Abstract

Photothermal OCT (PT-OCT) is an emerging molecular imaging technique that occupies a spatial imaging regime between microscopy and whole body imaging. PT-OCT would benefit from a theoretical model to optimize imaging parameters and test image processing algorithms. We propose the first analytical PT-OCT model to replicate an experimental A-scan in homogeneous and layered samples. We also propose the PT-CLEAN algorithm to reduce phase-accumulation and shadowing, two artifacts found in PT-OCT images, and demonstrate it on phantoms and in vivo mouse tumors.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo photothermal optical coherence tomography of gold nanorod contrast agents

J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala
Biomed. Opt. Express 3(11) 2881-2895 (2012)

Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography

K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer
Biomed. Opt. Express 5(1) 322-337 (2014)

In vivo imaging of nanoparticle delivery and tumor microvasculature with multimodal optical coherence tomography

Jason M. Tucker-Schwartz, Kelsey R. Beavers, Wesley W. Sit, Amy T. Shah, Craig L. Duvall, and Melissa C. Skala
Biomed. Opt. Express 5(6) 1731-1743 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Conway, N. O. Carragher, and P. Timpson, “Developments in preclinical cancer imaging: innovating the discovery of therapeutics,” Nat. Rev. Cancer 14(5), 314–328 (2014).
    [Crossref] [PubMed]
  2. M. L. James and S. S. Gambhir, “A molecular imaging primer: modalities, imaging agents, and applications,” Physiol. Rev. 92(2), 897–965 (2012).
    [Crossref] [PubMed]
  3. C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen, D. Lee, R. Sze, R. G. Ellenbogen, J. Olson, and M. Zhang, “In vivo MRI detection of gliomas by chlorotoxin-Conjugated superparamagnetic nanoprobes,” Small 4(3), 372–379 (2008).
    [Crossref] [PubMed]
  4. J. Li, A. Chaudhary, S. J. Chmura, C. Pelizzari, T. Rajh, C. Wietholt, M. Kurtoglu, and B. Aydogan, “A novel functional CT contrast agent for molecular imaging of cancer,” Phys. Med. Biol. 55(15), 4389–4397 (2010).
    [Crossref] [PubMed]
  5. N. Beziere, N. Lozano, A. Nunes, J. Salichs, D. Queiros, K. Kostarelos, and V. Ntziachristos, “Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT),” Biomaterials 37, 415–424 (2015).
    [Crossref] [PubMed]
  6. J. K. Willmann, R. Paulmurugan, K. Chen, O. Gheysens, M. Rodriguez-Porcel, A. M. Lutz, I. Y. Chen, X. Chen, and S. S. Gambhir, “US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice,” Radiology 246(2), 508–518 (2008).
    [Crossref] [PubMed]
  7. J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
    [Crossref] [PubMed]
  8. C. E. Nelson, A. J. Kim, E. J. Adolph, M. K. Gupta, F. Yu, K. M. Hocking, J. M. Davidson, S. A. Guelcher, and C. L. Duvall, “Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo,” Adv. Mater. 26(4), 607–614 (2014).
    [Crossref] [PubMed]
  9. A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
    [Crossref] [PubMed]
  10. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
    [Crossref] [PubMed]
  11. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
    [Crossref] [PubMed]
  12. J. M. Tucker-Schwartz, K. R. Beavers, W. W. Sit, A. T. Shah, C. L. Duvall, and M. C. Skala, “In vivo imaging of nanoparticle delivery and tumor microvasculature with multimodal optical coherence tomography,” Biomed. Opt. Express 5(6), 1731–1743 (2014).
    [Crossref] [PubMed]
  13. C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35(5), 700–702 (2010).
    [Crossref] [PubMed]
  14. J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3(11), 2881–2895 (2012).
    [Crossref] [PubMed]
  15. A. Nahas, M. Varna, E. Fort, and A. C. Boccara, “Detection of plasmonic nanoparticles with full field-OCT: optical and photothermal detection,” Biomed. Opt. Express 5(10), 3541–3546 (2014).
    [Crossref] [PubMed]
  16. Y. Jung, R. Reif, Y. Zeng, and R. K. Wang, “Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes,” Nano Lett. 11(7), 2938–2943 (2011).
    [Crossref] [PubMed]
  17. P. Xiao, Q. Li, Y. Joo, J. Nam, S. Hwang, J. Song, S. Kim, C. Joo, and K. H. Kim, “Detection of pH-induced aggregation of “smart” gold nanoparticles with photothermal optical coherence tomography,” Opt. Lett. 38(21), 4429–4432 (2013).
    [Crossref] [PubMed]
  18. J. M. Tucker-Schwartz, T. Hong, D. C. Colvin, Y. Xu, and M. C. Skala, “Dual-modality photothermal optical coherence tomography and magnetic-resonance imaging of carbon nanotubes,” Opt. Lett. 37(5), 872–874 (2012).
    [Crossref] [PubMed]
  19. H. M. Subhash, H. Xie, J. W. Smith, and O. J. McCarty, “Optical detection of indocyanine green encapsulated biocompatible poly (lactic-co-glycolic) acid nanoparticles with photothermal optical coherence tomography,” Opt. Lett. 37(5), 981–983 (2012).
    [Crossref] [PubMed]
  20. J. M. Tucker-Schwartz, M. Lapierre-Landry, C. A. Patil, and M. C. Skala, “Photothermal optical lock-in optical coherence tomography for in vivo imaging,” Biomed. Opt. Express 6(6), 2268–2282 (2015).
    [Crossref] [PubMed]
  21. R. V. Kuranov, J. Qiu, A. B. McElroy, A. Estrada, A. Salvaggio, J. Kiel, A. K. Dunn, T. Q. Duong, and T. E. Milner, “Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography,” Biomed. Opt. Express 2(3), 491–504 (2011).
    [Crossref] [PubMed]
  22. J. Yim, H. Kim, S. Ryu, S. Song, H. O. Kim, K. A. Hyun, H. I. Jung, and C. Joo, “Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes,” Biosens. Bioelectron. 57, 59–64 (2014).
    [Crossref] [PubMed]
  23. G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16(12), 126003 (2011).
    [Crossref] [PubMed]
  24. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
    [Crossref] [PubMed]
  25. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
    [Crossref] [PubMed]
  26. D. Piao, Q. Zhu, N. K. Dutta, S. Yan, and L. L. Otis, “Cancellation of coherent artifacts in optical coherence tomography imaging,” Appl. Opt. 40(28), 5124–5131 (2001).
    [Crossref] [PubMed]
  27. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  28. S. Jacques, “Monte Carlo Simulatons, “(Oregon Medical Laser Center, 2007), http://omlc.org/software/mc/ .
  29. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle,” J. Opt. Soc. Am. A 17(3), 484–490 (2000).
    [Crossref] [PubMed]
  30. J. A. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astron. Astrophys. Suppl. Ser. 15, 417 (1974).
  31. J. Tsao and B. D. Steinberg, “Reduction of sidelobe and speckle artifacts in microwave imaging,” IEEE Trans. Antennas Propagation 36(4), 543–556 (1988).
    [Crossref]
  32. J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3(1), 66–75 (1998).
    [Crossref] [PubMed]
  33. A. Oldenburg, F. Toublan, K. Suslick, A. Wei, and S. Boppart, “Magnetomotive contrast agent for in vivo coherence optical tomography,” Opt. Express 13, 6597–6614 (2005).
    [Crossref] [PubMed]
  34. T. van Kampen, “Optical properties of hair”, Masters project, (1997)
  35. M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
    [PubMed]
  36. “Techical Data Sheet, QSil 216,” (Quantum Silicones Inc., 2012) http://www.quantumsilicones.com/2012/02/qsil-216/
  37. G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of thermal transport in one-dimensional solid materials,” J. Vis. Exp. 83(83), e51144 (2014).
    [PubMed]
  38. A. Norris, J. DeGroot, Jr., F. Nishida, U. Pernisz, N. Kushibiki, and T. Ogawa, “Silicone Materials for Optical Applications,” (Dow Corning, 2003), http://www.dowcorning.com.cn/zh_CN/content/publishedlit/75-1007-01_single.pdf
  39. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
    [Crossref] [PubMed]

2015 (2)

N. Beziere, N. Lozano, A. Nunes, J. Salichs, D. Queiros, K. Kostarelos, and V. Ntziachristos, “Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT),” Biomaterials 37, 415–424 (2015).
[Crossref] [PubMed]

J. M. Tucker-Schwartz, M. Lapierre-Landry, C. A. Patil, and M. C. Skala, “Photothermal optical lock-in optical coherence tomography for in vivo imaging,” Biomed. Opt. Express 6(6), 2268–2282 (2015).
[Crossref] [PubMed]

2014 (6)

J. M. Tucker-Schwartz, K. R. Beavers, W. W. Sit, A. T. Shah, C. L. Duvall, and M. C. Skala, “In vivo imaging of nanoparticle delivery and tumor microvasculature with multimodal optical coherence tomography,” Biomed. Opt. Express 5(6), 1731–1743 (2014).
[Crossref] [PubMed]

A. Nahas, M. Varna, E. Fort, and A. C. Boccara, “Detection of plasmonic nanoparticles with full field-OCT: optical and photothermal detection,” Biomed. Opt. Express 5(10), 3541–3546 (2014).
[Crossref] [PubMed]

J. R. Conway, N. O. Carragher, and P. Timpson, “Developments in preclinical cancer imaging: innovating the discovery of therapeutics,” Nat. Rev. Cancer 14(5), 314–328 (2014).
[Crossref] [PubMed]

C. E. Nelson, A. J. Kim, E. J. Adolph, M. K. Gupta, F. Yu, K. M. Hocking, J. M. Davidson, S. A. Guelcher, and C. L. Duvall, “Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo,” Adv. Mater. 26(4), 607–614 (2014).
[Crossref] [PubMed]

J. Yim, H. Kim, S. Ryu, S. Song, H. O. Kim, K. A. Hyun, H. I. Jung, and C. Joo, “Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes,” Biosens. Bioelectron. 57, 59–64 (2014).
[Crossref] [PubMed]

G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of thermal transport in one-dimensional solid materials,” J. Vis. Exp. 83(83), e51144 (2014).
[PubMed]

2013 (2)

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

P. Xiao, Q. Li, Y. Joo, J. Nam, S. Hwang, J. Song, S. Kim, C. Joo, and K. H. Kim, “Detection of pH-induced aggregation of “smart” gold nanoparticles with photothermal optical coherence tomography,” Opt. Lett. 38(21), 4429–4432 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (3)

Y. Jung, R. Reif, Y. Zeng, and R. K. Wang, “Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes,” Nano Lett. 11(7), 2938–2943 (2011).
[Crossref] [PubMed]

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16(12), 126003 (2011).
[Crossref] [PubMed]

R. V. Kuranov, J. Qiu, A. B. McElroy, A. Estrada, A. Salvaggio, J. Kiel, A. K. Dunn, T. Q. Duong, and T. E. Milner, “Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography,” Biomed. Opt. Express 2(3), 491–504 (2011).
[Crossref] [PubMed]

2010 (2)

C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35(5), 700–702 (2010).
[Crossref] [PubMed]

J. Li, A. Chaudhary, S. J. Chmura, C. Pelizzari, T. Rajh, C. Wietholt, M. Kurtoglu, and B. Aydogan, “A novel functional CT contrast agent for molecular imaging of cancer,” Phys. Med. Biol. 55(15), 4389–4397 (2010).
[Crossref] [PubMed]

2008 (4)

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen, D. Lee, R. Sze, R. G. Ellenbogen, J. Olson, and M. Zhang, “In vivo MRI detection of gliomas by chlorotoxin-Conjugated superparamagnetic nanoprobes,” Small 4(3), 372–379 (2008).
[Crossref] [PubMed]

J. K. Willmann, R. Paulmurugan, K. Chen, O. Gheysens, M. Rodriguez-Porcel, A. M. Lutz, I. Y. Chen, X. Chen, and S. S. Gambhir, “US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice,” Radiology 246(2), 508–518 (2008).
[Crossref] [PubMed]

D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
[Crossref] [PubMed]

2006 (2)

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
[Crossref] [PubMed]

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

2005 (2)

2001 (1)

2000 (1)

1998 (1)

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3(1), 66–75 (1998).
[Crossref] [PubMed]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1994 (1)

1988 (1)

J. Tsao and B. D. Steinberg, “Reduction of sidelobe and speckle artifacts in microwave imaging,” IEEE Trans. Antennas Propagation 36(4), 543–556 (1988).
[Crossref]

1976 (1)

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[PubMed]

1974 (1)

J. A. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astron. Astrophys. Suppl. Ser. 15, 417 (1974).

Adler, D. C.

Adolph, E. J.

C. E. Nelson, A. J. Kim, E. J. Adolph, M. K. Gupta, F. Yu, K. M. Hocking, J. M. Davidson, S. A. Guelcher, and C. L. Duvall, “Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo,” Adv. Mater. 26(4), 607–614 (2014).
[Crossref] [PubMed]

Andersen, P. E.

Arteaga, C. L.

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Aydogan, B.

J. Li, A. Chaudhary, S. J. Chmura, C. Pelizzari, T. Rajh, C. Wietholt, M. Kurtoglu, and B. Aydogan, “A novel functional CT contrast agent for molecular imaging of cancer,” Phys. Med. Biol. 55(15), 4389–4397 (2010).
[Crossref] [PubMed]

Beavers, K. R.

Bergler, K.

G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of thermal transport in one-dimensional solid materials,” J. Vis. Exp. 83(83), e51144 (2014).
[PubMed]

Beziere, N.

N. Beziere, N. Lozano, A. Nunes, J. Salichs, D. Queiros, K. Kostarelos, and V. Ntziachristos, “Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT),” Biomaterials 37, 415–424 (2015).
[Crossref] [PubMed]

Boccara, A. C.

Boppart, S.

Boppart, S. A.

Carragher, N. O.

J. R. Conway, N. O. Carragher, and P. Timpson, “Developments in preclinical cancer imaging: innovating the discovery of therapeutics,” Nat. Rev. Cancer 14(5), 314–328 (2014).
[Crossref] [PubMed]

Chaudhary, A.

J. Li, A. Chaudhary, S. J. Chmura, C. Pelizzari, T. Rajh, C. Wietholt, M. Kurtoglu, and B. Aydogan, “A novel functional CT contrast agent for molecular imaging of cancer,” Phys. Med. Biol. 55(15), 4389–4397 (2010).
[Crossref] [PubMed]

Chen, I. Y.

J. K. Willmann, R. Paulmurugan, K. Chen, O. Gheysens, M. Rodriguez-Porcel, A. M. Lutz, I. Y. Chen, X. Chen, and S. S. Gambhir, “US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice,” Radiology 246(2), 508–518 (2008).
[Crossref] [PubMed]

Chen, K.

J. K. Willmann, R. Paulmurugan, K. Chen, O. Gheysens, M. Rodriguez-Porcel, A. M. Lutz, I. Y. Chen, X. Chen, and S. S. Gambhir, “US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice,” Radiology 246(2), 508–518 (2008).
[Crossref] [PubMed]

Chen, X.

J. K. Willmann, R. Paulmurugan, K. Chen, O. Gheysens, M. Rodriguez-Porcel, A. M. Lutz, I. Y. Chen, X. Chen, and S. S. Gambhir, “US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice,” Radiology 246(2), 508–518 (2008).
[Crossref] [PubMed]

Chmura, S. J.

J. Li, A. Chaudhary, S. J. Chmura, C. Pelizzari, T. Rajh, C. Wietholt, M. Kurtoglu, and B. Aydogan, “A novel functional CT contrast agent for molecular imaging of cancer,” Phys. Med. Biol. 55(15), 4389–4397 (2010).
[Crossref] [PubMed]

Choma, M. A.

Cohen, D. W.

Colvin, D. C.

Condit, C.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Connolly, J. L.

Conway, J. R.

J. R. Conway, N. O. Carragher, and P. Timpson, “Developments in preclinical cancer imaging: innovating the discovery of therapeutics,” Nat. Rev. Cancer 14(5), 314–328 (2014).
[Crossref] [PubMed]

Cook, R. S.

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Creazzo, T. L.

Crow, M. J.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Davidson, J. M.

C. E. Nelson, A. J. Kim, E. J. Adolph, M. K. Gupta, F. Yu, K. M. Hocking, J. M. Davidson, S. A. Guelcher, and C. L. Duvall, “Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo,” Adv. Mater. 26(4), 607–614 (2014).
[Crossref] [PubMed]

Dunn, A. K.

Duong, T. Q.

Dutta, N. K.

Duvall, C. L.

Ellenbogen, R. G.

C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen, D. Lee, R. Sze, R. G. Ellenbogen, J. Olson, and M. Zhang, “In vivo MRI detection of gliomas by chlorotoxin-Conjugated superparamagnetic nanoprobes,” Small 4(3), 372–379 (2008).
[Crossref] [PubMed]

Ellerbee, A. K.

Emelianov, S.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Estrada, A.

Fang, C.

C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen, D. Lee, R. Sze, R. G. Ellenbogen, J. Olson, and M. Zhang, “In vivo MRI detection of gliomas by chlorotoxin-Conjugated superparamagnetic nanoprobes,” Small 4(3), 372–379 (2008).
[Crossref] [PubMed]

Feldman, M. D.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Fort, E.

Fujimoto, J. G.

Gambhir, S. S.

M. L. James and S. S. Gambhir, “A molecular imaging primer: modalities, imaging agents, and applications,” Physiol. Rev. 92(2), 897–965 (2012).
[Crossref] [PubMed]

J. K. Willmann, R. Paulmurugan, K. Chen, O. Gheysens, M. Rodriguez-Porcel, A. M. Lutz, I. Y. Chen, X. Chen, and S. S. Gambhir, “US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice,” Radiology 246(2), 508–518 (2008).
[Crossref] [PubMed]

Gheysens, O.

J. K. Willmann, R. Paulmurugan, K. Chen, O. Gheysens, M. Rodriguez-Porcel, A. M. Lutz, I. Y. Chen, X. Chen, and S. S. Gambhir, “US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice,” Radiology 246(2), 508–518 (2008).
[Crossref] [PubMed]

Guan, G.

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16(12), 126003 (2011).
[Crossref] [PubMed]

Guelcher, S. A.

C. E. Nelson, A. J. Kim, E. J. Adolph, M. K. Gupta, F. Yu, K. M. Hocking, J. M. Davidson, S. A. Guelcher, and C. L. Duvall, “Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo,” Adv. Mater. 26(4), 607–614 (2014).
[Crossref] [PubMed]

Gunn, J.

C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen, D. Lee, R. Sze, R. G. Ellenbogen, J. Olson, and M. Zhang, “In vivo MRI detection of gliomas by chlorotoxin-Conjugated superparamagnetic nanoprobes,” Small 4(3), 372–379 (2008).
[Crossref] [PubMed]

Gupta, M. K.

C. E. Nelson, A. J. Kim, E. J. Adolph, M. K. Gupta, F. Yu, K. M. Hocking, J. M. Davidson, S. A. Guelcher, and C. L. Duvall, “Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo,” Adv. Mater. 26(4), 607–614 (2014).
[Crossref] [PubMed]

Hansen, M. N.

Hansen, S.

C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen, D. Lee, R. Sze, R. G. Ellenbogen, J. Olson, and M. Zhang, “In vivo MRI detection of gliomas by chlorotoxin-Conjugated superparamagnetic nanoprobes,” Small 4(3), 372–379 (2008).
[Crossref] [PubMed]

Hee, M. R.

Hicks, D. J.

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Hocking, K. M.

C. E. Nelson, A. J. Kim, E. J. Adolph, M. K. Gupta, F. Yu, K. M. Hocking, J. M. Davidson, S. A. Guelcher, and C. L. Duvall, “Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo,” Adv. Mater. 26(4), 607–614 (2014).
[Crossref] [PubMed]

Högbom, J. A.

J. A. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astron. Astrophys. Suppl. Ser. 15, 417 (1974).

Hong, T.

Huang, S. W.

Huang, Z.

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16(12), 126003 (2011).
[Crossref] [PubMed]

Huber, R.

Hwang, S.

Hyun, K. A.

J. Yim, H. Kim, S. Ryu, S. Song, H. O. Kim, K. A. Hyun, H. I. Jung, and C. Joo, “Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes,” Biosens. Bioelectron. 57, 59–64 (2014).
[Crossref] [PubMed]

Izatt, J. A.

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

James, M. L.

M. L. James and S. S. Gambhir, “A molecular imaging primer: modalities, imaging agents, and applications,” Physiol. Rev. 92(2), 897–965 (2012).
[Crossref] [PubMed]

Joo, C.

J. Yim, H. Kim, S. Ryu, S. Song, H. O. Kim, K. A. Hyun, H. I. Jung, and C. Joo, “Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes,” Biosens. Bioelectron. 57, 59–64 (2014).
[Crossref] [PubMed]

P. Xiao, Q. Li, Y. Joo, J. Nam, S. Hwang, J. Song, S. Kim, C. Joo, and K. H. Kim, “Detection of pH-induced aggregation of “smart” gold nanoparticles with photothermal optical coherence tomography,” Opt. Lett. 38(21), 4429–4432 (2013).
[Crossref] [PubMed]

Joo, Y.

Jung, H. I.

J. Yim, H. Kim, S. Ryu, S. Song, H. O. Kim, K. A. Hyun, H. I. Jung, and C. Joo, “Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes,” Biosens. Bioelectron. 57, 59–64 (2014).
[Crossref] [PubMed]

Jung, Y.

Y. Jung, R. Reif, Y. Zeng, and R. K. Wang, “Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes,” Nano Lett. 11(7), 2938–2943 (2011).
[Crossref] [PubMed]

Kiel, J.

Kim, A. J.

C. E. Nelson, A. J. Kim, E. J. Adolph, M. K. Gupta, F. Yu, K. M. Hocking, J. M. Davidson, S. A. Guelcher, and C. L. Duvall, “Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo,” Adv. Mater. 26(4), 607–614 (2014).
[Crossref] [PubMed]

Kim, H.

J. Yim, H. Kim, S. Ryu, S. Song, H. O. Kim, K. A. Hyun, H. I. Jung, and C. Joo, “Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes,” Biosens. Bioelectron. 57, 59–64 (2014).
[Crossref] [PubMed]

Kim, H. O.

J. Yim, H. Kim, S. Ryu, S. Song, H. O. Kim, K. A. Hyun, H. I. Jung, and C. Joo, “Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes,” Biosens. Bioelectron. 57, 59–64 (2014).
[Crossref] [PubMed]

Kim, J.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Kim, K. H.

Kim, S.

Kostarelos, K.

N. Beziere, N. Lozano, A. Nunes, J. Salichs, D. Queiros, K. Kostarelos, and V. Ntziachristos, “Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT),” Biomaterials 37, 415–424 (2015).
[Crossref] [PubMed]

Kuranov, R. V.

Kurtoglu, M.

J. Li, A. Chaudhary, S. J. Chmura, C. Pelizzari, T. Rajh, C. Wietholt, M. Kurtoglu, and B. Aydogan, “A novel functional CT contrast agent for molecular imaging of cancer,” Phys. Med. Biol. 55(15), 4389–4397 (2010).
[Crossref] [PubMed]

Kwant, G.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[PubMed]

Lafontant, A.

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Landsman, M. L.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[PubMed]

Lapierre-Landry, M.

Lee, D.

C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen, D. Lee, R. Sze, R. G. Ellenbogen, J. Olson, and M. Zhang, “In vivo MRI detection of gliomas by chlorotoxin-Conjugated superparamagnetic nanoprobes,” Small 4(3), 372–379 (2008).
[Crossref] [PubMed]

Lee, H. C.

Li, J.

J. Li, A. Chaudhary, S. J. Chmura, C. Pelizzari, T. Rajh, C. Wietholt, M. Kurtoglu, and B. Aydogan, “A novel functional CT contrast agent for molecular imaging of cancer,” Phys. Med. Biol. 55(15), 4389–4397 (2010).
[Crossref] [PubMed]

Li, Q.

Lin, H.

G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of thermal transport in one-dimensional solid materials,” J. Vis. Exp. 83(83), e51144 (2014).
[PubMed]

Liu, G.

G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of thermal transport in one-dimensional solid materials,” J. Vis. Exp. 83(83), e51144 (2014).
[PubMed]

Lozano, N.

N. Beziere, N. Lozano, A. Nunes, J. Salichs, D. Queiros, K. Kostarelos, and V. Ntziachristos, “Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT),” Biomaterials 37, 415–424 (2015).
[Crossref] [PubMed]

Lutz, A. M.

J. K. Willmann, R. Paulmurugan, K. Chen, O. Gheysens, M. Rodriguez-Porcel, A. M. Lutz, I. Y. Chen, X. Chen, and S. S. Gambhir, “US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice,” Radiology 246(2), 508–518 (2008).
[Crossref] [PubMed]

Manning, H. C.

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

McCarty, O. J.

McElroy, A. B.

Meyer, T. A.

Milner, T. E.

Mondelblatt, A.

Mook, G. A.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[PubMed]

Nahas, A.

Nam, J.

Nelson, C. E.

C. E. Nelson, A. J. Kim, E. J. Adolph, M. K. Gupta, F. Yu, K. M. Hocking, J. M. Davidson, S. A. Guelcher, and C. L. Duvall, “Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo,” Adv. Mater. 26(4), 607–614 (2014).
[Crossref] [PubMed]

Ntziachristos, V.

N. Beziere, N. Lozano, A. Nunes, J. Salichs, D. Queiros, K. Kostarelos, and V. Ntziachristos, “Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT),” Biomaterials 37, 415–424 (2015).
[Crossref] [PubMed]

Nunes, A.

N. Beziere, N. Lozano, A. Nunes, J. Salichs, D. Queiros, K. Kostarelos, and V. Ntziachristos, “Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT),” Biomaterials 37, 415–424 (2015).
[Crossref] [PubMed]

Oh, J.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Oldenburg, A.

Oldenburg, A. L.

Olson, J.

C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen, D. Lee, R. Sze, R. G. Ellenbogen, J. Olson, and M. Zhang, “In vivo MRI detection of gliomas by chlorotoxin-Conjugated superparamagnetic nanoprobes,” Small 4(3), 372–379 (2008).
[Crossref] [PubMed]

Otis, L. L.

Owen, G. M.

Patil, C. A.

Paulmurugan, R.

J. K. Willmann, R. Paulmurugan, K. Chen, O. Gheysens, M. Rodriguez-Porcel, A. M. Lutz, I. Y. Chen, X. Chen, and S. S. Gambhir, “US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice,” Radiology 246(2), 508–518 (2008).
[Crossref] [PubMed]

Pelizzari, C.

J. Li, A. Chaudhary, S. J. Chmura, C. Pelizzari, T. Rajh, C. Wietholt, M. Kurtoglu, and B. Aydogan, “A novel functional CT contrast agent for molecular imaging of cancer,” Phys. Med. Biol. 55(15), 4389–4397 (2010).
[Crossref] [PubMed]

Piao, D.

Qiu, J.

Queiros, D.

N. Beziere, N. Lozano, A. Nunes, J. Salichs, D. Queiros, K. Kostarelos, and V. Ntziachristos, “Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT),” Biomaterials 37, 415–424 (2015).
[Crossref] [PubMed]

Rajh, T.

J. Li, A. Chaudhary, S. J. Chmura, C. Pelizzari, T. Rajh, C. Wietholt, M. Kurtoglu, and B. Aydogan, “A novel functional CT contrast agent for molecular imaging of cancer,” Phys. Med. Biol. 55(15), 4389–4397 (2010).
[Crossref] [PubMed]

Reif, R.

Y. Jung, R. Reif, Y. Zeng, and R. K. Wang, “Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes,” Nano Lett. 11(7), 2938–2943 (2011).
[Crossref] [PubMed]

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16(12), 126003 (2011).
[Crossref] [PubMed]

Rodriguez-Porcel, M.

J. K. Willmann, R. Paulmurugan, K. Chen, O. Gheysens, M. Rodriguez-Porcel, A. M. Lutz, I. Y. Chen, X. Chen, and S. S. Gambhir, “US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice,” Radiology 246(2), 508–518 (2008).
[Crossref] [PubMed]

Ryu, S.

J. Yim, H. Kim, S. Ryu, S. Song, H. O. Kim, K. A. Hyun, H. I. Jung, and C. Joo, “Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes,” Biosens. Bioelectron. 57, 59–64 (2014).
[Crossref] [PubMed]

Salichs, J.

N. Beziere, N. Lozano, A. Nunes, J. Salichs, D. Queiros, K. Kostarelos, and V. Ntziachristos, “Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT),” Biomaterials 37, 415–424 (2015).
[Crossref] [PubMed]

Salvaggio, A.

Schmitt, J. M.

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3(1), 66–75 (1998).
[Crossref] [PubMed]

Shah, A. T.

Sit, W. W.

Skala, M. C.

J. M. Tucker-Schwartz, M. Lapierre-Landry, C. A. Patil, and M. C. Skala, “Photothermal optical lock-in optical coherence tomography for in vivo imaging,” Biomed. Opt. Express 6(6), 2268–2282 (2015).
[Crossref] [PubMed]

J. M. Tucker-Schwartz, K. R. Beavers, W. W. Sit, A. T. Shah, C. L. Duvall, and M. C. Skala, “In vivo imaging of nanoparticle delivery and tumor microvasculature with multimodal optical coherence tomography,” Biomed. Opt. Express 5(6), 1731–1743 (2014).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3(11), 2881–2895 (2012).
[Crossref] [PubMed]

J. M. Tucker-Schwartz, T. Hong, D. C. Colvin, Y. Xu, and M. C. Skala, “Dual-modality photothermal optical coherence tomography and magnetic-resonance imaging of carbon nanotubes,” Opt. Lett. 37(5), 872–874 (2012).
[Crossref] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Smith, J. W.

Song, J.

Song, S.

J. Yim, H. Kim, S. Ryu, S. Song, H. O. Kim, K. A. Hyun, H. I. Jung, and C. Joo, “Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes,” Biosens. Bioelectron. 57, 59–64 (2014).
[Crossref] [PubMed]

Steinberg, B. D.

J. Tsao and B. D. Steinberg, “Reduction of sidelobe and speckle artifacts in microwave imaging,” IEEE Trans. Antennas Propagation 36(4), 543–556 (1988).
[Crossref]

Subhash, H. M.

Sun, C.

C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen, D. Lee, R. Sze, R. G. Ellenbogen, J. Olson, and M. Zhang, “In vivo MRI detection of gliomas by chlorotoxin-Conjugated superparamagnetic nanoprobes,” Small 4(3), 372–379 (2008).
[Crossref] [PubMed]

Suslick, K.

Swanson, E. A.

Sze, R.

C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen, D. Lee, R. Sze, R. G. Ellenbogen, J. Olson, and M. Zhang, “In vivo MRI detection of gliomas by chlorotoxin-Conjugated superparamagnetic nanoprobes,” Small 4(3), 372–379 (2008).
[Crossref] [PubMed]

Tang, X.

G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of thermal transport in one-dimensional solid materials,” J. Vis. Exp. 83(83), e51144 (2014).
[PubMed]

Thrane, L.

Timpson, P.

J. R. Conway, N. O. Carragher, and P. Timpson, “Developments in preclinical cancer imaging: innovating the discovery of therapeutics,” Nat. Rev. Cancer 14(5), 314–328 (2014).
[Crossref] [PubMed]

Toublan, F.

Tsai, T. H.

Tsao, J.

J. Tsao and B. D. Steinberg, “Reduction of sidelobe and speckle artifacts in microwave imaging,” IEEE Trans. Antennas Propagation 36(4), 543–556 (1988).
[Crossref]

Tucker-Schwartz, J. M.

Varna, M.

Veiseh, O.

C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen, D. Lee, R. Sze, R. G. Ellenbogen, J. Olson, and M. Zhang, “In vivo MRI detection of gliomas by chlorotoxin-Conjugated superparamagnetic nanoprobes,” Small 4(3), 372–379 (2008).
[Crossref] [PubMed]

Walsh, A. J.

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Wang, R. K.

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16(12), 126003 (2011).
[Crossref] [PubMed]

Y. Jung, R. Reif, Y. Zeng, and R. K. Wang, “Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes,” Nano Lett. 11(7), 2938–2943 (2011).
[Crossref] [PubMed]

Wang, X.

G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of thermal transport in one-dimensional solid materials,” J. Vis. Exp. 83(83), e51144 (2014).
[PubMed]

Wang, Y.

Wax, A.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Wei, A.

Wietholt, C.

J. Li, A. Chaudhary, S. J. Chmura, C. Pelizzari, T. Rajh, C. Wietholt, M. Kurtoglu, and B. Aydogan, “A novel functional CT contrast agent for molecular imaging of cancer,” Phys. Med. Biol. 55(15), 4389–4397 (2010).
[Crossref] [PubMed]

Willmann, J. K.

J. K. Willmann, R. Paulmurugan, K. Chen, O. Gheysens, M. Rodriguez-Porcel, A. M. Lutz, I. Y. Chen, X. Chen, and S. S. Gambhir, “US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice,” Radiology 246(2), 508–518 (2008).
[Crossref] [PubMed]

Xiao, P.

Xie, H.

Xu, Y.

Yan, S.

Yang, C.

Yim, J.

J. Yim, H. Kim, S. Ryu, S. Song, H. O. Kim, K. A. Hyun, H. I. Jung, and C. Joo, “Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes,” Biosens. Bioelectron. 57, 59–64 (2014).
[Crossref] [PubMed]

Yu, F.

C. E. Nelson, A. J. Kim, E. J. Adolph, M. K. Gupta, F. Yu, K. M. Hocking, J. M. Davidson, S. A. Guelcher, and C. L. Duvall, “Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo,” Adv. Mater. 26(4), 607–614 (2014).
[Crossref] [PubMed]

Yura, H. T.

Zeng, Y.

Y. Jung, R. Reif, Y. Zeng, and R. K. Wang, “Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes,” Nano Lett. 11(7), 2938–2943 (2011).
[Crossref] [PubMed]

Zhang, M.

C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen, D. Lee, R. Sze, R. G. Ellenbogen, J. Olson, and M. Zhang, “In vivo MRI detection of gliomas by chlorotoxin-Conjugated superparamagnetic nanoprobes,” Small 4(3), 372–379 (2008).
[Crossref] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Zhou, C.

Zhu, Q.

Zijlstra, W. G.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[PubMed]

Zweifel, D. A.

Adv. Mater. (1)

C. E. Nelson, A. J. Kim, E. J. Adolph, M. K. Gupta, F. Yu, K. M. Hocking, J. M. Davidson, S. A. Guelcher, and C. L. Duvall, “Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo,” Adv. Mater. 26(4), 607–614 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Astron. Astrophys. Suppl. Ser. (1)

J. A. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astron. Astrophys. Suppl. Ser. 15, 417 (1974).

Biomaterials (1)

N. Beziere, N. Lozano, A. Nunes, J. Salichs, D. Queiros, K. Kostarelos, and V. Ntziachristos, “Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT),” Biomaterials 37, 415–424 (2015).
[Crossref] [PubMed]

Biomed. Opt. Express (5)

Biosens. Bioelectron. (1)

J. Yim, H. Kim, S. Ryu, S. Song, H. O. Kim, K. A. Hyun, H. I. Jung, and C. Joo, “Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes,” Biosens. Bioelectron. 57, 59–64 (2014).
[Crossref] [PubMed]

Cancer Res. (1)

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

IEEE Trans. Antennas Propagation (1)

J. Tsao and B. D. Steinberg, “Reduction of sidelobe and speckle artifacts in microwave imaging,” IEEE Trans. Antennas Propagation 36(4), 543–556 (1988).
[Crossref]

J. Appl. Physiol. (1)

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[PubMed]

J. Biomed. Opt. (2)

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3(1), 66–75 (1998).
[Crossref] [PubMed]

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16(12), 126003 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Vis. Exp. (1)

G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of thermal transport in one-dimensional solid materials,” J. Vis. Exp. 83(83), e51144 (2014).
[PubMed]

Nano Lett. (2)

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Y. Jung, R. Reif, Y. Zeng, and R. K. Wang, “Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes,” Nano Lett. 11(7), 2938–2943 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

J. R. Conway, N. O. Carragher, and P. Timpson, “Developments in preclinical cancer imaging: innovating the discovery of therapeutics,” Nat. Rev. Cancer 14(5), 314–328 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (6)

Phys. Med. Biol. (1)

J. Li, A. Chaudhary, S. J. Chmura, C. Pelizzari, T. Rajh, C. Wietholt, M. Kurtoglu, and B. Aydogan, “A novel functional CT contrast agent for molecular imaging of cancer,” Phys. Med. Biol. 55(15), 4389–4397 (2010).
[Crossref] [PubMed]

Physiol. Rev. (1)

M. L. James and S. S. Gambhir, “A molecular imaging primer: modalities, imaging agents, and applications,” Physiol. Rev. 92(2), 897–965 (2012).
[Crossref] [PubMed]

Radiology (1)

J. K. Willmann, R. Paulmurugan, K. Chen, O. Gheysens, M. Rodriguez-Porcel, A. M. Lutz, I. Y. Chen, X. Chen, and S. S. Gambhir, “US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice,” Radiology 246(2), 508–518 (2008).
[Crossref] [PubMed]

Small (1)

C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen, D. Lee, R. Sze, R. G. Ellenbogen, J. Olson, and M. Zhang, “In vivo MRI detection of gliomas by chlorotoxin-Conjugated superparamagnetic nanoprobes,” Small 4(3), 372–379 (2008).
[Crossref] [PubMed]

Other (4)

T. van Kampen, “Optical properties of hair”, Masters project, (1997)

S. Jacques, “Monte Carlo Simulatons, “(Oregon Medical Laser Center, 2007), http://omlc.org/software/mc/ .

A. Norris, J. DeGroot, Jr., F. Nishida, U. Pernisz, N. Kushibiki, and T. Ogawa, “Silicone Materials for Optical Applications,” (Dow Corning, 2003), http://www.dowcorning.com.cn/zh_CN/content/publishedlit/75-1007-01_single.pdf

“Techical Data Sheet, QSil 216,” (Quantum Silicones Inc., 2012) http://www.quantumsilicones.com/2012/02/qsil-216/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Flow diagram of the PT-CLEAN algorithm to remove phase accumulation and shadowing. A point spread function is created using the analytical model. The first pixel in depth with a PT-OCT signal above threshold is then selected to calculate the deconvolution kernel. Two new images are created; a B-scan from which the deconvolution kernel was subtracted and a new image where the selected pixel is recorded. The final image is reconstructed by convoluting each of the individual saved pixels to a 1-D Gaussian along the depth dimension.
Fig. 2
Fig. 2 PT-OCT instrumentation. The light from a superluminescent diode (SLD) is split between a reference and sample arm using a 50:50 fiber coupler (50:50). The photothermal excitation is provided by a Titanium:Sapphire laser (Ti:Sapphire) that is amplitude modulated by an acousto-optic modulator (AOM). HWP: Half-wave plate. PC: Polarization compensation.
Fig. 3
Fig. 3 Demonstration of the PT-OCT analytical output signal. (A) The change in optical path length produced in the sample by the photothermal effect is plotted as a function of depth and at a fixed depth z = 400 μm over repeated A-scans (B). (C) The change in optical path length is detected as a noisy change in phase by the OCT system. The noiseless change in phase is overlaid in magenta to guide the eye. (D) A Fourier transform of the phase signal is taken to isolate the PT signal and PT noise.
Fig. 4
Fig. 4 Validation of the PT-OCT analytical model over an A-scan in a single layer homogeneous sample. The theoretical signal (blue) was generated from the model based on the optical properties listed in Table 1 (5mm ICG phantom). The experimental signal (red) is the average A-scan obtained experimentally by performing PT-OCT on a silicone phantom containing ICG as an absorber. The photothermal laser power at the sample was fixed at (A) 5.8 mW, (B) 9.2 mW and (C) 14.1 mW to show the behavior of the signal in relation to the noise floor. The noise floor can be seen in (D) when the photothermal laser is turned off. NMSE: Normalized Mean Square Error.
Fig. 5
Fig. 5 Validation of the PT-OCT analytical model over an A-scan in a multi-layered heterogeneous sample. (A) Theoretical (blue) and experimental (red) A-scan of a human brown hair 80 μm deep inside a scattering silicone phantom. (B) Average theoretical and experimental photothermal signal for different hair depths. Each hair depth was produced by a separate simulation or recorded on a separate B-scan. The signal has decreased by 50% when the hair is 220 μm in depth inside the phantom. (C) Experimental average OCT intensity for a section of scatterer at different depths inside the sample. The signal has decreased by 50% when the scatterers are 355 μm in depth inside the phantom.
Fig. 6
Fig. 6 Demonstration of the PT-CLEAN algorithm and comparison to traditional PT-OCT B-scans. (A) Thin ICG phantom on thick scattering (TiO2) layer and (B) resulting B-scan after performing the PT-CLEAN algorithm. The horizontal dashed white lines indicate the limit of each layer. The solid white line is the average signal intensity vs. depth. (C) Thin ICG layer between a thin and a thick scattering layer and (D) after application of the PT-CLEAN algorithm. (E) Layer with a high ICG concentration, over a low ICG concentration layer, both over a scattering phantom and (F) after application of the PT-CLEAN algorithm. Scale bar: 100 μm.
Fig. 7
Fig. 7 Demonstration of the PT-CLEAN algorithm on in vivo tumor sample. (A) In vivo PT-OCT B-scan of a tumor xenograft after retro-orbital injection of gold nanorods. Both phase accumulation (boxed area) and shadowing (arrows) are visible. (B) B-scan after application of the PT-CLEAN algorithm. Both phase accumulation and shadowing are reduced. Scale bar: 500 μm.

Tables (1)

Tables Icon

Table 1 Input parameters for PT-OCT analytical model

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

T t = φ μ a ρc +α 2 T
ΔT(t,r=0)= P(z) μ a 4απρc ln( 1+ tα ω 2 (z)/8 ),t< t L
ΔT(t t L ,r=0)= P(z) μ a 4απρc ln( 1+ t L α ω 2 (z) 8 +α( t t L ) ),t t L
ΔOPL(z)=OP L T 0 +ΔT OP L T 0 = 0 z ( [ n( T 0 )+ dn dT ΔT ][ 1+βΔT ]n( T 0 ) )dZ
ΔΦ(z)= 4πnΔOPL(z) λ 0
I(z)= δ 2e SΔt R s (z) R R e iΔΦ(z) sinc(az)
R s (z)= μ b π ω 2 (z) L c e 2( μ s + μ a )z 4 (nz) 2 [ 1+ ( π ω 2 (z) 4λnz ) 2 ( 1 nz n 2 f ) 2 ]
A shot (z)= δ e SΔt R R e i ϕ rand
A env (z)= A 0 e i ϕ rand
Δ Φ exp (z)=[ I(z)+ A shot (z)+ A env (z) ]
p(z,f)=FT(Δ Φ exp (z,t))
PTOCT(z)= | p(z, f 0 ) |λ 4 π 2 f 0 nΔt
εh[ z z (1) ] D image [ x (1) , z (1) ]/ h max
D image εh[ z z (1) ] D image [ x (1) , z (1) ]/ h max

Metrics