitative phase imaging enables precise characterization of cellular shape and motion. Variation of cell volume in populations of cardiomyocytes can help distinguish their types, while changes in optical thickness during beating cycle identify contraction and relaxation periods and elucidate cell dynamics. Parameters such as characteristic cycle shape, beating frequency, duration and regularity can be used to classify stem-cell derived cardiomyocytes according to their health and, potentially, cell type. Unlike classical patch-clamp based electrophysiological characterization of cardiomyocytes, this interferometric approach enables rapid and non-destructive analysis of large populations of cells, with longitudinal follow-up, and applications to tissue regeneration, personalized medicine, and drug testing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Label-free optical detection of action potential in mammalian neurons

Subrata Batabyal, Sarmishtha Satpathy, Loan Bui, Young-Tae Kim, Samarendra Mohanty, Robert Bachoo, and Digant P. Davé
Biomed. Opt. Express 8(8) 3700-3713 (2017)

Noninvasive structural and microvascular anatomy of oral mucosae using handheld optical coherence tomography

Meng-Tsan Tsai, Yingdan Chen, Cheng-Yu Lee, Bo-Huei Huang, Nguyen Hoang Trung, Ya-Ju Lee, and Yen-Li Wang
Biomed. Opt. Express 8(11) 5001-5012 (2017)

Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope

Yang Dong, Ji Qi, Honghui He, Chao He, Shaoxiong Liu, Jian Wu, Daniel S. Elson, and Hui Ma
Biomed. Opt. Express 8(8) 3643-3655 (2017)

References

  • View by:
  • |
  • |
  • |

  1. I. Y. Chen, E. Matsa, and J. C. Wu, “Induced pluripotent stem cells: at the heart of cardiovascular precision medicine,” Nat. Rev. Cardiol. 13(6), 333–349 (2016).
    [Crossref] [PubMed]
  2. M. Ben-Ari, S. Naor, N. Zeevi-Levin, R. Schick, R. Ben Jehuda, I. Reiter, A. Raveh, I. Grijnevitch, O. Barak, M. R. Rosen, A. Weissman, and O. Binah, “Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes,” Heart Rhythm 13(12), 2379–2387 (2016).
    [Crossref] [PubMed]
  3. X. Yang, L. Pabon, and C. E. Murry, “Engineering Adolescence: Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes,” Circ. Res. 114(3), 511–523 (2014).
    [Crossref] [PubMed]
  4. S. Peng, A. E. Lacerda, G. E. Kirsch, A. M. Brown, and A. Bruening-Wright, “The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes,” J. Pharmacol. Toxicol. Methods 61(3), 277–286 (2010).
    [Crossref] [PubMed]
  5. E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
    [Crossref] [PubMed]
  6. T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
    [Crossref] [PubMed]
  7. N. Smedemark-Margulies and J. G. Trapani, “Tools, methods, and applications for optophysiology in neuroscience,” Front. Mol. Neurosci. 6, 18 (2013).
    [Crossref] [PubMed]
  8. R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters,” Stem Cell Rep. 5(4), 582–596 (2015).
    [Crossref] [PubMed]
  9. J. S. Leyton-Mange, R. W. Mills, V. S. Macri, M. Y. Jang, F. N. Butte, P. T. Ellinor, and D. J. Milan, “Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor,” Stem Cell Rep. 2(2), 163–170 (2014).
    [Crossref] [PubMed]
  10. T. J. Herron, P. Lee, and J. Jalife, “Optical Imaging of Voltage and Calcium in Cardiac Cells & Tissues,” Circ. Res. 110(4), 609–623 (2012).
    [Crossref] [PubMed]
  11. M. Maddah, J. D. Heidmann, M. A. Mandegar, C. D. Walker, S. Bolouki, B. R. Conklin, and K. E. Loewke, “A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing,” Stem Cell Rep. 4(4), 621–631 (2015).
    [Crossref] [PubMed]
  12. A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
    [Crossref] [PubMed]
  13. N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
    [Crossref] [PubMed]
  14. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
    [Crossref]
  15. N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
    [Crossref] [PubMed]
  16. B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PLoS One 8(2), e56930 (2013).
    [Crossref] [PubMed]
  17. B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
    [Crossref] [PubMed]
  18. D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Cytometry A 91(5), 482–493 (2017).
    [Crossref] [PubMed]
  19. L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry A 91(5), 470–481 (2017).
    [Crossref] [PubMed]
  20. V. L. Calin, M. Mihailescu, E. I. Scarlat, A. V. Baluta, D. Calin, E. Kovacs, T. Savopol, and M. G. Moisescu, “Evaluation of the metastatic potential of malignant cells by image processing of digital holographic microscopy data,” FEBS Open Bio (2017).
  21. H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
    [Crossref] [PubMed]
  22. N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
    [Crossref] [PubMed]
  23. S. A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
    [Crossref] [PubMed]
  24. H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
    [Crossref] [PubMed]
  25. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
    [Crossref] [PubMed]
  26. M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
    [Crossref] [PubMed]
  27. C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt. Express 22(5), 5133–5146 (2014).
    [Crossref] [PubMed]
  28. B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. 6(1), 57–119 (2014).
  29. H. V. Pham, C. Edwards, L. L. Goddard, and G. Popescu, “Fast phase reconstruction in white light diffraction phase microscopy,” Appl. Opt. 52(1), A97–A101 (2013).
    [Crossref] [PubMed]
  30. P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
    [Crossref] [PubMed]
  31. D. Dussault and P. Hoess, “Noise performance comparison of ICCD with CCD and EMCCD cameras”, in Optical Science and Technology, the SPIE 49th Annual Meeting, (International Society for Optics and Photonics, 2004), pp. 195–204.
    [Crossref]
  32. A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes (Tata McGraw-Hill Education, 2002).
  33. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
    [Crossref] [PubMed]
  34. J. Ma, L. Guo, S. J. Fiene, B. D. Anson, J. A. Thomson, T. J. Kamp, K. L. Kolaja, B. J. Swanson, and C. T. January, “High purity human induced pluripotent stem cell (hiPSC) derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents,” Am. J. Physiol. 301, 2006 (2011).
  35. Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
    [Crossref] [PubMed]
  36. G. M. de Peppo and D. Marolt, “State of the Art in Stem Cell Research: Human Embryonic Stem Cells, Induced Pluripotent Stem Cells, and Transdifferentiation,” J. Blood Transfus. 2012, 317632 (2012).
    [Crossref] [PubMed]
  37. M. Ben-Ari, R. Schick, L. Barad, A. Novak, E. Ben-Ari, A. Lorber, J. Itskovitz-Eldor, M. R. Rosen, A. Weissman, and O. Binah, “From beat rate variability in induced pluripotent stem cell-derived pacemaker cells to heart rate variability in human subjects,” Heart Rhythm 11(10), 1808–1818 (2014).
    [Crossref] [PubMed]
  38. S. Yechikov, R. Copaciu, J. M. Gluck, W. Deng, N. Chiamvimonvat, J. W. Chan, and D. K. Lieu, “Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology,” Stem Cells 34(11), 2670–2680 (2016).
    [Crossref] [PubMed]
  39. G. van den Engh and J. Visser, “Light Scattering Properties of Pluripotent and Committed Haemopoietic Stem Cells,” AHA 62, 289–298 (2008).

2017 (3)

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Cytometry A 91(5), 482–493 (2017).
[Crossref] [PubMed]

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry A 91(5), 470–481 (2017).
[Crossref] [PubMed]

S. A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[Crossref] [PubMed]

2016 (4)

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

I. Y. Chen, E. Matsa, and J. C. Wu, “Induced pluripotent stem cells: at the heart of cardiovascular precision medicine,” Nat. Rev. Cardiol. 13(6), 333–349 (2016).
[Crossref] [PubMed]

M. Ben-Ari, S. Naor, N. Zeevi-Levin, R. Schick, R. Ben Jehuda, I. Reiter, A. Raveh, I. Grijnevitch, O. Barak, M. R. Rosen, A. Weissman, and O. Binah, “Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes,” Heart Rhythm 13(12), 2379–2387 (2016).
[Crossref] [PubMed]

S. Yechikov, R. Copaciu, J. M. Gluck, W. Deng, N. Chiamvimonvat, J. W. Chan, and D. K. Lieu, “Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology,” Stem Cells 34(11), 2670–2680 (2016).
[Crossref] [PubMed]

2015 (4)

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters,” Stem Cell Rep. 5(4), 582–596 (2015).
[Crossref] [PubMed]

M. Maddah, J. D. Heidmann, M. A. Mandegar, C. D. Walker, S. Bolouki, B. R. Conklin, and K. E. Loewke, “A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing,” Stem Cell Rep. 4(4), 621–631 (2015).
[Crossref] [PubMed]

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
[Crossref] [PubMed]

2014 (8)

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

J. S. Leyton-Mange, R. W. Mills, V. S. Macri, M. Y. Jang, F. N. Butte, P. T. Ellinor, and D. J. Milan, “Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor,” Stem Cell Rep. 2(2), 163–170 (2014).
[Crossref] [PubMed]

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

X. Yang, L. Pabon, and C. E. Murry, “Engineering Adolescence: Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes,” Circ. Res. 114(3), 511–523 (2014).
[Crossref] [PubMed]

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt. Express 22(5), 5133–5146 (2014).
[Crossref] [PubMed]

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. 6(1), 57–119 (2014).

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

M. Ben-Ari, R. Schick, L. Barad, A. Novak, E. Ben-Ari, A. Lorber, J. Itskovitz-Eldor, M. R. Rosen, A. Weissman, and O. Binah, “From beat rate variability in induced pluripotent stem cell-derived pacemaker cells to heart rate variability in human subjects,” Heart Rhythm 11(10), 1808–1818 (2014).
[Crossref] [PubMed]

2013 (4)

H. V. Pham, C. Edwards, L. L. Goddard, and G. Popescu, “Fast phase reconstruction in white light diffraction phase microscopy,” Appl. Opt. 52(1), A97–A101 (2013).
[Crossref] [PubMed]

N. Smedemark-Margulies and J. G. Trapani, “Tools, methods, and applications for optophysiology in neuroscience,” Front. Mol. Neurosci. 6, 18 (2013).
[Crossref] [PubMed]

B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PLoS One 8(2), e56930 (2013).
[Crossref] [PubMed]

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

2012 (5)

T. J. Herron, P. Lee, and J. Jalife, “Optical Imaging of Voltage and Calcium in Cardiac Cells & Tissues,” Circ. Res. 110(4), 609–623 (2012).
[Crossref] [PubMed]

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

G. M. de Peppo and D. Marolt, “State of the Art in Stem Cell Research: Human Embryonic Stem Cells, Induced Pluripotent Stem Cells, and Transdifferentiation,” J. Blood Transfus. 2012, 317632 (2012).
[Crossref] [PubMed]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref] [PubMed]

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

2011 (3)

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[Crossref] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[Crossref] [PubMed]

J. Ma, L. Guo, S. J. Fiene, B. D. Anson, J. A. Thomson, T. J. Kamp, K. L. Kolaja, B. J. Swanson, and C. T. January, “High purity human induced pluripotent stem cell (hiPSC) derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents,” Am. J. Physiol. 301, 2006 (2011).

2010 (2)

S. Peng, A. E. Lacerda, G. E. Kirsch, A. M. Brown, and A. Bruening-Wright, “The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes,” J. Pharmacol. Toxicol. Methods 61(3), 277–286 (2010).
[Crossref] [PubMed]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
[Crossref] [PubMed]

2008 (2)

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[Crossref] [PubMed]

G. van den Engh and J. Visser, “Light Scattering Properties of Pluripotent and Committed Haemopoietic Stem Cells,” AHA 62, 289–298 (2008).

1942 (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
[Crossref]

Aalto-Setälä, K.

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

Abassi, Y. A.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Abilez, O. J.

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

Ahola, A.

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

Ando, T.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Anson, B. D.

J. Ma, L. Guo, S. J. Fiene, B. D. Anson, J. A. Thomson, T. J. Kamp, K. L. Kolaja, B. J. Swanson, and C. T. January, “High purity human induced pluripotent stem cell (hiPSC) derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents,” Am. J. Physiol. 301, 2006 (2011).

Arbel, G.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters,” Stem Cell Rep. 5(4), 582–596 (2015).
[Crossref] [PubMed]

Badizadegan, K.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[Crossref] [PubMed]

Bal, E.

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Cytometry A 91(5), 482–493 (2017).
[Crossref] [PubMed]

Barad, L.

M. Ben-Ari, R. Schick, L. Barad, A. Novak, E. Ben-Ari, A. Lorber, J. Itskovitz-Eldor, M. R. Rosen, A. Weissman, and O. Binah, “From beat rate variability in induced pluripotent stem cell-derived pacemaker cells to heart rate variability in human subjects,” Heart Rhythm 11(10), 1808–1818 (2014).
[Crossref] [PubMed]

Barak, O.

M. Ben-Ari, S. Naor, N. Zeevi-Levin, R. Schick, R. Ben Jehuda, I. Reiter, A. Raveh, I. Grijnevitch, O. Barak, M. R. Rosen, A. Weissman, and O. Binah, “Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes,” Heart Rhythm 13(12), 2379–2387 (2016).
[Crossref] [PubMed]

Bashir, R.

B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PLoS One 8(2), e56930 (2013).
[Crossref] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[Crossref] [PubMed]

Bednarz, M.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[Crossref] [PubMed]

Ben Jehuda, R.

M. Ben-Ari, S. Naor, N. Zeevi-Levin, R. Schick, R. Ben Jehuda, I. Reiter, A. Raveh, I. Grijnevitch, O. Barak, M. R. Rosen, A. Weissman, and O. Binah, “Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes,” Heart Rhythm 13(12), 2379–2387 (2016).
[Crossref] [PubMed]

Ben-Ari, E.

M. Ben-Ari, R. Schick, L. Barad, A. Novak, E. Ben-Ari, A. Lorber, J. Itskovitz-Eldor, M. R. Rosen, A. Weissman, and O. Binah, “From beat rate variability in induced pluripotent stem cell-derived pacemaker cells to heart rate variability in human subjects,” Heart Rhythm 11(10), 1808–1818 (2014).
[Crossref] [PubMed]

Ben-Ari, M.

M. Ben-Ari, S. Naor, N. Zeevi-Levin, R. Schick, R. Ben Jehuda, I. Reiter, A. Raveh, I. Grijnevitch, O. Barak, M. R. Rosen, A. Weissman, and O. Binah, “Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes,” Heart Rhythm 13(12), 2379–2387 (2016).
[Crossref] [PubMed]

M. Ben-Ari, R. Schick, L. Barad, A. Novak, E. Ben-Ari, A. Lorber, J. Itskovitz-Eldor, M. R. Rosen, A. Weissman, and O. Binah, “From beat rate variability in induced pluripotent stem cell-derived pacemaker cells to heart rate variability in human subjects,” Heart Rhythm 11(10), 1808–1818 (2014).
[Crossref] [PubMed]

Bers, D. M.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Best-Popescu, C.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[Crossref] [PubMed]

Beygui, R. E.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Bhaduri, B.

Binah, O.

M. Ben-Ari, S. Naor, N. Zeevi-Levin, R. Schick, R. Ben Jehuda, I. Reiter, A. Raveh, I. Grijnevitch, O. Barak, M. R. Rosen, A. Weissman, and O. Binah, “Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes,” Heart Rhythm 13(12), 2379–2387 (2016).
[Crossref] [PubMed]

M. Ben-Ari, R. Schick, L. Barad, A. Novak, E. Ben-Ari, A. Lorber, J. Itskovitz-Eldor, M. R. Rosen, A. Weissman, and O. Binah, “From beat rate variability in induced pluripotent stem cell-derived pacemaker cells to heart rate variability in human subjects,” Heart Rhythm 11(10), 1808–1818 (2014).
[Crossref] [PubMed]

Bohlen, H.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Bolouki, S.

M. Maddah, J. D. Heidmann, M. A. Mandegar, C. D. Walker, S. Bolouki, B. R. Conklin, and K. E. Loewke, “A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing,” Stem Cell Rep. 4(4), 621–631 (2015).
[Crossref] [PubMed]

Brown, A. M.

S. Peng, A. E. Lacerda, G. E. Kirsch, A. M. Brown, and A. Bruening-Wright, “The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes,” J. Pharmacol. Toxicol. Methods 61(3), 277–286 (2010).
[Crossref] [PubMed]

Bruening-Wright, A.

S. Peng, A. E. Lacerda, G. E. Kirsch, A. M. Brown, and A. Bruening-Wright, “The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes,” J. Pharmacol. Toxicol. Methods 61(3), 277–286 (2010).
[Crossref] [PubMed]

Burridge, P. W.

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Bursac, N.

Butte, F. N.

J. S. Leyton-Mange, R. W. Mills, V. S. Macri, M. Y. Jang, F. N. Butte, P. T. Ellinor, and D. J. Milan, “Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor,” Stem Cell Rep. 2(2), 163–170 (2014).
[Crossref] [PubMed]

Byun, H.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Chan, J. W.

S. Yechikov, R. Copaciu, J. M. Gluck, W. Deng, N. Chiamvimonvat, J. W. Chan, and D. K. Lieu, “Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology,” Stem Cells 34(11), 2670–2680 (2016).
[Crossref] [PubMed]

Chan, V.

B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PLoS One 8(2), e56930 (2013).
[Crossref] [PubMed]

Chen, I. Y.

I. Y. Chen, E. Matsa, and J. C. Wu, “Induced pluripotent stem cells: at the heart of cardiovascular precision medicine,” Nat. Rev. Cardiol. 13(6), 333–349 (2016).
[Crossref] [PubMed]

Chiamvimonvat, N.

S. Yechikov, R. Copaciu, J. M. Gluck, W. Deng, N. Chiamvimonvat, J. W. Chan, and D. K. Lieu, “Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology,” Stem Cells 34(11), 2670–2680 (2016).
[Crossref] [PubMed]

Chukka, A. C.

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Churko, J. M.

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

Conklin, B. R.

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

M. Maddah, J. D. Heidmann, M. A. Mandegar, C. D. Walker, S. Bolouki, B. R. Conklin, and K. E. Loewke, “A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing,” Stem Cell Rep. 4(4), 621–631 (2015).
[Crossref] [PubMed]

Copaciu, R.

S. Yechikov, R. Copaciu, J. M. Gluck, W. Deng, N. Chiamvimonvat, J. W. Chan, and D. K. Lieu, “Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology,” Stem Cells 34(11), 2670–2680 (2016).
[Crossref] [PubMed]

Cui, B.

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

Dao, M.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Dasari, R. R.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[Crossref] [PubMed]

de Peppo, G. M.

G. M. de Peppo and D. Marolt, “State of the Art in Stem Cell Research: Human Embryonic Stem Cells, Induced Pluripotent Stem Cells, and Transdifferentiation,” J. Blood Transfus. 2012, 317632 (2012).
[Crossref] [PubMed]

Deflores, L.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[Crossref] [PubMed]

Deng, W.

S. Yechikov, R. Copaciu, J. M. Gluck, W. Deng, N. Chiamvimonvat, J. W. Chan, and D. K. Lieu, “Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology,” Stem Cells 34(11), 2670–2680 (2016).
[Crossref] [PubMed]

Diecke, S.

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

Diez-Silva, M.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Dirksen, D.

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry A 91(5), 470–481 (2017).
[Crossref] [PubMed]

Ebert, A. D.

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

Edwards, C.

Ehlich, A.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Ellinor, P. T.

J. S. Leyton-Mange, R. W. Mills, V. S. Macri, M. Y. Jang, F. N. Butte, P. T. Ellinor, and D. J. Milan, “Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor,” Stem Cell Rep. 2(2), 163–170 (2014).
[Crossref] [PubMed]

Feld, M. S.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[Crossref] [PubMed]

Fiene, S. J.

J. Ma, L. Guo, S. J. Fiene, B. D. Anson, J. A. Thomson, T. J. Kamp, K. L. Kolaja, B. J. Swanson, and C. T. January, “High purity human induced pluripotent stem cell (hiPSC) derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents,” Am. J. Physiol. 301, 2006 (2011).

Furukawa, T.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Gepstein, A.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters,” Stem Cell Rep. 5(4), 582–596 (2015).
[Crossref] [PubMed]

Gepstein, L.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters,” Stem Cell Rep. 5(4), 582–596 (2015).
[Crossref] [PubMed]

Gluck, J. M.

S. Yechikov, R. Copaciu, J. M. Gluck, W. Deng, N. Chiamvimonvat, J. W. Chan, and D. K. Lieu, “Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology,” Stem Cells 34(11), 2670–2680 (2016).
[Crossref] [PubMed]

Goddard, L. L.

Gold, J. D.

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

Golding, I.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[Crossref] [PubMed]

Gong, T.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Greenspan, H.

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Cytometry A 91(5), 482–493 (2017).
[Crossref] [PubMed]

Griffin, B. G.

Grijnevitch, I.

M. Ben-Ari, S. Naor, N. Zeevi-Levin, R. Schick, R. Ben Jehuda, I. Reiter, A. Raveh, I. Grijnevitch, O. Barak, M. R. Rosen, A. Weissman, and O. Binah, “Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes,” Heart Rhythm 13(12), 2379–2387 (2016).
[Crossref] [PubMed]

Guo, L.

J. Ma, L. Guo, S. J. Fiene, B. D. Anson, J. A. Thomson, T. J. Kamp, K. L. Kolaja, B. J. Swanson, and C. T. January, “High purity human induced pluripotent stem cell (hiPSC) derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents,” Am. J. Physiol. 301, 2006 (2011).

Hayakawa, T.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Healy, K. E.

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Heidmann, J. D.

M. Maddah, J. D. Heidmann, M. A. Mandegar, C. D. Walker, S. Bolouki, B. R. Conklin, and K. E. Loewke, “A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing,” Stem Cell Rep. 4(4), 621–631 (2015).
[Crossref] [PubMed]

Herron, T. J.

T. J. Herron, P. Lee, and J. Jalife, “Optical Imaging of Voltage and Calcium in Cardiac Cells & Tissues,” Circ. Res. 110(4), 609–623 (2012).
[Crossref] [PubMed]

Higgins, J. M.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Hillman, T. R.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Honkanen, M.

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

Huber, B.

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

Huber, I.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters,” Stem Cell Rep. 5(4), 582–596 (2015).
[Crossref] [PubMed]

Huebsch, N.

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Hyttinen, J.

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

Isbach, M.

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry A 91(5), 470–481 (2017).
[Crossref] [PubMed]

Itskovitz-Eldor, J.

M. Ben-Ari, R. Schick, L. Barad, A. Novak, E. Ben-Ari, A. Lorber, J. Itskovitz-Eldor, M. R. Rosen, A. Weissman, and O. Binah, “From beat rate variability in induced pluripotent stem cell-derived pacemaker cells to heart rate variability in human subjects,” Heart Rhythm 11(10), 1808–1818 (2014).
[Crossref] [PubMed]

Jalife, J.

T. J. Herron, P. Lee, and J. Jalife, “Optical Imaging of Voltage and Calcium in Cardiac Cells & Tissues,” Circ. Res. 110(4), 609–623 (2012).
[Crossref] [PubMed]

Jang, M. Y.

J. S. Leyton-Mange, R. W. Mills, V. S. Macri, M. Y. Jang, F. N. Butte, P. T. Ellinor, and D. J. Milan, “Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor,” Stem Cell Rep. 2(2), 163–170 (2014).
[Crossref] [PubMed]

Jang, S.

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

January, C. T.

J. Ma, L. Guo, S. J. Fiene, B. D. Anson, J. A. Thomson, T. J. Kamp, K. L. Kolaja, B. J. Swanson, and C. T. January, “High purity human induced pluripotent stem cell (hiPSC) derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents,” Am. J. Physiol. 301, 2006 (2011).

Javidi, B.

Ji, M.

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

Judge, L. M.

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Kamp, T. J.

J. Ma, L. Guo, S. J. Fiene, B. D. Anson, J. A. Thomson, T. J. Kamp, K. L. Kolaja, B. J. Swanson, and C. T. January, “High purity human induced pluripotent stem cell (hiPSC) derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents,” Am. J. Physiol. 301, 2006 (2011).

Kanda, Y.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Kastl, L.

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry A 91(5), 470–481 (2017).
[Crossref] [PubMed]

Kemper, B.

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry A 91(5), 470–481 (2017).
[Crossref] [PubMed]

Kettenhofen, R.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Kim, K.

S. A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[Crossref] [PubMed]

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

Kim, T.

Kirsch, G. E.

S. Peng, A. E. Lacerda, G. E. Kirsch, A. M. Brown, and A. Bruening-Wright, “The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes,” J. Pharmacol. Toxicol. Methods 61(3), 277–286 (2010).
[Crossref] [PubMed]

Kiviaho, A. L.

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

Kobayashi, S.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Kolaja, K. L.

J. Ma, L. Guo, S. J. Fiene, B. D. Anson, J. A. Thomson, T. J. Kamp, K. L. Kolaja, B. J. Swanson, and C. T. January, “High purity human induced pluripotent stem cell (hiPSC) derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents,” Am. J. Physiol. 301, 2006 (2011).

Kolossov, E.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Kunihiro, T.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Kurokawa, J.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Lacerda, A. E.

S. Peng, A. E. Lacerda, G. E. Kirsch, A. M. Brown, and A. Bruening-Wright, “The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes,” J. Pharmacol. Toxicol. Methods 61(3), 277–286 (2010).
[Crossref] [PubMed]

Lan, F.

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Larsson, K.

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

Lee, A. S.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Lee, P.

T. J. Herron, P. Lee, and J. Jalife, “Optical Imaging of Voltage and Calcium in Cardiac Cells & Tissues,” Circ. Res. 110(4), 609–623 (2012).
[Crossref] [PubMed]

Lee, S.

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

Leyton-Mange, J. S.

J. S. Leyton-Mange, R. W. Mills, V. S. Macri, M. Y. Jang, F. N. Butte, P. T. Ellinor, and D. J. Milan, “Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor,” Stem Cell Rep. 2(2), 163–170 (2014).
[Crossref] [PubMed]

Li, N.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Liang, P.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Lieu, D. K.

S. Yechikov, R. Copaciu, J. M. Gluck, W. Deng, N. Chiamvimonvat, J. W. Chan, and D. K. Lieu, “Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology,” Stem Cells 34(11), 2670–2680 (2016).
[Crossref] [PubMed]

Lin, Z. C.

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

Loewke, K. E.

M. Maddah, J. D. Heidmann, M. A. Mandegar, C. D. Walker, S. Bolouki, B. R. Conklin, and K. E. Loewke, “A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing,” Stem Cell Rep. 4(4), 621–631 (2015).
[Crossref] [PubMed]

Lorber, A.

M. Ben-Ari, R. Schick, L. Barad, A. Novak, E. Ben-Ari, A. Lorber, J. Itskovitz-Eldor, M. R. Rosen, A. Weissman, and O. Binah, “From beat rate variability in induced pluripotent stem cell-derived pacemaker cells to heart rate variability in human subjects,” Heart Rhythm 11(10), 1808–1818 (2014).
[Crossref] [PubMed]

Loskill, P.

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Lue, N.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[Crossref] [PubMed]

Ma, J.

J. Ma, L. Guo, S. J. Fiene, B. D. Anson, J. A. Thomson, T. J. Kamp, K. L. Kolaja, B. J. Swanson, and C. T. January, “High purity human induced pluripotent stem cell (hiPSC) derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents,” Am. J. Physiol. 301, 2006 (2011).

Ma, Z.

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Macri, V. S.

J. S. Leyton-Mange, R. W. Mills, V. S. Macri, M. Y. Jang, F. N. Butte, P. T. Ellinor, and D. J. Milan, “Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor,” Stem Cell Rep. 2(2), 163–170 (2014).
[Crossref] [PubMed]

Maddah, M.

M. Maddah, J. D. Heidmann, M. A. Mandegar, C. D. Walker, S. Bolouki, B. R. Conklin, and K. E. Loewke, “A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing,” Stem Cell Rep. 4(4), 621–631 (2015).
[Crossref] [PubMed]

Maizels, L.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters,” Stem Cell Rep. 5(4), 582–596 (2015).
[Crossref] [PubMed]

Mandegar, M. A.

M. Maddah, J. D. Heidmann, M. A. Mandegar, C. D. Walker, S. Bolouki, B. R. Conklin, and K. E. Loewke, “A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing,” Stem Cell Rep. 4(4), 621–631 (2015).
[Crossref] [PubMed]

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Marks, N. C.

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Marolt, D.

G. M. de Peppo and D. Marolt, “State of the Art in Stem Cell Research: Human Embryonic Stem Cells, Induced Pluripotent Stem Cells, and Transdifferentiation,” J. Blood Transfus. 2012, 317632 (2012).
[Crossref] [PubMed]

Marquet, P.

Mathur, A.

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Matsa, E.

I. Y. Chen, E. Matsa, and J. C. Wu, “Induced pluripotent stem cells: at the heart of cardiovascular precision medicine,” Nat. Rev. Cardiol. 13(6), 333–349 (2016).
[Crossref] [PubMed]

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

Matsui, E.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Milan, D. J.

J. S. Leyton-Mange, R. W. Mills, V. S. Macri, M. Y. Jang, F. N. Butte, P. T. Ellinor, and D. J. Milan, “Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor,” Stem Cell Rep. 2(2), 163–170 (2014).
[Crossref] [PubMed]

Mills, R. W.

J. S. Leyton-Mange, R. W. Mills, V. S. Macri, M. Y. Jang, F. N. Butte, P. T. Ellinor, and D. J. Milan, “Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor,” Stem Cell Rep. 2(2), 163–170 (2014).
[Crossref] [PubMed]

Mir, M.

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[Crossref] [PubMed]

Moon, I.

Mordwinkin, N. M.

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

Murry, C. E.

X. Yang, L. Pabon, and C. E. Murry, “Engineering Adolescence: Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes,” Circ. Res. 114(3), 511–523 (2014).
[Crossref] [PubMed]

Naor, S.

M. Ben-Ari, S. Naor, N. Zeevi-Levin, R. Schick, R. Ben Jehuda, I. Reiter, A. Raveh, I. Grijnevitch, O. Barak, M. R. Rosen, A. Weissman, and O. Binah, “Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes,” Heart Rhythm 13(12), 2379–2387 (2016).
[Crossref] [PubMed]

Navarrete, E. G.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Nguyen, T.

Nguyen, T. H.

Nguyen, T. N.

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Novak, A.

M. Ben-Ari, R. Schick, L. Barad, A. Novak, E. Ben-Ari, A. Lorber, J. Itskovitz-Eldor, M. R. Rosen, A. Weissman, and O. Binah, “From beat rate variability in induced pluripotent stem cell-derived pacemaker cells to heart rate variability in human subjects,” Heart Rhythm 11(10), 1808–1818 (2014).
[Crossref] [PubMed]

Ouyang, W.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Pabon, L.

X. Yang, L. Pabon, and C. E. Murry, “Engineering Adolescence: Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes,” Circ. Res. 114(3), 511–523 (2014).
[Crossref] [PubMed]

Park, H.

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

Park, Y.

S. A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[Crossref] [PubMed]

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[Crossref] [PubMed]

Patlolla, B.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Peng, S.

S. Peng, A. E. Lacerda, G. E. Kirsch, A. M. Brown, and A. Bruening-Wright, “The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes,” J. Pharmacol. Toxicol. Methods 61(3), 277–286 (2010).
[Crossref] [PubMed]

Peng, Z.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Pham, H.

Pham, H. V.

Plews, J. R.

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

Popescu, G.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. 6(1), 57–119 (2014).

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt. Express 22(5), 5133–5146 (2014).
[Crossref] [PubMed]

H. V. Pham, C. Edwards, L. L. Goddard, and G. Popescu, “Fast phase reconstruction in white light diffraction phase microscopy,” Appl. Opt. 52(1), A97–A101 (2013).
[Crossref] [PubMed]

B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PLoS One 8(2), e56930 (2013).
[Crossref] [PubMed]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[Crossref] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[Crossref] [PubMed]

Prasanth, S. G.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[Crossref] [PubMed]

Rappaz, B.

Raveh, A.

M. Ben-Ari, S. Naor, N. Zeevi-Levin, R. Schick, R. Ben Jehuda, I. Reiter, A. Raveh, I. Grijnevitch, O. Barak, M. R. Rosen, A. Weissman, and O. Binah, “Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes,” Heart Rhythm 13(12), 2379–2387 (2016).
[Crossref] [PubMed]

Reiter, I.

M. Ben-Ari, S. Naor, N. Zeevi-Levin, R. Schick, R. Ben Jehuda, I. Reiter, A. Raveh, I. Grijnevitch, O. Barak, M. R. Rosen, A. Weissman, and O. Binah, “Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes,” Heart Rhythm 13(12), 2379–2387 (2016).
[Crossref] [PubMed]

Robbins, R. C.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Roitshtain, D.

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Cytometry A 91(5), 482–493 (2017).
[Crossref] [PubMed]

Rosen, M. R.

M. Ben-Ari, S. Naor, N. Zeevi-Levin, R. Schick, R. Ben Jehuda, I. Reiter, A. Raveh, I. Grijnevitch, O. Barak, M. R. Rosen, A. Weissman, and O. Binah, “Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes,” Heart Rhythm 13(12), 2379–2387 (2016).
[Crossref] [PubMed]

M. Ben-Ari, R. Schick, L. Barad, A. Novak, E. Ben-Ari, A. Lorber, J. Itskovitz-Eldor, M. R. Rosen, A. Weissman, and O. Binah, “From beat rate variability in induced pluripotent stem cell-derived pacemaker cells to heart rate variability in human subjects,” Heart Rhythm 11(10), 1808–1818 (2014).
[Crossref] [PubMed]

Russell, C. R.

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Sanchez-Freire, V.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Satterwhite, L. L.

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Cytometry A 91(5), 482–493 (2017).
[Crossref] [PubMed]

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[Crossref] [PubMed]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
[Crossref] [PubMed]

Schick, R.

M. Ben-Ari, S. Naor, N. Zeevi-Levin, R. Schick, R. Ben Jehuda, I. Reiter, A. Raveh, I. Grijnevitch, O. Barak, M. R. Rosen, A. Weissman, and O. Binah, “Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes,” Heart Rhythm 13(12), 2379–2387 (2016).
[Crossref] [PubMed]

M. Ben-Ari, R. Schick, L. Barad, A. Novak, E. Ben-Ari, A. Lorber, J. Itskovitz-Eldor, M. R. Rosen, A. Weissman, and O. Binah, “From beat rate variability in induced pluripotent stem cell-derived pacemaker cells to heart rate variability in human subjects,” Heart Rhythm 11(10), 1808–1818 (2014).
[Crossref] [PubMed]

Schnekenburger, J.

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry A 91(5), 470–481 (2017).
[Crossref] [PubMed]

Seiler, A.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Shaheen, N.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters,” Stem Cell Rep. 5(4), 582–596 (2015).
[Crossref] [PubMed]

Shaked, N. T.

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Cytometry A 91(5), 482–493 (2017).
[Crossref] [PubMed]

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[Crossref] [PubMed]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
[Crossref] [PubMed]

Sharma, A.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Sheehan, A. S.

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Shen, Z.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[Crossref] [PubMed]

Shinnawi, R.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters,” Stem Cell Rep. 5(4), 582–596 (2015).
[Crossref] [PubMed]

Shukla, P.

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

Simmons, C.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Smedemark-Margulies, N.

N. Smedemark-Margulies and J. G. Trapani, “Tools, methods, and applications for optophysiology in neuroscience,” Front. Mol. Neurosci. 6, 18 (2013).
[Crossref] [PubMed]

So, P. L.

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Son, Y.

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

Spencer, C. I.

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Suresh, S.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Swanson, B. J.

J. Ma, L. Guo, S. J. Fiene, B. D. Anson, J. A. Thomson, T. J. Kamp, K. L. Kolaja, B. J. Swanson, and C. T. January, “High purity human induced pluripotent stem cell (hiPSC) derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents,” Am. J. Physiol. 301, 2006 (2011).

Telen, M. J.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[Crossref] [PubMed]

Thomson, J. A.

J. Ma, L. Guo, S. J. Fiene, B. D. Anson, J. A. Thomson, T. J. Kamp, K. L. Kolaja, B. J. Swanson, and C. T. January, “High purity human induced pluripotent stem cell (hiPSC) derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents,” Am. J. Physiol. 301, 2006 (2011).

Tijsen, A. J.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters,” Stem Cell Rep. 5(4), 582–596 (2015).
[Crossref] [PubMed]

Trapani, J. G.

N. Smedemark-Margulies and J. G. Trapani, “Tools, methods, and applications for optophysiology in neuroscience,” Front. Mol. Neurosci. 6, 18 (2013).
[Crossref] [PubMed]

Truskey, G. A.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[Crossref] [PubMed]

Turcatti, G.

van den Engh, G.

G. van den Engh and J. Visser, “Light Scattering Properties of Pluripotent and Committed Haemopoietic Stem Cells,” AHA 62, 289–298 (2008).

Visser, J.

G. van den Engh and J. Visser, “Light Scattering Properties of Pluripotent and Committed Haemopoietic Stem Cells,” AHA 62, 289–298 (2008).

Walker, C. D.

M. Maddah, J. D. Heidmann, M. A. Mandegar, C. D. Walker, S. Bolouki, B. R. Conklin, and K. E. Loewke, “A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing,” Stem Cell Rep. 4(4), 621–631 (2015).
[Crossref] [PubMed]

Wang, R.

B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PLoS One 8(2), e56930 (2013).
[Crossref] [PubMed]

Wang, X.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Wang, Z.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[Crossref] [PubMed]

Watzele, M.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Wax, A.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[Crossref] [PubMed]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
[Crossref] [PubMed]

Weissman, A.

M. Ben-Ari, S. Naor, N. Zeevi-Levin, R. Schick, R. Ben Jehuda, I. Reiter, A. Raveh, I. Grijnevitch, O. Barak, M. R. Rosen, A. Weissman, and O. Binah, “Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes,” Heart Rhythm 13(12), 2379–2387 (2016).
[Crossref] [PubMed]

M. Ben-Ari, R. Schick, L. Barad, A. Novak, E. Ben-Ari, A. Lorber, J. Itskovitz-Eldor, M. R. Rosen, A. Weissman, and O. Binah, “From beat rate variability in induced pluripotent stem cell-derived pacemaker cells to heart rate variability in human subjects,” Heart Rhythm 11(10), 1808–1818 (2014).
[Crossref] [PubMed]

Wickland, D.

B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PLoS One 8(2), e56930 (2013).
[Crossref] [PubMed]

Wolbromsky, L.

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Cytometry A 91(5), 482–493 (2017).
[Crossref] [PubMed]

Wu, H.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Wu, J. C.

I. Y. Chen, E. Matsa, and J. C. Wu, “Induced pluripotent stem cells: at the heart of cardiovascular precision medicine,” Nat. Rev. Cardiol. 13(6), 333–349 (2016).
[Crossref] [PubMed]

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Wu, S. M.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Xi, B.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Xu, X.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Yada, H.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Yang, S. A.

S. A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[Crossref] [PubMed]

Yang, X.

X. Yang, L. Pabon, and C. E. Murry, “Engineering Adolescence: Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes,” Circ. Res. 114(3), 511–523 (2014).
[Crossref] [PubMed]

Yechikov, S.

S. Yechikov, R. Copaciu, J. M. Gluck, W. Deng, N. Chiamvimonvat, J. W. Chan, and D. K. Lieu, “Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology,” Stem Cells 34(11), 2670–2680 (2016).
[Crossref] [PubMed]

Yi, F.

Yoo, J. C.

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Yoon, J.

S. A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[Crossref] [PubMed]

Zeevi-Levin, N.

M. Ben-Ari, S. Naor, N. Zeevi-Levin, R. Schick, R. Ben Jehuda, I. Reiter, A. Raveh, I. Grijnevitch, O. Barak, M. R. Rosen, A. Weissman, and O. Binah, “Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes,” Heart Rhythm 13(12), 2379–2387 (2016).
[Crossref] [PubMed]

Zernike, F.

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
[Crossref]

Zhou, R.

Acta Biomater. (1)

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

AHA (1)

G. van den Engh and J. Visser, “Light Scattering Properties of Pluripotent and Committed Haemopoietic Stem Cells,” AHA 62, 289–298 (2008).

Am. J. Physiol. (1)

J. Ma, L. Guo, S. J. Fiene, B. D. Anson, J. A. Thomson, T. J. Kamp, K. L. Kolaja, B. J. Swanson, and C. T. January, “High purity human induced pluripotent stem cell (hiPSC) derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents,” Am. J. Physiol. 301, 2006 (2011).

Am. J. Physiol. Cell Physiol. (1)

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Eng. Online (1)

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Br. J. Pharmacol. (1)

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Circ. Res. (2)

T. J. Herron, P. Lee, and J. Jalife, “Optical Imaging of Voltage and Calcium in Cardiac Cells & Tissues,” Circ. Res. 110(4), 609–623 (2012).
[Crossref] [PubMed]

X. Yang, L. Pabon, and C. E. Murry, “Engineering Adolescence: Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes,” Circ. Res. 114(3), 511–523 (2014).
[Crossref] [PubMed]

Circulation (1)

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening Drug-Induced Arrhythmia [corrected] Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays,” Circulation 128(11Suppl 1), S3–S13 (2013).
[Crossref] [PubMed]

Cytometry A (3)

D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T. Shaked, “Quantitative phase microscopy spatial signatures of cancer cells,” Cytometry A 91(5), 482–493 (2017).
[Crossref] [PubMed]

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry A 91(5), 470–481 (2017).
[Crossref] [PubMed]

S. A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[Crossref] [PubMed]

Front. Mol. Neurosci. (1)

N. Smedemark-Margulies and J. G. Trapani, “Tools, methods, and applications for optophysiology in neuroscience,” Front. Mol. Neurosci. 6, 18 (2013).
[Crossref] [PubMed]

Heart Rhythm (2)

M. Ben-Ari, S. Naor, N. Zeevi-Levin, R. Schick, R. Ben Jehuda, I. Reiter, A. Raveh, I. Grijnevitch, O. Barak, M. R. Rosen, A. Weissman, and O. Binah, “Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes,” Heart Rhythm 13(12), 2379–2387 (2016).
[Crossref] [PubMed]

M. Ben-Ari, R. Schick, L. Barad, A. Novak, E. Ben-Ari, A. Lorber, J. Itskovitz-Eldor, M. R. Rosen, A. Weissman, and O. Binah, “From beat rate variability in induced pluripotent stem cell-derived pacemaker cells to heart rate variability in human subjects,” Heart Rhythm 11(10), 1808–1818 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[Crossref] [PubMed]

J. Blood Transfus. (1)

G. M. de Peppo and D. Marolt, “State of the Art in Stem Cell Research: Human Embryonic Stem Cells, Induced Pluripotent Stem Cells, and Transdifferentiation,” J. Blood Transfus. 2012, 317632 (2012).
[Crossref] [PubMed]

J. Mol. Cell. Cardiol. (1)

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

J. Pharmacol. Toxicol. Methods (1)

S. Peng, A. E. Lacerda, G. E. Kirsch, A. M. Brown, and A. Bruening-Wright, “The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes,” J. Pharmacol. Toxicol. Methods 61(3), 277–286 (2010).
[Crossref] [PubMed]

Nat. Methods (1)

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu, “Chemically defined generation of human cardiomyocytes,” Nat. Methods 11(8), 855–860 (2014).
[Crossref] [PubMed]

Nat. Rev. Cardiol. (1)

I. Y. Chen, E. Matsa, and J. C. Wu, “Induced pluripotent stem cells: at the heart of cardiovascular precision medicine,” Nat. Rev. Cardiol. 13(6), 333–349 (2016).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Physica (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
[Crossref]

PLoS One (1)

B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PLoS One 8(2), e56930 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

Stem Cell Rep. (3)

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters,” Stem Cell Rep. 5(4), 582–596 (2015).
[Crossref] [PubMed]

J. S. Leyton-Mange, R. W. Mills, V. S. Macri, M. Y. Jang, F. N. Butte, P. T. Ellinor, and D. J. Milan, “Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor,” Stem Cell Rep. 2(2), 163–170 (2014).
[Crossref] [PubMed]

M. Maddah, J. D. Heidmann, M. A. Mandegar, C. D. Walker, S. Bolouki, B. R. Conklin, and K. E. Loewke, “A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing,” Stem Cell Rep. 4(4), 621–631 (2015).
[Crossref] [PubMed]

Stem Cells (1)

S. Yechikov, R. Copaciu, J. M. Gluck, W. Deng, N. Chiamvimonvat, J. W. Chan, and D. K. Lieu, “Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology,” Stem Cells 34(11), 2670–2680 (2016).
[Crossref] [PubMed]

Tissue Eng. Part C Methods (1)

N. Huebsch, P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, C. I. Spencer, A. C. Chukka, C. R. Russell, P. L. So, B. R. Conklin, and K. E. Healy, “Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales,” Tissue Eng. Part C Methods 21(5), 467–479 (2015).
[Crossref] [PubMed]

Other (3)

V. L. Calin, M. Mihailescu, E. I. Scarlat, A. V. Baluta, D. Calin, E. Kovacs, T. Savopol, and M. G. Moisescu, “Evaluation of the metastatic potential of malignant cells by image processing of digital holographic microscopy data,” FEBS Open Bio (2017).

D. Dussault and P. Hoess, “Noise performance comparison of ICCD with CCD and EMCCD cameras”, in Optical Science and Technology, the SPIE 49th Annual Meeting, (International Society for Optics and Photonics, 2004), pp. 195–204.
[Crossref]

A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes (Tata McGraw-Hill Education, 2002).

Supplementary Material (2)

NameDescription
» Visualization 1       Time-series of quantitative phase images showing a contracting cardiomyocyte at 50 fps. These images were acquired using diffraction phase microscopy. The colormap shows optical path difference measured between the cell and surrounding medium.
» Visualization 2       Time-series showing the change in optical thickness of a cardiomyocyte during beating

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 a) Diffraction Phase Microscopy Setup. b) Raw image of one cell. Inset 1) Zoom illustrating bending of the diffraction fringes at the cell edge. Inset 2) Zoom illustrating dust or imperfections on the grating. c) Calculated OPD image of an hPSC-CM.
Fig. 2
Fig. 2 a) Spatial distribution of noise in one frame. b) Histogram of the phase in pixels from a), with standard deviation noted. c) Spatial distribution of noise in one frame after spatial averaging over 173x173 pixels. d) Histogram of the phase in pixels from c), with standard deviation noted.
Fig. 3
Fig. 3 a) Phase image of a cell with outlined boundaries. b) Maximum changes in phase during the beating cycle.
Fig. 4
Fig. 4 a) Phase rate of change calculated from the time-dependent data in Fig. 3. b) Characteristic beat cycle of cell in a). c) Example of the phase rate of change data from another cell, showing variation between cells.
Fig. 5
Fig. 5 Distributions of selected characteristic cycle parameters in population of cells. a) Duty cycle. b) Peak separation time.
Fig. 6
Fig. 6 a) Histogram of the average frequency for 90 cells. b) Histogram of BRI for 90 cells. c) Example of irregularly beating cell representing higher end of the BRI spectrum.
Fig. 7
Fig. 7 The area (a) and optical phase volume (b) in a population of cells.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ( x,y )= 2π λ 0 h ( n 1 ( x,y,z ) n 0 )dz
ϕ( x,y )= 2π λ ( n 1 ( x,y ) n 0 )h( x,y )
Δh(x,y)= λΔϕ(x,y) 2π( n 1 (x,y) n 0 )
dϕ( x,y ) dt = ( ϕ +1 ( x,y ) ϕ 1 ( x,y ) ) 2 ×r

Metrics