Abstract

We report a simple real time optical imaging concept using an axicon lens to image the object kept behind opaque obstacles in free space. The proposed concept underlines the importance and advantages of using an axicon lens compared to a conventional lens to image behind the obstacle. The potential of this imaging concept is demonstrated by imaging the insertion of surgical needle in biological specimen in real time, without blocking the field of view. It is envisaged that this proposed concepts and methodology can make a telling impact in a wide variety of areas especially for diagnostics, therapeutics and microscopy applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically tunable fluidic lens imaging system for laparoscopic fluorescence-guided surgery

Davide Volpi, Iain D. C. Tullis, Paul R. Barber, Edyta M. Augustyniak, Sean C. Smart, Katherine A. Vallis, and Borivoj Vojnovic
Biomed. Opt. Express 8(7) 3232-3247 (2017)

Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing

Zhaojun Wang, Ming Lei, Baoli Yao, Yanan Cai, Yansheng Liang, Yanlong Yang, Xibin Yang, Hui Li, and Daxi Xiong
Biomed. Opt. Express 6(11) 4353-4364 (2015)

Widefield lensless endoscopy with a multicore fiber

Viktor Tsvirkun, Siddharth Sivankutty, Géraud Bouwmans, Ori Katz, Esben Ravn Andresen, and Hervé Rigneault
Opt. Lett. 41(20) 4771-4774 (2016)

References

  • View by:
  • |
  • |
  • |

  1. “WHO Guidelines Approved by the Guidelines Review Committee,” in WHO Guideline on the Use of Safety-Engineered Syringes for Intramuscular, Intradermal and Subcutaneous Injections in Health-Care Settings, (World Health Organization 2015. Geneva, 2015).
  2. K. J. Connolly, Psychobiology of the Hand (Cambridge University Press, 1998).
  3. J. H. McLeod, “The Axicon: A New Type of Optical Element,” J. Opt. Soc. Am. 44, 592 (1954).
  4. J. W. Y. Lit and R. Tremblay, “Focal depth of a transmitting axicon,” J. Opt. Soc. Am. 63, 445–449 (1973).
  5. W. T. Welford, “Use of Annular Apertures to Increase Focal Depth,” J. Opt. Soc. Am. 50, 749–752 (1960).
  6. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
  7. I. Thanopulos, D. Luckhaus, T. C. Preston, and R. Signorell, “Dynamics of submicron aerosol droplets in a robust optical trap formed by multiple Bessel beams,” J. Appl. Phys. 115, 154304 (2014).
  8. A. Dudley, T. Mhlanga, M. Lavery, A. McDonald, F. S. Roux, M. Padgett, and A. Forbes, “Efficient sorting of Bessel beams,” Opt. Express 21(1), 165–171 (2013).
    [PubMed]
  9. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
  10. K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
    [PubMed]
  11. C. Snoeyink and S. Wereley, “Single-image far-field subdiffraction limit imaging with axicon,” Opt. Lett. 38(5), 625–627 (2013).
    [PubMed]
  12. S. M. Perinchery, A. Shinde, C. Y. Fu, X. J. Jeesmond Hong, M. Baskaran, T. Aung, and V. M. Murukeshan, “High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy,” Sci. Rep. 6, 30844 (2016).
    [PubMed]
  13. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
    [PubMed]
  14. K. Chikuma, S. Okamoto, T. Tohma, and S. Umegaki, “Collimating properties of an axicon for the Čerenkov-radiation-type second-harmonic light from a crystal-cored fiber,” Appl. Opt. 33(15), 3198–3202 (1994).
    [PubMed]
  15. J. O. Stoner., “Properties of Axicon Systems for Collecting Foil-Excited Accelerator Beam Spectra,” Appl. Opt. 9(1), 53–57 (1970).
    [PubMed]
  16. J. Zheng, Y. Yang, M. Lei, B. Yao, P. Gao, and T. Ye, “Fluorescence volume imaging with an axicon: simulation study based on scalar diffraction method,” Appl. Opt. 51(30), 7236–7245 (2012).
    [PubMed]
  17. G. Druart, J. Taboury, N. Guérineau, R. Haïdar, H. Sauer, A. Kattnig, and J. Primot, “Demonstration of image-zooming capability for diffractive axicons,” Opt. Lett. 33(4), 366–368 (2008).
    [PubMed]
  18. Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt. 56, 1304–1308 (2009).
  19. A. Saikaley, B. Chebbi, and I. Golub, “Imaging properties of three refractive axicons,” Appl. Opt. 52(28), 6910–6918 (2013).
    [PubMed]
  20. Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151, 207–211 (1998).
  21. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
    [PubMed]
  22. O. Katz, E. Small, and Y. Silberberg, “Looking through walls and around corners with incoherent light: Wide-field real-time imaging through scattering media,” https://arxiv.org/ftp/arxiv/papers/1202/1202.2078.pdf (2012).
  23. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-Photon” Coincidence Imaging with a Classical Source,” Phys. Rev. Lett. 89(11), 113601 (2002).
    [PubMed]
  24. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
    [PubMed]
  25. M. J. Booth, D. Débarre, and A. Jesacher, “Adaptive Optics for Biomedical Microscopy,” Opt. Photonics News 23, 22–29 (2012).
  26. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [PubMed]
  27. K. Wu, Q. Cheng, Y. Shi, H. Wang, and G. P. Wang, “Hiding scattering layers for noninvasive imaging of hidden objects,” Sci. Rep. 5, 8375 (2015).
    [PubMed]
  28. R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31(31), 6653–6657 (1992).
    [PubMed]
  29. J. S. Choi and J. C. Howell, “Paraxial ray optics cloaking,” Opt. Express 22(24), 29465–29478 (2014).
    [PubMed]
  30. H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
    [PubMed]
  31. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
    [PubMed]
  32. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [PubMed]
  33. R. Fleury, F. Monticone, and A. Alù, “Invisibility and Cloaking: Origins, Present, and Future Perspectives,” Phys. Rev. Appl. 4, 037001 (2015).
  34. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [PubMed]
  35. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [PubMed]

2016 (1)

S. M. Perinchery, A. Shinde, C. Y. Fu, X. J. Jeesmond Hong, M. Baskaran, T. Aung, and V. M. Murukeshan, “High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy,” Sci. Rep. 6, 30844 (2016).
[PubMed]

2015 (4)

K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
[PubMed]

K. Wu, Q. Cheng, Y. Shi, H. Wang, and G. P. Wang, “Hiding scattering layers for noninvasive imaging of hidden objects,” Sci. Rep. 5, 8375 (2015).
[PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

R. Fleury, F. Monticone, and A. Alù, “Invisibility and Cloaking: Origins, Present, and Future Perspectives,” Phys. Rev. Appl. 4, 037001 (2015).

2014 (2)

J. S. Choi and J. C. Howell, “Paraxial ray optics cloaking,” Opt. Express 22(24), 29465–29478 (2014).
[PubMed]

I. Thanopulos, D. Luckhaus, T. C. Preston, and R. Signorell, “Dynamics of submicron aerosol droplets in a robust optical trap formed by multiple Bessel beams,” J. Appl. Phys. 115, 154304 (2014).

2013 (4)

2012 (4)

M. J. Booth, D. Débarre, and A. Jesacher, “Adaptive Optics for Biomedical Microscopy,” Opt. Photonics News 23, 22–29 (2012).

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

J. Zheng, Y. Yang, M. Lei, B. Yao, P. Gao, and T. Ye, “Fluorescence volume imaging with an axicon: simulation study based on scalar diffraction method,” Appl. Opt. 51(30), 7236–7245 (2012).
[PubMed]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).

2011 (2)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[PubMed]

2010 (1)

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).

2009 (1)

Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt. 56, 1304–1308 (2009).

2008 (1)

2006 (3)

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[PubMed]

2002 (2)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-Photon” Coincidence Imaging with a Classical Source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[PubMed]

1998 (1)

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151, 207–211 (1998).

1994 (1)

1992 (1)

1973 (1)

1970 (1)

1960 (1)

1954 (1)

Alù, A.

R. Fleury, F. Monticone, and A. Alù, “Invisibility and Cloaking: Origins, Present, and Future Perspectives,” Phys. Rev. Appl. 4, 037001 (2015).

Arimoto, R.

Aung, T.

S. M. Perinchery, A. Shinde, C. Y. Fu, X. J. Jeesmond Hong, M. Baskaran, T. Aung, and V. M. Murukeshan, “High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy,” Sci. Rep. 6, 30844 (2016).
[PubMed]

Baskaran, M.

S. M. Perinchery, A. Shinde, C. Y. Fu, X. J. Jeesmond Hong, M. Baskaran, T. Aung, and V. M. Murukeshan, “High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy,” Sci. Rep. 6, 30844 (2016).
[PubMed]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-Photon” Coincidence Imaging with a Classical Source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[PubMed]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-Photon” Coincidence Imaging with a Classical Source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[PubMed]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[PubMed]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

Booth, M. J.

M. J. Booth, D. Débarre, and A. Jesacher, “Adaptive Optics for Biomedical Microscopy,” Opt. Photonics News 23, 22–29 (2012).

Bouchal, Z.

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151, 207–211 (1998).

Boyd, R. W.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-Photon” Coincidence Imaging with a Classical Source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[PubMed]

Chebbi, B.

Chen, H.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[PubMed]

Chen, X.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[PubMed]

Cheng, Q.

K. Wu, Q. Cheng, Y. Shi, H. Wang, and G. P. Wang, “Hiding scattering layers for noninvasive imaging of hidden objects,” Sci. Rep. 5, 8375 (2015).
[PubMed]

Chikuma, K.

Chlup, M.

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151, 207–211 (1998).

Choi, J. S.

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[PubMed]

Débarre, D.

M. J. Booth, D. Débarre, and A. Jesacher, “Adaptive Optics for Biomedical Microscopy,” Opt. Photonics News 23, 22–29 (2012).

Denk, W.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[PubMed]

Dholakia, K.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[PubMed]

Ding, S.

Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt. 56, 1304–1308 (2009).

Druart, G.

Dudley, A.

Fahrbach, F. O.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).

Fleury, R.

R. Fleury, F. Monticone, and A. Alù, “Invisibility and Cloaking: Origins, Present, and Future Perspectives,” Phys. Rev. Appl. 4, 037001 (2015).

Forbes, A.

Fu, C. Y.

S. M. Perinchery, A. Shinde, C. Y. Fu, X. J. Jeesmond Hong, M. Baskaran, T. Aung, and V. M. Murukeshan, “High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy,” Sci. Rep. 6, 30844 (2016).
[PubMed]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[PubMed]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[PubMed]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[PubMed]

Gao, P.

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[PubMed]

Golub, I.

Guérineau, N.

Gupta, P. K.

K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
[PubMed]

Haïdar, R.

Howell, J. C.

Jeesmond Hong, X. J.

S. M. Perinchery, A. Shinde, C. Y. Fu, X. J. Jeesmond Hong, M. Baskaran, T. Aung, and V. M. Murukeshan, “High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy,” Sci. Rep. 6, 30844 (2016).
[PubMed]

Jesacher, A.

M. J. Booth, D. Débarre, and A. Jesacher, “Adaptive Optics for Biomedical Microscopy,” Opt. Photonics News 23, 22–29 (2012).

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[PubMed]

Kattnig, A.

Katz, O.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).

O. Katz, E. Small, and Y. Silberberg, “Looking through walls and around corners with incoherent light: Wide-field real-time imaging through scattering media,” https://arxiv.org/ftp/arxiv/papers/1202/1202.2078.pdf (2012).

Kawata, S.

Khan, K. M.

K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
[PubMed]

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

Lavery, M.

Lei, M.

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[PubMed]

Lit, J. W. Y.

Luckhaus, D.

I. Thanopulos, D. Luckhaus, T. C. Preston, and R. Signorell, “Dynamics of submicron aerosol droplets in a robust optical trap formed by multiple Bessel beams,” J. Appl. Phys. 115, 154304 (2014).

Luo, Y.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[PubMed]

Lv, Q.

Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt. 56, 1304–1308 (2009).

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[PubMed]

Majumder, S. K.

K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
[PubMed]

McDonald, A.

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[PubMed]

McLeod, J. H.

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[PubMed]

Mhlanga, T.

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[PubMed]

Monticone, F.

R. Fleury, F. Monticone, and A. Alù, “Invisibility and Cloaking: Origins, Present, and Future Perspectives,” Phys. Rev. Appl. 4, 037001 (2015).

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

Murukeshan, V. M.

S. M. Perinchery, A. Shinde, C. Y. Fu, X. J. Jeesmond Hong, M. Baskaran, T. Aung, and V. M. Murukeshan, “High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy,” Sci. Rep. 6, 30844 (2016).
[PubMed]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

Okamoto, S.

Padgett, M.

Pendry, J. B.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[PubMed]

Perinchery, S. M.

S. M. Perinchery, A. Shinde, C. Y. Fu, X. J. Jeesmond Hong, M. Baskaran, T. Aung, and V. M. Murukeshan, “High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy,” Sci. Rep. 6, 30844 (2016).
[PubMed]

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[PubMed]

Preston, T. C.

I. Thanopulos, D. Luckhaus, T. C. Preston, and R. Signorell, “Dynamics of submicron aerosol droplets in a robust optical trap formed by multiple Bessel beams,” J. Appl. Phys. 115, 154304 (2014).

Primot, J.

Rohrbach, A.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).

Roux, F. S.

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[PubMed]

Saikaley, A.

Saloma, C.

Sauer, H.

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[PubMed]

Shen, L.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[PubMed]

Shi, Y.

K. Wu, Q. Cheng, Y. Shi, H. Wang, and G. P. Wang, “Hiding scattering layers for noninvasive imaging of hidden objects,” Sci. Rep. 5, 8375 (2015).
[PubMed]

Shinde, A.

S. M. Perinchery, A. Shinde, C. Y. Fu, X. J. Jeesmond Hong, M. Baskaran, T. Aung, and V. M. Murukeshan, “High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy,” Sci. Rep. 6, 30844 (2016).
[PubMed]

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[PubMed]

Signorell, R.

I. Thanopulos, D. Luckhaus, T. C. Preston, and R. Signorell, “Dynamics of submicron aerosol droplets in a robust optical trap formed by multiple Bessel beams,” J. Appl. Phys. 115, 154304 (2014).

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).

O. Katz, E. Small, and Y. Silberberg, “Looking through walls and around corners with incoherent light: Wide-field real-time imaging through scattering media,” https://arxiv.org/ftp/arxiv/papers/1202/1202.2078.pdf (2012).

Simon, P.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).

O. Katz, E. Small, and Y. Silberberg, “Looking through walls and around corners with incoherent light: Wide-field real-time imaging through scattering media,” https://arxiv.org/ftp/arxiv/papers/1202/1202.2078.pdf (2012).

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[PubMed]

Snoeyink, C.

Stoner, J. O.

Taboury, J.

Tanaka, T.

Thanopulos, I.

I. Thanopulos, D. Luckhaus, T. C. Preston, and R. Signorell, “Dynamics of submicron aerosol droplets in a robust optical trap formed by multiple Bessel beams,” J. Appl. Phys. 115, 154304 (2014).

Tohma, T.

Tremblay, R.

Umegaki, S.

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

Wagner, J.

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151, 207–211 (1998).

Wang, G. P.

K. Wu, Q. Cheng, Y. Shi, H. Wang, and G. P. Wang, “Hiding scattering layers for noninvasive imaging of hidden objects,” Sci. Rep. 5, 8375 (2015).
[PubMed]

Wang, H.

K. Wu, Q. Cheng, Y. Shi, H. Wang, and G. P. Wang, “Hiding scattering layers for noninvasive imaging of hidden objects,” Sci. Rep. 5, 8375 (2015).
[PubMed]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[PubMed]

Wang, X.

Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt. 56, 1304–1308 (2009).

Wang, Y.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

Welford, W. T.

Wereley, S.

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

Wu, K.

K. Wu, Q. Cheng, Y. Shi, H. Wang, and G. P. Wang, “Hiding scattering layers for noninvasive imaging of hidden objects,” Sci. Rep. 5, 8375 (2015).
[PubMed]

Yang, Y.

Yao, B.

Ye, T.

Zhai, Z.

Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt. 56, 1304–1308 (2009).

Zhang, B.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[PubMed]

Zhang, J.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[PubMed]

Zhang, S.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[PubMed]

Zhang, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[PubMed]

Zheludev, N. I.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[PubMed]

Zheng, B.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[PubMed]

Zheng, J.

Zhong, Y.

Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt. 56, 1304–1308 (2009).

Appl. Opt. (5)

J. Appl. Phys. (1)

I. Thanopulos, D. Luckhaus, T. C. Preston, and R. Signorell, “Dynamics of submicron aerosol droplets in a robust optical trap formed by multiple Bessel beams,” J. Appl. Phys. 115, 154304 (2014).

J. Biophotonics (1)

K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
[PubMed]

J. Mod. Opt. (1)

Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt. 56, 1304–1308 (2009).

J. Opt. Soc. Am. (3)

Nat. Commun. (2)

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[PubMed]

Nat. Methods (1)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[PubMed]

Nat. Photonics (2)

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).

Nature (2)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[PubMed]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

Opt. Commun. (1)

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151, 207–211 (1998).

Opt. Express (2)

Opt. Lett. (2)

Opt. Photonics News (1)

M. J. Booth, D. Débarre, and A. Jesacher, “Adaptive Optics for Biomedical Microscopy,” Opt. Photonics News 23, 22–29 (2012).

Phys. Rev. Appl. (1)

R. Fleury, F. Monticone, and A. Alù, “Invisibility and Cloaking: Origins, Present, and Future Perspectives,” Phys. Rev. Appl. 4, 037001 (2015).

Phys. Rev. Lett. (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-Photon” Coincidence Imaging with a Classical Source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[PubMed]

Sci. Rep. (2)

K. Wu, Q. Cheng, Y. Shi, H. Wang, and G. P. Wang, “Hiding scattering layers for noninvasive imaging of hidden objects,” Sci. Rep. 5, 8375 (2015).
[PubMed]

S. M. Perinchery, A. Shinde, C. Y. Fu, X. J. Jeesmond Hong, M. Baskaran, T. Aung, and V. M. Murukeshan, “High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy,” Sci. Rep. 6, 30844 (2016).
[PubMed]

Science (3)

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[PubMed]

Other (3)

O. Katz, E. Small, and Y. Silberberg, “Looking through walls and around corners with incoherent light: Wide-field real-time imaging through scattering media,” https://arxiv.org/ftp/arxiv/papers/1202/1202.2078.pdf (2012).

“WHO Guidelines Approved by the Guidelines Review Committee,” in WHO Guideline on the Use of Safety-Engineered Syringes for Intramuscular, Intradermal and Subcutaneous Injections in Health-Care Settings, (World Health Organization 2015. Geneva, 2015).

K. J. Connolly, Psychobiology of the Hand (Cambridge University Press, 1998).

Supplementary Material (6)

NameDescription
» Visualization 1: AVI (6310 KB)      Visualization 1 (Comparison of a conventional long DOF lens with an axicon lens using USAF chart as the object)
» Visualization 2: MP4 (763 KB)      Visualization 2 (Resolution chart imaging behind paper pin of thickness 0.5 mm)
» Visualization 3: AVI (2385 KB)      Visulization 3 (Mouse kidney cells image reconstructed behind 60 µm
» Visualization 4: AVI (4003 KB)      Visualization 4 (Kidney cells behind 200 µm thread)
» Visualization 5: MP4 (5550 KB)      Visualization 5 (Concept of imaging behind a needle)
» Visualization 6: AVI (1149 KB)      Visualization 6 ( Imaging behind needle during injection into biological sample)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Optical configuration using axicon lens. (a) Reflection imaging. (b) Trans-illumination. (c) Fluorescence imaging. (Distance between the components are not representative. Exact distances are mentioned in the section 2.1.
Fig. 2
Fig. 2 Illustration of image formation (point source) behind an obstacle for the conventional lens at different focus depth. (a) Ray diagram and detector view for the biconvex lens (LB1904 - N-BK7 Bi-Convex Lens, f = 125 mm, Thorlabs) placed 120 mm from an obstacle (rectangular absorbing medium, 2). (b) Ray diagram and detector view for biconvex lens placed 57.5 mm from the obstacle. (c) Ray diagram and detector view for biconvex lens placed 3 mm from the obstacle. Note: 1 is a point source illumination, 2 is a rectangular obstacle (10 mm X 0.05 mm, absorbing medium), 3 is a biconvex lens (125 mm focal length, 25 mm diameter) and 4 is the detector. The distance between point source and obstacle is fixed at 5 mm for all the measurements. The detector is placed at the same position during all measurements. Both YZ and XZ views of the optical simulation are given for a, b and c.
Fig. 3
Fig. 3 Illustration of image formation (point source) behind an obstacle for axicon at different focus depth. (a) Ray diagram and detector view for axicon lens placed 120 mm from an obstacle (rectangular absorbing medium, (b) Ray diagram and detector view for axicon lens placed 57.5 mm from the obstacle. (c) Ray diagram and detector view for axicon lens placed 3 mm from the obstacle. Note: 1 is a point source illumination, 2 is a rectangular obstacle (10 mm X 0.05 mm, absorbing medium), 3 is an axicon lens (25 mm diameter) and 4 is the detector. The distance between point source and obstacle is fixed at 5 mm for all the measurements. The detector is also placed at the same position during all measurements. Both YZ and XZ views of the optical simulation are given for a, b and c. The axicon apex angle is oriented towards the point source (left side).
Fig. 4
Fig. 4 Imaging behind obstacles using white light reflection method. (a) Image of USAF chart elements behind Allen key of thickness 0.7 mm, placed at a distance of 0.5 mm from the USAF chart. (b) Image of USAF chart elements behind surgical needle (eye) of thickness 0.35 mm, placed at a distance of 0.5 mm from the USAF chart. (c) Image of USAF chart elements behind pin head of 3.5 mm thickness placed at a distance of 3 cm from the USAF chart. (d) Image of USAF chart elements behind pin 0.5 mm thickness placed at a distance of 0.5 mm and 3 cm from the USAF chart.
Fig. 5
Fig. 5 Imaging behind opaque obstacles using transillumination method. (a) Image of USAF chart elements behind a stitching needle of thickness 0.6 mm. (b) Image of the USAF chart elements behind a paper pin head of thickness 3.5 mm. The inset shows pin head region processed to enhance the contrast to see reconstruction with better clarity. (c) Image of USAF chart elements behind a syringe needle of 0.35 mm thickness.
Fig. 6
Fig. 6 Illustration of image formation behind obstacles using a laser. (a) Image formation of USAF chart elements behind syringe needle of 0.35 mm thickness. This imaging is performed in reflection mode. (b) Image of cell clusters behind Allen key of thickness 0.7 mm. This imaging is performed in fluorescence configuration. The inset shows the highlighted region (laser spot) in Allen key which is processed to enhance the contrast of the image formed behind Allen key. Basic brightness, contrast and filtering (‘unsharp mask’) adjustments using ImageJ software were performed as part of the image processing.
Fig. 7
Fig. 7 Illustration of extended focus depth by a combination of the axicon and conventional lens using Zemax simulations. (a) Ray diagram of the conventional plano-convex lens (LA1986 - N-BK7 Plano-Convex Lens, F = 125 mm, Thorlabs) with shallow focus depth (focal length 125 mm). (b) Ray diagram of axicon lens. (c) Ray diagram of combined axicon (170°) and plano-convex lens demonstrating extended DOF. The distance between axicon and convex lens is 10 mm.
Fig. 8
Fig. 8 Zemax simulation and optical setup of the axicon and a conventional lens unit (LB1904 - N-BK7 Bi-Convex Lens, f = 125 mm, Thorlabs). (a) Ray diagram and detector view for lens unit placed 57.5 mm from an obstacle (rectangular absorbing medium, 2). (b) Ray diagram and detector view for lens unit placed 25 mm from the obstacle. (c) Ray diagram and detector view for lens unit placed 3 mm from the obstacle. (d) Schematic diagram of imaging setup using a combination of the axicon and objective lens. Note: 1 is point source illumination, 2 is a rectangular obstacle (10 mm X 0.05 mm, absorbing medium), 3 is a biconvex lens (25 mm diameter), 4 is axicon lens (25 mm diameter) and 5 is the detector. The distance between point source and obstacle is fixed at 5 mm for all the measurements. The distance between axicon and the conventional lens is fixed at 10 mm. The detector is also placed at the same position during all measurements.
Fig. 9
Fig. 9 Comparison of resolution for axicon lens and combined axicon objective lens unit. USAF 1951 test chart imaged through (a) axicon lens (Inset shows group 6 and 7 not resolved). (b) 10x objective lens and (c) combined axicon- 10x objective lens unit (this image shows that group 6 and 7 elements are resolved by combined lens unit).
Fig. 10
Fig. 10 The sequence of mouse kidney cells (microscopic) raw image formed behind hair. (a-c), illustrate the movement (towards right side) of cells behind a hair of thickness 60 µm. Each image has an inset attached to it showing specifically the imaged region of interest (ROI) with improved contrast.
Fig. 11
Fig. 11 Comparison of image quality through 10x objective and 10x objective - axicon lens unit. (a) White light image of mouse kidney cells imaged through the 10x objective lens. (b) The region of mouse kidney cell image (fluorescence) using laser through the 10x objective lens. (c) White light image of mouse kidney cells imaged through a combination of 10x objective- axicon lens unit. (d) The region of mouse kidney cell image (fluorescence) using a combination of the 10x objective - axicon lens unit. Note both images (a-c) and (b-d) are taken exactly from the same location of the sample.
Fig. 12
Fig. 12 Illustration of image formation behind surgical needle during insertion. (a-c), Shows the movement of syringe needle kept in front of the biological sample. (d-e), Shows the insertion of the needle into the sample. (f-g), Fluid (stained) is injected into the sample. (h-i), Illustrate the retrace path of the needle after injection. The arrow in images shows the tip of the surgical needle. Note the video also is provided for the same experiment (see Visualization 6).

Metrics