Abstract

We propose a signal enhanced guide-star reconstruction method for holographic fluorescence microscopy. In the late 00’s, incoherent digital holography started to be vigorously studied by several groups to overcome the limitations of conventional digital holography. The basic concept of incoherent digital holography is to acquire the complex hologram from incoherent light by utilizing temporal coherency of a spatially incoherent light source. The advent of incoherent digital holography opened new possibility of holographic fluorescence microscopy (HFM), which was difficult to achieve with conventional digital holography. However there has been an important issue of low and noisy signal in HFM which slows down the system speed and degrades the imaging quality. When guide-star reconstruction is adopted, the image reconstruction gives an improved result compared to the conventional propagation reconstruction method. The guide-star reconstruction method gives higher imaging signal-to-noise ratio since the acquired complex point spread function provides optimal system-adaptive information and can restore the signal buried in the noise more efficiently. We present theoretical explanation and simulation as well as experimental results.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Incoherent digital holographic adaptive optics

Myung K. Kim
Appl. Opt. 52(1) A117-A130 (2013)

Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings

Xiangyu Quan, Osamu Matoba, and Yasuhiro Awatsuji
Opt. Lett. 42(3) 383-386 (2017)

Overview of compressive sensing techniques applied in holography [Invited]

Yair Rivenson, Adrian Stern, and Bahram Javidi
Appl. Opt. 52(1) A423-A432 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [Crossref] [PubMed]
  2. E. N. Leith and J. Upatniek, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52(10), 1123–1130 (1962).
    [Crossref]
  3. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54(11), 1295–1301 (1964).
    [Crossref]
  4. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [Crossref] [PubMed]
  5. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
    [Crossref] [PubMed]
  6. G. Indebetouw, “A posteriori quasi-sectioning of the three-dimensional reconstructions of scanning holographic microscopy,” J. Opt. Soc. Am. A 23(10), 2657–2661 (2006).
    [Crossref] [PubMed]
  7. Y.-C. Lin, C.-J. Cheng, and T.-C. Poon, “Optical sectioning with a low-coherence phase-shifting digital holographic microscope,” Appl. Opt. 50(7), B25–B30 (2011).
    [Crossref] [PubMed]
  8. G. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A 26(8), 1788–1797 (2009).
    [Crossref] [PubMed]
  9. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
    [Crossref] [PubMed]
  10. P. Bouchal and Z. Bouchal, “Selective edge enhancement in three-dimensional vortex imaging with incoherent light,” Opt. Lett. 37(14), 2949–2951 (2012).
    [Crossref] [PubMed]
  11. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143 (2002).
    [Crossref]
  12. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16(21), 17107–17118 (2008).
    [Crossref] [PubMed]
  13. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1(1), 018005 (2010).
  14. Y. Engelborghs and A. J. W. G. Visser, Fluorescence Spectroscopy and Microscopy (Springer Protocols 2014).
  15. B. O. Leung and K. C. Chou, “Review of super-resolution fluorescence microscopy for biology,” Appl. Spectrosc. 65(9), 967–980 (2011).
    [Crossref] [PubMed]
  16. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
    [Crossref] [PubMed]
  17. T.-C. Poon, “Scanning holography and two-dimensional image processing by acousto-optic two-pupil synthesis,” J. Opt. Soc. Am. 2(4), 521–527 (1985).
    [Crossref]
  18. T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
    [Crossref]
  19. A. W. Lohmann, “Wavefront reconstruction for incoherent objects,” J. Opt. Soc. Am. 55(11), 1555–1556 (1965).
    [Crossref]
  20. G. Cochran, “New method of making Fresnel transforms with incoherent light,” J. Opt. Soc. Am. 56(11), 1513–1517 (1966).
    [Crossref]
  21. S.-G. Kim, B. Lee, and E.-S. Kim, “Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram,” Appl. Opt. 36(20), 4784–4791 (1997).
    [Crossref] [PubMed]
  22. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32(8), 912–914 (2007).
    [Crossref] [PubMed]
  23. M. K. Kim, “Full color natural light holographic camera,” Opt. Express 21(8), 9636–9642 (2013).
    [Crossref] [PubMed]
  24. O. Cossairt, N. Matsuda, and M. Gupta, “Digital refocusing with incoherent holography,” Computational Photography (ICCP 2014), 1-9 (2014).
  25. J. Rosen and G. Brooker, “Non-Scanning Motionless Fluorescence Three-Dimensional Holographic Microscopy,” Nat. Photonics 2(3), 190–195 (2008).
    [Crossref]
  26. J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19(27), 26249–26268 (2011).
    [Crossref] [PubMed]
  27. M. K. Kim, “Adaptive optics by incoherent digital holography,” Opt. Lett. 37(13), 2694–2696 (2012).
    [Crossref] [PubMed]
  28. M. K. Kim, “Incoherent digital holographic adaptive optics,” Appl. Opt. 52(1), A117–A130 (2013).
    [Crossref] [PubMed]
  29. C. Jang, J. Kim, D. C. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20(11), 111204 (2015).
    [Crossref] [PubMed]
  30. Z. Göröcs, E. McLeod, and A. Ozcan, “Enhanced light collection in fluorescence microscopy using self-assembled micro-reflectors,” Sci. Rep. 5, 10999 (2015).
    [Crossref] [PubMed]
  31. M. H. White, D. R. Lampe, F. C. Blaha, and I. A. Mack, “Characterization of surface channel CCD image arrays at low light levels,” IEEE J. Solid-State Circuits 9(1), 1–12 (1974).
    [Crossref]
  32. Technical note, http://www.photometrics.com/
  33. R. M. Goldstein, H. A. Zebken, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23(4), 713 (1988).
    [Crossref]
  34. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
    [Crossref]
  35. G. Indebetouw and W. Zhong, “Scanning holographic microscopy of three-dimensional fluorescent specimens,” J. Opt. Soc. Am. A 23(7), 1699–1707 (2006).
    [Crossref] [PubMed]
  36. V. Mahajan, “Strehl ratio for primary aberrations in terms of their aberration variance,” J. Opt. Soc. Am. 73(6), 860–861 (1983).
    [Crossref]

2015 (3)

C. Jang, J. Kim, D. C. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20(11), 111204 (2015).
[Crossref] [PubMed]

Z. Göröcs, E. McLeod, and A. Ozcan, “Enhanced light collection in fluorescence microscopy using self-assembled micro-reflectors,” Sci. Rep. 5, 10999 (2015).
[Crossref] [PubMed]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

2013 (2)

2012 (2)

2011 (3)

2010 (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1(1), 018005 (2010).

2009 (1)

2008 (2)

2007 (1)

2006 (3)

2003 (1)

2002 (1)

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143 (2002).
[Crossref]

1997 (2)

1995 (1)

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

1994 (1)

1988 (1)

R. M. Goldstein, H. A. Zebken, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23(4), 713 (1988).
[Crossref]

1985 (1)

T.-C. Poon, “Scanning holography and two-dimensional image processing by acousto-optic two-pupil synthesis,” J. Opt. Soc. Am. 2(4), 521–527 (1985).
[Crossref]

1983 (1)

1974 (1)

M. H. White, D. R. Lampe, F. C. Blaha, and I. A. Mack, “Characterization of surface channel CCD image arrays at low light levels,” IEEE J. Solid-State Circuits 9(1), 1–12 (1974).
[Crossref]

1966 (1)

1965 (1)

1964 (1)

1962 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Badizadegan, K.

Blaha, F. C.

M. H. White, D. R. Lampe, F. C. Blaha, and I. A. Mack, “Characterization of surface channel CCD image arrays at low light levels,” IEEE J. Solid-State Circuits 9(1), 1–12 (1974).
[Crossref]

Bo, F.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143 (2002).
[Crossref]

Bouchal, P.

Bouchal, Z.

Brooker, G.

Cheng, C.-J.

Chou, K. C.

Clark, D. C.

C. Jang, J. Kim, D. C. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20(11), 111204 (2015).
[Crossref] [PubMed]

Cochran, G.

Coppola, G.

Dasari, R. R.

De Nicola, S.

Doh, K. B.

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Feld, M. S.

Ferraro, P.

Finizio, A.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Goldstein, R. M.

R. M. Goldstein, H. A. Zebken, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23(4), 713 (1988).
[Crossref]

Göröcs, Z.

Z. Göröcs, E. McLeod, and A. Ozcan, “Enhanced light collection in fluorescence microscopy using self-assembled micro-reflectors,” Sci. Rep. 5, 10999 (2015).
[Crossref] [PubMed]

Grilli, S.

Horstmeyer, R.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

Indebetouw, G.

Jang, C.

C. Jang, J. Kim, D. C. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20(11), 111204 (2015).
[Crossref] [PubMed]

Jüptner, W.

Kim, E.-S.

Kim, J.

C. Jang, J. Kim, D. C. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20(11), 111204 (2015).
[Crossref] [PubMed]

Kim, M. K.

C. Jang, J. Kim, D. C. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20(11), 111204 (2015).
[Crossref] [PubMed]

M. K. Kim, “Incoherent digital holographic adaptive optics,” Appl. Opt. 52(1), A117–A130 (2013).
[Crossref] [PubMed]

M. K. Kim, “Full color natural light holographic camera,” Opt. Express 21(8), 9636–9642 (2013).
[Crossref] [PubMed]

M. K. Kim, “Adaptive optics by incoherent digital holography,” Opt. Lett. 37(13), 2694–2696 (2012).
[Crossref] [PubMed]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1(1), 018005 (2010).

Kim, S.-G.

Lampe, D. R.

M. H. White, D. R. Lampe, F. C. Blaha, and I. A. Mack, “Characterization of surface channel CCD image arrays at low light levels,” IEEE J. Solid-State Circuits 9(1), 1–12 (1974).
[Crossref]

Lee, B.

C. Jang, J. Kim, D. C. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20(11), 111204 (2015).
[Crossref] [PubMed]

S.-G. Kim, B. Lee, and E.-S. Kim, “Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram,” Appl. Opt. 36(20), 4784–4791 (1997).
[Crossref] [PubMed]

Lee, S.

C. Jang, J. Kim, D. C. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20(11), 111204 (2015).
[Crossref] [PubMed]

Leith, E. N.

Leung, B. O.

Lin, Y.-C.

Liu, C.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143 (2002).
[Crossref]

Liu, Z.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143 (2002).
[Crossref]

Lohmann, A. W.

Mack, I. A.

M. H. White, D. R. Lampe, F. C. Blaha, and I. A. Mack, “Characterization of surface channel CCD image arrays at low light levels,” IEEE J. Solid-State Circuits 9(1), 1–12 (1974).
[Crossref]

Magro, C.

Mahajan, V.

McLeod, E.

Z. Göröcs, E. McLeod, and A. Ozcan, “Enhanced light collection in fluorescence microscopy using self-assembled micro-reflectors,” Sci. Rep. 5, 10999 (2015).
[Crossref] [PubMed]

Merola, F.

Osten, W.

Ozcan, A.

Z. Göröcs, E. McLeod, and A. Ozcan, “Enhanced light collection in fluorescence microscopy using self-assembled micro-reflectors,” Sci. Rep. 5, 10999 (2015).
[Crossref] [PubMed]

Park, Y.

Paturzo, M.

Pedrini, G.

Pierattini, G.

Poon, T.-C.

Y.-C. Lin, C.-J. Cheng, and T.-C. Poon, “Optical sectioning with a low-coherence phase-shifting digital holographic microscope,” Appl. Opt. 50(7), B25–B30 (2011).
[Crossref] [PubMed]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

T.-C. Poon, “Scanning holography and two-dimensional image processing by acousto-optic two-pupil synthesis,” J. Opt. Soc. Am. 2(4), 521–527 (1985).
[Crossref]

Popescu, G.

Rosen, J.

Ruan, H.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

Schilling, B. W.

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Schnars, U.

Shinoda, K. K.

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Siegel, N.

Situ, G.

Suzuki, Y.

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Upatniek, J.

Upatnieks, J.

Wang, Y.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143 (2002).
[Crossref]

Werner, C. L.

R. M. Goldstein, H. A. Zebken, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23(4), 713 (1988).
[Crossref]

White, M. H.

M. H. White, D. R. Lampe, F. C. Blaha, and I. A. Mack, “Characterization of surface channel CCD image arrays at low light levels,” IEEE J. Solid-State Circuits 9(1), 1–12 (1974).
[Crossref]

Wu, M. H.

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Yamaguchi, I.

Yang, C.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

Zebken, H. A.

R. M. Goldstein, H. A. Zebken, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23(4), 713 (1988).
[Crossref]

Zhang, T.

Zhong, W.

Zhu, J.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143 (2002).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143 (2002).
[Crossref]

Appl. Spectrosc. (1)

IEEE J. Solid-State Circuits (1)

M. H. White, D. R. Lampe, F. C. Blaha, and I. A. Mack, “Characterization of surface channel CCD image arrays at low light levels,” IEEE J. Solid-State Circuits 9(1), 1–12 (1974).
[Crossref]

J. Biomed. Opt. (1)

C. Jang, J. Kim, D. C. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20(11), 111204 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (3)

Nat. Photonics (2)

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

J. Rosen and G. Brooker, “Non-Scanning Motionless Fluorescence Three-Dimensional Holographic Microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Opt. Eng. (1)

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Radio Sci. (1)

R. M. Goldstein, H. A. Zebken, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23(4), 713 (1988).
[Crossref]

Sci. Rep. (1)

Z. Göröcs, E. McLeod, and A. Ozcan, “Enhanced light collection in fluorescence microscopy using self-assembled micro-reflectors,” Sci. Rep. 5, 10999 (2015).
[Crossref] [PubMed]

SPIE Reviews (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1(1), 018005 (2010).

Other (3)

Y. Engelborghs and A. J. W. G. Visser, Fluorescence Spectroscopy and Microscopy (Springer Protocols 2014).

Technical note, http://www.photometrics.com/

O. Cossairt, N. Matsuda, and M. Gupta, “Digital refocusing with incoherent holography,” Computational Photography (ICCP 2014), 1-9 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Simplified configuration of HFM system.
Fig. 2
Fig. 2 Images of object and phase of various aberrations used in the simulation: (a) USAF 1951 resolution test target, and (b)-(d) phase images of Zernike aberration with different m, n values.
Fig. 3
Fig. 3 Simulated intensity of the wavefront at the CCD plane and acquired complex hologram: (a) intensity of the wavefront at the CCD plane without noise imposed and (b) with Gaussian noise imposed, (c) amplitude and (d) phase of the acquired complex hologram after phase shifting process.
Fig. 4
Fig. 4 Simulated phase distortion of the system (difference of the phase profile between the simulated complex guide-star hologram and the Q-function used in the Fresnel propagation).
Fig. 5
Fig. 5 Simulation result of (a) conventional reconstruction and (b) guide-star reconstruction according to the acquisition SNR value of simulated wavefront intensity.
Fig. 6
Fig. 6 Cross-sectional view of simulated reconstruction image according to the reconstruction result: (a) cross-sectional view of conventional reconstruction and (b) cross-sectional view of guide-star reconstruction method.
Fig. 7
Fig. 7 Imaging SNR of reconstructed images using conventional numerical propagation method and guide-star reconstruction according to the acquisition SNR.
Fig. 8
Fig. 8 Configuration of experimental setup.
Fig. 9
Fig. 9 (a) Amplitude and (b) phase of the acquired guide-star hologram.
Fig. 10
Fig. 10 Extracted phase distortion of the system (phase difference between the complex guide-star hologram and the Q-function in the reconstruction stage).
Fig. 11
Fig. 11 Experimental results of conventional numerical propagation reconstruction and guide-star reconstruction: (a) conventional reconstruction result, (b) guide-star reconstruction result, (c) cross-sectional view of conventional reconstruction result, and (d) cross-sectional view of guide-star reconstruction result.
Fig. 12
Fig. 12 Experimental results of guide-star reconstruction in holographic fluorescence microscopy: (a) phase of acquired complex hologram, (b) conventional reconstruction result, and (c) guide-star reconstruction result.
Fig. 13
Fig. 13 Imaging SNR of reconstructed images using conventional numerical propagation method and guide-star reconstruction according to the exposure time.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E A ( x c )= d x m d x f t d x f o E o Q f o ( x f o x o ) Ψ a ( x a ) × Q f o ( x f o ) Q z o ( x f t x f o ) Q f t ( x f t ) × Q z m ( x c x m ) Q f A ( x m ) Q z c ( x c x m ),
Q z (x)exp( iπ x 2 λz ).
I( x c )= | E A + E B exp(iθ) | 2 .
C( x c ; x o )=I ' o ( x o ) Q zr ( x c α x o ) Φ A ( x c α x o ) Φ B * ( x c α x o )
Φ A (x)=[ Ψ' Q ζ A ](βx)= dx' Ψ'(x') Q ζ A (x'βx)
I' (x) o = I o ( x M ).
G Ψ ( x c )= I o (0) Q z AB ( x c ) Φ A ( x c ) Φ B * ( x c ).
H Ψ ( x c )= d x o I ' o ( x o ) Q z AB ( x c α x o ) Φ A ( x c α x o ) Φ B ( x c α x o ).
H Ψ ( x c )=[ I ' o Q zr Φ A Φ B * ]( x c )=[ I ' o G Ψ ]( x c ).
G Ψ = Q zr φ.
acquisition SNR= P Q eff t (P+B) Q eff t+Dt+ N r 2 ,
H Ψ ( x c )= I O G Ψ ( x c )+ ε H .
I r = F 1 [F{ H Ψ }×F{ Q zr }] = H Ψ Q zr =( I O ( Q zr φ)+ ε H ) Q zr = I O ( Q zr φ Q zr )+ ε R ,
ε R = ε H Q ζ .
I r,g = H Ψ G Ψ =( I O G Ψ + ε H ) G Ψ = I O δ+ ε R' .

Metrics