Abstract

Bimanual surgery enhances surgical effectiveness and is required to successfully accomplish complex microsurgical tasks. The essential advantage is the ability to simultaneously grasp tissue with one hand to provide counter traction or exposure, while dissecting with the other. Towards enhancing the precision and safety of bimanual microsurgery we present a bimanual SMART micro-surgical system for a preliminary ex-vivo study. To the best of our knowledge, this is the first demonstration of a handheld bimanual microsurgical system. The essential components include a ball-lens coupled common-path swept source optical coherence tomography sensor. This system effectively suppresses asynchronous hand tremor using two PZT motors in feedback control loop and efficiently assists ambidextrous tasks. It allows precise bimanual dissection of biological tissues with a reduction in operating time as compared to the same tasks performed with conventional one-handed approaches.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery

Cheol Song, Dong Yong Park, Peter L. Gehlbach, Seong Jin Park, and Jin U. Kang
Biomed. Opt. Express 4(7) 1045-1050 (2013)

Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps

Haoran Yu, Jin-Hui Shen, Rohan J. Shah, Nabil Simaan, and Karen M. Joos
Biomed. Opt. Express 6(2) 457-472 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. N. Riviere, J. Gangloff, and M. de Mathelin, “Robotic compensation of biological motion to enhance surgical accuracy,” Proc. IEEE 94(9), 1705–1716 (2006).
    [Crossref]
  2. R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res. 18(12), 1201–1210 (1999).
    [Crossref]
  3. A. Uneri, M. Balicki, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “New steady-hand eye robot with micro-force sensing for vitreoretinal surgery,” in Proceedings of. IEEE BioRob (IEEE, 2010), pp. 814–819.
  4. R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.
  5. X. He, D. Roppenecker, D. Gierlach, M. Balicki, K. Olds, P. L. Gehlbach, J. Handa, R. Taylor, and I. Iordachita, “Toward clinically applicable steady-hand eye robot for vitreoretinal surgery,” in Proceedings of International Mechanical Engineering Congress and Exposition (IEEE, 2012), pp. 145–153.
    [Crossref]
  6. B. Gonenc, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A comparative study for robot assisted vitreoretinal surgery: micron vs. the steady-hand robot,” in Proceedings of IEEE Conference on Robotics and Automation (IEEE, 2013), pp. 4832–4837.
    [Crossref]
  7. W. T. Latt, U. X. Tan, C. Y. Shee, and W. T. Ang, “A compact hand-held active physiological tremor compensation instrument,” in Proceedings of IEEE Conference on Advanced Intelligent Mechatronics (IEEE, 2009), pp. 711–716.
    [Crossref]
  8. B. C. Becker, R. A. MacLachlan, L. A. Lobes, and C. N. Riviere, “Semiautomated intraocular laser surgery using handheld instruments,” Lasers Surg. Med. 42(3), 264–273 (2010).
    [Crossref] [PubMed]
  9. S. Yang, R. A. MacLachlan, and C. N. Riviere, “Manipulator design and operation of a six-degree-of-freedom handheld tremor-canceling microsurgical instrument,” IEEE/ASME Trans. Mechatron. 20(2), 761–772 (2015).
    [Crossref] [PubMed]
  10. C. Song, P. L. Gehlbach, and J. U. Kang, “Swept source optical coherence tomography based smart handheld vitreoretinal microsurgical tool for tremor suppression,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2012), pp.1405–1408.
  11. C. Song, P. L. Gehlbach, and J. U. Kang, “Active tremor cancellation by a “smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography,” Opt. Express 20(21), 23414–23421 (2012).
    [Crossref] [PubMed]
  12. C. Song, P. L. Gehlbach, and J. U. Kang, “Ball lens fiber optic sensor based smart handheld microsurgical instrument,” Proc SPIE 8576, 857601 (2013).
    [Crossref] [PubMed]
  13. C. Song, D. Y. Park, P. L. Gehlbach, S. J. Park, and J. U. Kang, “Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery,” Biomed. Opt. Express 4(7), 1045–1050 (2013).
    [Crossref] [PubMed]
  14. C. Song, P. L. Gehlbach, and J. U. Kang, “CP-OCT sensor guided SMART micro-forceps,” Proc. SPIE 8938, 893814 (2014).
    [Crossref]
  15. H. C. Park, C. B. Yeo, and C. Song, “SMART micro-scissors based precise incision,” Proc. SPIE 9317, 93170P (2015).
    [Crossref]
  16. H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Comput. Aided Surg. 4(1), 15–25 (1999).
    [Crossref] [PubMed]
  17. J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010).
    [Crossref] [PubMed]
  18. J. U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W. P. Lee, G. Brandacher, and P. L. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
    [Crossref] [PubMed]
  19. X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. Kang, “Miniature fiber-optic force sensor based on low-coherence Fabry-Pérot interferometry for vitreoretinal microsurgery,” Biomed. Opt. Express 3(5), 1062–1076 (2012).
    [Crossref] [PubMed]
  20. Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
    [Crossref] [PubMed]
  21. K. M. Joos and J.-H. Shen, “Miniature real-time intraoperative forward-imaging optical coherence tomography probe,” Biomed. Opt. Express 4(8), 1342–1350 (2013).
    [Crossref] [PubMed]
  22. N. Cutler, M. Balicki, M. Finkelstein, J. Wang, P. Gehlbach, J. McGready, I. Iordachita, R. Taylor, and J. T. Handa, “Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 54(2), 1316–1324 (2013).
    [Crossref] [PubMed]
  23. M. Balicki, R. Richa, M. Balicki, B. Vagvolgyi, P. Kazanides, P. Gehlbach, J. Handa, J. Kang, and R. Taylor, “Interactive OCT annotation and visualization for vitreoretinal surgery” Augmented Environments for Computer-Assisted Interventions. Lecture Notes in Computer Science. 7815, 142–152 (2013).
  24. J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
    [Crossref] [PubMed]
  25. J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
    [Crossref] [PubMed]
  26. Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
    [Crossref] [PubMed]
  27. M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Med. Image Comput. Comput .Assist. Interv. 12(Pt 1), 108–115 (2009).
    [PubMed]
  28. K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
    [Crossref] [PubMed]
  29. X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Towards automatic calibration of Fourier-Domain OCT for robot-assisted vitreoretinal surgery,” Opt. Express 18(23), 24331–24343 (2010).
    [Crossref] [PubMed]
  30. M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 303–310 (2010).
    [PubMed]
  31. X. He, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery,” IEEE Trans. Biomed. Eng. 61(2), 522–534 (2014).
    [Crossref] [PubMed]
  32. G. W. Cheon, Y. Huang, J. Cha, P. L. Gehlbach, and J. U. Kang, “Accurate real-time depth control for CP-SSOCT distal sensor based handheld microsurgery tools,” Biomed. Opt. Express 6(5), 1942–1953 (2015).
    [Crossref] [PubMed]
  33. B. Gonenc, N. Tran, C. N. Riviere, P. Gehlbach, R. H. Taylor, and I. Iordachita, “Force-based puncture detection and active position holding for assisted retinal vein cannulation,” in Proceeding of IEEE International Conference on Multisensor Fusion and Information Integration (IEEE, 2015), pp. 322–327.
    [Crossref]
  34. C. J. Payne, H. J. Marcus, and G.-Z. Yang, “A smart haptic hand-held device for neurosurgical microdissection,” Ann. Biomed. Eng. 43(9), 2185–2195 (2015).
    [Crossref] [PubMed]
  35. H. Yu, J.-H. Shen, R. J. Shah, N. Simaan, and K. M. Joos, “Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps,” Biomed. Opt. Express 6(2), 457–472 (2015).
    [Crossref] [PubMed]
  36. Z. Sun, M. Balicki, J. Kang, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A sub-millemetric, 0.25 mN resolution fully integrated fiber-optic force sensing tool for retinal microsurgery,” Int. J. Comput. Assist. Radiol. Surg 4(4), 383–390 (2009).
    [Crossref]
  37. I. H. Fine, R. S. Hoffman, and M. Packer, “Optimizing refractive lens exchange with bimanual microincision phacoemulsification,” J. Cataract Refract. Surg. 30(3), 550–554 (2004).
    [Crossref] [PubMed]
  38. M. Horiguchi, Y. Kojima, and Y. Shimada, “New system for fiberoptic-free bimanual vitreous surgery,” Arch. Ophthalmol. 120(4), 491–494 (2002).
    [Crossref] [PubMed]
  39. E. Burdet, R. Gassert, F. Mani, F. Wang, C. L. Teo, and H. Bleuler, “Design of a haptic forceps for microsurgery training,” in Proceedings of the 4th International Conference Eurohaptics (2004), pp. 74–81.
  40. W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans. Robot. 25(1), 147–157 (2009).
    [Crossref]
  41. H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Design, calibration and preliminary testing of a robotic telemanipulator for OCT guided retinal surgery,” in Proceedings of IEEE Conference on Robotics and Automation (IEEE, 2013), pp. 225–231.
    [Crossref]
  42. H. C. Park, C. B. Yeo, P. L. Gehlbach, and C. Song, “Development of the dual smart micro-surgical system using common-path swept source optical coherence tomography,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2015), pp. 5–8.
    [Crossref]
  43. E. Sohn, U. scott, and D. Eliott, “Bimanual vitreoretinal surgery for tractional retinal detachment due to proliferative diabetic retinopathy,” July/August Retina Today, 41–43 (2011).
  44. Y. Horise, X. He, P. Gehlbach, R. Taylor, and I. Iordachita, “FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2015), pp. 13–16.
    [Crossref]
  45. K. E. Swindle, P. D. Hamilton, and N. Ravi, “In situ formation of hydrogels as vitreous substitutes: Viscoelastic comparison to porcine vitreous,” J. Biomed. Mater. Res. A 87(3), 656–665 (2008).
    [Crossref] [PubMed]
  46. P. H. Tomlins and R. K. Wang, “Digital phase stabilization to improve detection sensitivity for optical coherence tomography,” Meas. Sci. Technol. 18(11), 3365–3372 (2007).
    [Crossref]

2015 (5)

S. Yang, R. A. MacLachlan, and C. N. Riviere, “Manipulator design and operation of a six-degree-of-freedom handheld tremor-canceling microsurgical instrument,” IEEE/ASME Trans. Mechatron. 20(2), 761–772 (2015).
[Crossref] [PubMed]

H. C. Park, C. B. Yeo, and C. Song, “SMART micro-scissors based precise incision,” Proc. SPIE 9317, 93170P (2015).
[Crossref]

G. W. Cheon, Y. Huang, J. Cha, P. L. Gehlbach, and J. U. Kang, “Accurate real-time depth control for CP-SSOCT distal sensor based handheld microsurgery tools,” Biomed. Opt. Express 6(5), 1942–1953 (2015).
[Crossref] [PubMed]

C. J. Payne, H. J. Marcus, and G.-Z. Yang, “A smart haptic hand-held device for neurosurgical microdissection,” Ann. Biomed. Eng. 43(9), 2185–2195 (2015).
[Crossref] [PubMed]

H. Yu, J.-H. Shen, R. J. Shah, N. Simaan, and K. M. Joos, “Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps,” Biomed. Opt. Express 6(2), 457–472 (2015).
[Crossref] [PubMed]

2014 (6)

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

X. He, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery,” IEEE Trans. Biomed. Eng. 61(2), 522–534 (2014).
[Crossref] [PubMed]

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

C. Song, P. L. Gehlbach, and J. U. Kang, “CP-OCT sensor guided SMART micro-forceps,” Proc. SPIE 8938, 893814 (2014).
[Crossref]

2013 (4)

C. Song, P. L. Gehlbach, and J. U. Kang, “Ball lens fiber optic sensor based smart handheld microsurgical instrument,” Proc SPIE 8576, 857601 (2013).
[Crossref] [PubMed]

C. Song, D. Y. Park, P. L. Gehlbach, S. J. Park, and J. U. Kang, “Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery,” Biomed. Opt. Express 4(7), 1045–1050 (2013).
[Crossref] [PubMed]

K. M. Joos and J.-H. Shen, “Miniature real-time intraoperative forward-imaging optical coherence tomography probe,” Biomed. Opt. Express 4(8), 1342–1350 (2013).
[Crossref] [PubMed]

N. Cutler, M. Balicki, M. Finkelstein, J. Wang, P. Gehlbach, J. McGready, I. Iordachita, R. Taylor, and J. T. Handa, “Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 54(2), 1316–1324 (2013).
[Crossref] [PubMed]

2012 (3)

2010 (4)

B. C. Becker, R. A. MacLachlan, L. A. Lobes, and C. N. Riviere, “Semiautomated intraocular laser surgery using handheld instruments,” Lasers Surg. Med. 42(3), 264–273 (2010).
[Crossref] [PubMed]

X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Towards automatic calibration of Fourier-Domain OCT for robot-assisted vitreoretinal surgery,” Opt. Express 18(23), 24331–24343 (2010).
[Crossref] [PubMed]

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 303–310 (2010).
[PubMed]

J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010).
[Crossref] [PubMed]

2009 (4)

W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans. Robot. 25(1), 147–157 (2009).
[Crossref]

Z. Sun, M. Balicki, J. Kang, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A sub-millemetric, 0.25 mN resolution fully integrated fiber-optic force sensing tool for retinal microsurgery,” Int. J. Comput. Assist. Radiol. Surg 4(4), 383–390 (2009).
[Crossref]

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Med. Image Comput. Comput .Assist. Interv. 12(Pt 1), 108–115 (2009).
[PubMed]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[Crossref] [PubMed]

2008 (1)

K. E. Swindle, P. D. Hamilton, and N. Ravi, “In situ formation of hydrogels as vitreous substitutes: Viscoelastic comparison to porcine vitreous,” J. Biomed. Mater. Res. A 87(3), 656–665 (2008).
[Crossref] [PubMed]

2007 (1)

P. H. Tomlins and R. K. Wang, “Digital phase stabilization to improve detection sensitivity for optical coherence tomography,” Meas. Sci. Technol. 18(11), 3365–3372 (2007).
[Crossref]

2006 (1)

C. N. Riviere, J. Gangloff, and M. de Mathelin, “Robotic compensation of biological motion to enhance surgical accuracy,” Proc. IEEE 94(9), 1705–1716 (2006).
[Crossref]

2004 (1)

I. H. Fine, R. S. Hoffman, and M. Packer, “Optimizing refractive lens exchange with bimanual microincision phacoemulsification,” J. Cataract Refract. Surg. 30(3), 550–554 (2004).
[Crossref] [PubMed]

2002 (1)

M. Horiguchi, Y. Kojima, and Y. Shimada, “New system for fiberoptic-free bimanual vitreous surgery,” Arch. Ophthalmol. 120(4), 491–494 (2002).
[Crossref] [PubMed]

1999 (2)

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res. 18(12), 1201–1210 (1999).
[Crossref]

H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Comput. Aided Surg. 4(1), 15–25 (1999).
[Crossref] [PubMed]

Ang, W. T.

W. T. Latt, U. X. Tan, C. Y. Shee, and W. T. Ang, “A compact hand-held active physiological tremor compensation instrument,” in Proceedings of IEEE Conference on Advanced Intelligent Mechatronics (IEEE, 2009), pp. 711–716.
[Crossref]

Balicki, M.

N. Cutler, M. Balicki, M. Finkelstein, J. Wang, P. Gehlbach, J. McGready, I. Iordachita, R. Taylor, and J. T. Handa, “Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 54(2), 1316–1324 (2013).
[Crossref] [PubMed]

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 303–310 (2010).
[PubMed]

X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Towards automatic calibration of Fourier-Domain OCT for robot-assisted vitreoretinal surgery,” Opt. Express 18(23), 24331–24343 (2010).
[Crossref] [PubMed]

Z. Sun, M. Balicki, J. Kang, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A sub-millemetric, 0.25 mN resolution fully integrated fiber-optic force sensing tool for retinal microsurgery,” Int. J. Comput. Assist. Radiol. Surg 4(4), 383–390 (2009).
[Crossref]

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Med. Image Comput. Comput .Assist. Interv. 12(Pt 1), 108–115 (2009).
[PubMed]

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

X. He, D. Roppenecker, D. Gierlach, M. Balicki, K. Olds, P. L. Gehlbach, J. Handa, R. Taylor, and I. Iordachita, “Toward clinically applicable steady-hand eye robot for vitreoretinal surgery,” in Proceedings of International Mechanical Engineering Congress and Exposition (IEEE, 2012), pp. 145–153.
[Crossref]

Barnes, A.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res. 18(12), 1201–1210 (1999).
[Crossref]

Becker, B. C.

B. C. Becker, R. A. MacLachlan, L. A. Lobes, and C. N. Riviere, “Semiautomated intraocular laser surgery using handheld instruments,” Lasers Surg. Med. 42(3), 264–273 (2010).
[Crossref] [PubMed]

Bleuler, H.

E. Burdet, R. Gassert, F. Mani, F. Wang, C. L. Teo, and H. Bleuler, “Design of a haptic forceps for microsurgery training,” in Proceedings of the 4th International Conference Eurohaptics (2004), pp. 74–81.

Brandacher, G.

J. U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W. P. Lee, G. Brandacher, and P. L. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref] [PubMed]

Burdet, E.

E. Burdet, R. Gassert, F. Mani, F. Wang, C. L. Teo, and H. Bleuler, “Design of a haptic forceps for microsurgery training,” in Proceedings of the 4th International Conference Eurohaptics (2004), pp. 74–81.

Cha, J.

G. W. Cheon, Y. Huang, J. Cha, P. L. Gehlbach, and J. U. Kang, “Accurate real-time depth control for CP-SSOCT distal sensor based handheld microsurgery tools,” Biomed. Opt. Express 6(5), 1942–1953 (2015).
[Crossref] [PubMed]

J. U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W. P. Lee, G. Brandacher, and P. L. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref] [PubMed]

Chang, S.

W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans. Robot. 25(1), 147–157 (2009).
[Crossref]

Cheon, G. W.

Crouch, J.

H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Comput. Aided Surg. 4(1), 15–25 (1999).
[Crossref] [PubMed]

Cutler, N.

N. Cutler, M. Balicki, M. Finkelstein, J. Wang, P. Gehlbach, J. McGready, I. Iordachita, R. Taylor, and J. T. Handa, “Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 54(2), 1316–1324 (2013).
[Crossref] [PubMed]

Das, H.

H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Comput. Aided Surg. 4(1), 15–25 (1999).
[Crossref] [PubMed]

de Juan, E.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res. 18(12), 1201–1210 (1999).
[Crossref]

de Mathelin, M.

C. N. Riviere, J. Gangloff, and M. de Mathelin, “Robotic compensation of biological motion to enhance surgical accuracy,” Proc. IEEE 94(9), 1705–1716 (2006).
[Crossref]

Ehlers, J. P.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

Feiler, D.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Fine, H. F.

W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans. Robot. 25(1), 147–157 (2009).
[Crossref]

Fine, I. H.

I. H. Fine, R. S. Hoffman, and M. Packer, “Optimizing refractive lens exchange with bimanual microincision phacoemulsification,” J. Cataract Refract. Surg. 30(3), 550–554 (2004).
[Crossref] [PubMed]

Finkelstein, M.

N. Cutler, M. Balicki, M. Finkelstein, J. Wang, P. Gehlbach, J. McGready, I. Iordachita, R. Taylor, and J. T. Handa, “Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 54(2), 1316–1324 (2013).
[Crossref] [PubMed]

Frambach, D.

H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Comput. Aided Surg. 4(1), 15–25 (1999).
[Crossref] [PubMed]

Gangloff, J.

C. N. Riviere, J. Gangloff, and M. de Mathelin, “Robotic compensation of biological motion to enhance surgical accuracy,” Proc. IEEE 94(9), 1705–1716 (2006).
[Crossref]

Gassert, R.

E. Burdet, R. Gassert, F. Mani, F. Wang, C. L. Teo, and H. Bleuler, “Design of a haptic forceps for microsurgery training,” in Proceedings of the 4th International Conference Eurohaptics (2004), pp. 74–81.

Gehlbach, P.

X. He, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery,” IEEE Trans. Biomed. Eng. 61(2), 522–534 (2014).
[Crossref] [PubMed]

N. Cutler, M. Balicki, M. Finkelstein, J. Wang, P. Gehlbach, J. McGready, I. Iordachita, R. Taylor, and J. T. Handa, “Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 54(2), 1316–1324 (2013).
[Crossref] [PubMed]

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 303–310 (2010).
[PubMed]

J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010).
[Crossref] [PubMed]

Z. Sun, M. Balicki, J. Kang, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A sub-millemetric, 0.25 mN resolution fully integrated fiber-optic force sensing tool for retinal microsurgery,” Int. J. Comput. Assist. Radiol. Surg 4(4), 383–390 (2009).
[Crossref]

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Med. Image Comput. Comput .Assist. Interv. 12(Pt 1), 108–115 (2009).
[PubMed]

Y. Horise, X. He, P. Gehlbach, R. Taylor, and I. Iordachita, “FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2015), pp. 13–16.
[Crossref]

B. Gonenc, N. Tran, C. N. Riviere, P. Gehlbach, R. H. Taylor, and I. Iordachita, “Force-based puncture detection and active position holding for assisted retinal vein cannulation,” in Proceeding of IEEE International Conference on Multisensor Fusion and Information Integration (IEEE, 2015), pp. 322–327.
[Crossref]

Gehlbach, P. L.

G. W. Cheon, Y. Huang, J. Cha, P. L. Gehlbach, and J. U. Kang, “Accurate real-time depth control for CP-SSOCT distal sensor based handheld microsurgery tools,” Biomed. Opt. Express 6(5), 1942–1953 (2015).
[Crossref] [PubMed]

C. Song, P. L. Gehlbach, and J. U. Kang, “CP-OCT sensor guided SMART micro-forceps,” Proc. SPIE 8938, 893814 (2014).
[Crossref]

C. Song, D. Y. Park, P. L. Gehlbach, S. J. Park, and J. U. Kang, “Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery,” Biomed. Opt. Express 4(7), 1045–1050 (2013).
[Crossref] [PubMed]

C. Song, P. L. Gehlbach, and J. U. Kang, “Ball lens fiber optic sensor based smart handheld microsurgical instrument,” Proc SPIE 8576, 857601 (2013).
[Crossref] [PubMed]

C. Song, P. L. Gehlbach, and J. U. Kang, “Active tremor cancellation by a “smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography,” Opt. Express 20(21), 23414–23421 (2012).
[Crossref] [PubMed]

J. U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W. P. Lee, G. Brandacher, and P. L. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref] [PubMed]

H. C. Park, C. B. Yeo, P. L. Gehlbach, and C. Song, “Development of the dual smart micro-surgical system using common-path swept source optical coherence tomography,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2015), pp. 5–8.
[Crossref]

C. Song, P. L. Gehlbach, and J. U. Kang, “Swept source optical coherence tomography based smart handheld vitreoretinal microsurgical tool for tremor suppression,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2012), pp.1405–1408.

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

X. He, D. Roppenecker, D. Gierlach, M. Balicki, K. Olds, P. L. Gehlbach, J. Handa, R. Taylor, and I. Iordachita, “Toward clinically applicable steady-hand eye robot for vitreoretinal surgery,” in Proceedings of International Mechanical Engineering Congress and Exposition (IEEE, 2012), pp. 145–153.
[Crossref]

Gierlach, D.

X. He, D. Roppenecker, D. Gierlach, M. Balicki, K. Olds, P. L. Gehlbach, J. Handa, R. Taylor, and I. Iordachita, “Toward clinically applicable steady-hand eye robot for vitreoretinal surgery,” in Proceedings of International Mechanical Engineering Congress and Exposition (IEEE, 2012), pp. 145–153.
[Crossref]

Goldman, R. E.

W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans. Robot. 25(1), 147–157 (2009).
[Crossref]

Gonenc, B.

B. Gonenc, N. Tran, C. N. Riviere, P. Gehlbach, R. H. Taylor, and I. Iordachita, “Force-based puncture detection and active position holding for assisted retinal vein cannulation,” in Proceeding of IEEE International Conference on Multisensor Fusion and Information Integration (IEEE, 2015), pp. 322–327.
[Crossref]

Gower, E.

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

Gupta, P.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res. 18(12), 1201–1210 (1999).
[Crossref]

Hager, G.

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

Hamilton, P. D.

K. E. Swindle, P. D. Hamilton, and N. Ravi, “In situ formation of hydrogels as vitreous substitutes: Viscoelastic comparison to porcine vitreous,” J. Biomed. Mater. Res. A 87(3), 656–665 (2008).
[Crossref] [PubMed]

Han, J.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[Crossref] [PubMed]

Han, J. H.

J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010).
[Crossref] [PubMed]

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Med. Image Comput. Comput .Assist. Interv. 12(Pt 1), 108–115 (2009).
[PubMed]

Handa, J.

X. He, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery,” IEEE Trans. Biomed. Eng. 61(2), 522–534 (2014).
[Crossref] [PubMed]

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 303–310 (2010).
[PubMed]

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Med. Image Comput. Comput .Assist. Interv. 12(Pt 1), 108–115 (2009).
[PubMed]

Z. Sun, M. Balicki, J. Kang, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A sub-millemetric, 0.25 mN resolution fully integrated fiber-optic force sensing tool for retinal microsurgery,” Int. J. Comput. Assist. Radiol. Surg 4(4), 383–390 (2009).
[Crossref]

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

X. He, D. Roppenecker, D. Gierlach, M. Balicki, K. Olds, P. L. Gehlbach, J. Handa, R. Taylor, and I. Iordachita, “Toward clinically applicable steady-hand eye robot for vitreoretinal surgery,” in Proceedings of International Mechanical Engineering Congress and Exposition (IEEE, 2012), pp. 145–153.
[Crossref]

Handa, J. T.

N. Cutler, M. Balicki, M. Finkelstein, J. Wang, P. Gehlbach, J. McGready, I. Iordachita, R. Taylor, and J. T. Handa, “Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 54(2), 1316–1324 (2013).
[Crossref] [PubMed]

He, X.

X. He, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery,” IEEE Trans. Biomed. Eng. 61(2), 522–534 (2014).
[Crossref] [PubMed]

X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. Kang, “Miniature fiber-optic force sensor based on low-coherence Fabry-Pérot interferometry for vitreoretinal microsurgery,” Biomed. Opt. Express 3(5), 1062–1076 (2012).
[Crossref] [PubMed]

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

Y. Horise, X. He, P. Gehlbach, R. Taylor, and I. Iordachita, “FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2015), pp. 13–16.
[Crossref]

X. He, D. Roppenecker, D. Gierlach, M. Balicki, K. Olds, P. L. Gehlbach, J. Handa, R. Taylor, and I. Iordachita, “Toward clinically applicable steady-hand eye robot for vitreoretinal surgery,” in Proceedings of International Mechanical Engineering Congress and Exposition (IEEE, 2012), pp. 145–153.
[Crossref]

Hoffman, R. S.

I. H. Fine, R. S. Hoffman, and M. Packer, “Optimizing refractive lens exchange with bimanual microincision phacoemulsification,” J. Cataract Refract. Surg. 30(3), 550–554 (2004).
[Crossref] [PubMed]

Horiguchi, M.

M. Horiguchi, Y. Kojima, and Y. Shimada, “New system for fiberoptic-free bimanual vitreous surgery,” Arch. Ophthalmol. 120(4), 491–494 (2002).
[Crossref] [PubMed]

Horise, Y.

Y. Horise, X. He, P. Gehlbach, R. Taylor, and I. Iordachita, “FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2015), pp. 13–16.
[Crossref]

Huang, Y.

G. W. Cheon, Y. Huang, J. Cha, P. L. Gehlbach, and J. U. Kang, “Accurate real-time depth control for CP-SSOCT distal sensor based handheld microsurgery tools,” Biomed. Opt. Express 6(5), 1942–1953 (2015).
[Crossref] [PubMed]

J. U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W. P. Lee, G. Brandacher, and P. L. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref] [PubMed]

Ibrahim, Z.

J. U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W. P. Lee, G. Brandacher, and P. L. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref] [PubMed]

Iordachita, I.

X. He, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery,” IEEE Trans. Biomed. Eng. 61(2), 522–534 (2014).
[Crossref] [PubMed]

N. Cutler, M. Balicki, M. Finkelstein, J. Wang, P. Gehlbach, J. McGready, I. Iordachita, R. Taylor, and J. T. Handa, “Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 54(2), 1316–1324 (2013).
[Crossref] [PubMed]

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 303–310 (2010).
[PubMed]

Z. Sun, M. Balicki, J. Kang, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A sub-millemetric, 0.25 mN resolution fully integrated fiber-optic force sensing tool for retinal microsurgery,” Int. J. Comput. Assist. Radiol. Surg 4(4), 383–390 (2009).
[Crossref]

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Med. Image Comput. Comput .Assist. Interv. 12(Pt 1), 108–115 (2009).
[PubMed]

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

Y. Horise, X. He, P. Gehlbach, R. Taylor, and I. Iordachita, “FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2015), pp. 13–16.
[Crossref]

B. Gonenc, N. Tran, C. N. Riviere, P. Gehlbach, R. H. Taylor, and I. Iordachita, “Force-based puncture detection and active position holding for assisted retinal vein cannulation,” in Proceeding of IEEE International Conference on Multisensor Fusion and Information Integration (IEEE, 2015), pp. 322–327.
[Crossref]

X. He, D. Roppenecker, D. Gierlach, M. Balicki, K. Olds, P. L. Gehlbach, J. Handa, R. Taylor, and I. Iordachita, “Toward clinically applicable steady-hand eye robot for vitreoretinal surgery,” in Proceedings of International Mechanical Engineering Congress and Exposition (IEEE, 2012), pp. 145–153.
[Crossref]

Iordachita, I. I.

Jensen, P.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res. 18(12), 1201–1210 (1999).
[Crossref]

Johnson, J.

H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Comput. Aided Surg. 4(1), 15–25 (1999).
[Crossref] [PubMed]

Joos, K. M.

H. Yu, J.-H. Shen, R. J. Shah, N. Simaan, and K. M. Joos, “Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps,” Biomed. Opt. Express 6(2), 457–472 (2015).
[Crossref] [PubMed]

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

K. M. Joos and J.-H. Shen, “Miniature real-time intraoperative forward-imaging optical coherence tomography probe,” Biomed. Opt. Express 4(8), 1342–1350 (2013).
[Crossref] [PubMed]

H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Design, calibration and preliminary testing of a robotic telemanipulator for OCT guided retinal surgery,” in Proceedings of IEEE Conference on Robotics and Automation (IEEE, 2013), pp. 225–231.
[Crossref]

Kaiser, P. K.

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

Kang, J.

Z. Sun, M. Balicki, J. Kang, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A sub-millemetric, 0.25 mN resolution fully integrated fiber-optic force sensing tool for retinal microsurgery,” Int. J. Comput. Assist. Radiol. Surg 4(4), 383–390 (2009).
[Crossref]

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Med. Image Comput. Comput .Assist. Interv. 12(Pt 1), 108–115 (2009).
[PubMed]

Kang, J. U.

G. W. Cheon, Y. Huang, J. Cha, P. L. Gehlbach, and J. U. Kang, “Accurate real-time depth control for CP-SSOCT distal sensor based handheld microsurgery tools,” Biomed. Opt. Express 6(5), 1942–1953 (2015).
[Crossref] [PubMed]

C. Song, P. L. Gehlbach, and J. U. Kang, “CP-OCT sensor guided SMART micro-forceps,” Proc. SPIE 8938, 893814 (2014).
[Crossref]

C. Song, D. Y. Park, P. L. Gehlbach, S. J. Park, and J. U. Kang, “Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery,” Biomed. Opt. Express 4(7), 1045–1050 (2013).
[Crossref] [PubMed]

C. Song, P. L. Gehlbach, and J. U. Kang, “Ball lens fiber optic sensor based smart handheld microsurgical instrument,” Proc SPIE 8576, 857601 (2013).
[Crossref] [PubMed]

X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. Kang, “Miniature fiber-optic force sensor based on low-coherence Fabry-Pérot interferometry for vitreoretinal microsurgery,” Biomed. Opt. Express 3(5), 1062–1076 (2012).
[Crossref] [PubMed]

C. Song, P. L. Gehlbach, and J. U. Kang, “Active tremor cancellation by a “smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography,” Opt. Express 20(21), 23414–23421 (2012).
[Crossref] [PubMed]

J. U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W. P. Lee, G. Brandacher, and P. L. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref] [PubMed]

J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010).
[Crossref] [PubMed]

X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Towards automatic calibration of Fourier-Domain OCT for robot-assisted vitreoretinal surgery,” Opt. Express 18(23), 24331–24343 (2010).
[Crossref] [PubMed]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[Crossref] [PubMed]

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

C. Song, P. L. Gehlbach, and J. U. Kang, “Swept source optical coherence tomography based smart handheld vitreoretinal microsurgical tool for tremor suppression,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2012), pp.1405–1408.

Kavoussi, L.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res. 18(12), 1201–1210 (1999).
[Crossref]

Kazanzides, P.

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

Kojima, Y.

M. Horiguchi, Y. Kojima, and Y. Shimada, “New system for fiberoptic-free bimanual vitreous surgery,” Arch. Ophthalmol. 120(4), 491–494 (2002).
[Crossref] [PubMed]

Kozub, J. A.

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

Kumar, R.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res. 18(12), 1201–1210 (1999).
[Crossref]

Latt, W. T.

W. T. Latt, U. X. Tan, C. Y. Shee, and W. T. Ang, “A compact hand-held active physiological tremor compensation instrument,” in Proceedings of IEEE Conference on Advanced Intelligent Mechatronics (IEEE, 2009), pp. 711–716.
[Crossref]

Lee, W. P.

J. U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W. P. Lee, G. Brandacher, and P. L. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref] [PubMed]

Li, Z.

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

Liu, X.

X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. Kang, “Miniature fiber-optic force sensor based on low-coherence Fabry-Pérot interferometry for vitreoretinal microsurgery,” Biomed. Opt. Express 3(5), 1062–1076 (2012).
[Crossref] [PubMed]

J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010).
[Crossref] [PubMed]

X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Towards automatic calibration of Fourier-Domain OCT for robot-assisted vitreoretinal surgery,” Opt. Express 18(23), 24331–24343 (2010).
[Crossref] [PubMed]

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

Lobes, L. A.

B. C. Becker, R. A. MacLachlan, L. A. Lobes, and C. N. Riviere, “Semiautomated intraocular laser surgery using handheld instruments,” Lasers Surg. Med. 42(3), 264–273 (2010).
[Crossref] [PubMed]

Lu, P.

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

MacLachlan, R. A.

S. Yang, R. A. MacLachlan, and C. N. Riviere, “Manipulator design and operation of a six-degree-of-freedom handheld tremor-canceling microsurgical instrument,” IEEE/ASME Trans. Mechatron. 20(2), 761–772 (2015).
[Crossref] [PubMed]

B. C. Becker, R. A. MacLachlan, L. A. Lobes, and C. N. Riviere, “Semiautomated intraocular laser surgery using handheld instruments,” Lasers Surg. Med. 42(3), 264–273 (2010).
[Crossref] [PubMed]

Mani, F.

E. Burdet, R. Gassert, F. Mani, F. Wang, C. L. Teo, and H. Bleuler, “Design of a haptic forceps for microsurgery training,” in Proceedings of the 4th International Conference Eurohaptics (2004), pp. 74–81.

Marcus, H. J.

C. J. Payne, H. J. Marcus, and G.-Z. Yang, “A smart haptic hand-held device for neurosurgical microdissection,” Ann. Biomed. Eng. 43(9), 2185–2195 (2015).
[Crossref] [PubMed]

Martin, D. F.

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

McGready, J.

N. Cutler, M. Balicki, M. Finkelstein, J. Wang, P. Gehlbach, J. McGready, I. Iordachita, R. Taylor, and J. T. Handa, “Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 54(2), 1316–1324 (2013).
[Crossref] [PubMed]

Noonan, A. I.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Olds, K.

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

X. He, D. Roppenecker, D. Gierlach, M. Balicki, K. Olds, P. L. Gehlbach, J. Handa, R. Taylor, and I. Iordachita, “Toward clinically applicable steady-hand eye robot for vitreoretinal surgery,” in Proceedings of International Mechanical Engineering Congress and Exposition (IEEE, 2012), pp. 145–153.
[Crossref]

Packer, M.

I. H. Fine, R. S. Hoffman, and M. Packer, “Optimizing refractive lens exchange with bimanual microincision phacoemulsification,” J. Cataract Refract. Surg. 30(3), 550–554 (2004).
[Crossref] [PubMed]

Park, D. Y.

Park, H. C.

H. C. Park, C. B. Yeo, and C. Song, “SMART micro-scissors based precise incision,” Proc. SPIE 9317, 93170P (2015).
[Crossref]

H. C. Park, C. B. Yeo, P. L. Gehlbach, and C. Song, “Development of the dual smart micro-surgical system using common-path swept source optical coherence tomography,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2015), pp. 5–8.
[Crossref]

Park, S. J.

Payne, C. J.

C. J. Payne, H. J. Marcus, and G.-Z. Yang, “A smart haptic hand-held device for neurosurgical microdissection,” Ann. Biomed. Eng. 43(9), 2185–2195 (2015).
[Crossref] [PubMed]

Prasad, R.

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

Ravi, N.

K. E. Swindle, P. D. Hamilton, and N. Ravi, “In situ formation of hydrogels as vitreous substitutes: Viscoelastic comparison to porcine vitreous,” J. Biomed. Mater. Res. A 87(3), 656–665 (2008).
[Crossref] [PubMed]

Richa, R.

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

Riviere, C. N.

S. Yang, R. A. MacLachlan, and C. N. Riviere, “Manipulator design and operation of a six-degree-of-freedom handheld tremor-canceling microsurgical instrument,” IEEE/ASME Trans. Mechatron. 20(2), 761–772 (2015).
[Crossref] [PubMed]

B. C. Becker, R. A. MacLachlan, L. A. Lobes, and C. N. Riviere, “Semiautomated intraocular laser surgery using handheld instruments,” Lasers Surg. Med. 42(3), 264–273 (2010).
[Crossref] [PubMed]

C. N. Riviere, J. Gangloff, and M. de Mathelin, “Robotic compensation of biological motion to enhance surgical accuracy,” Proc. IEEE 94(9), 1705–1716 (2006).
[Crossref]

B. Gonenc, N. Tran, C. N. Riviere, P. Gehlbach, R. H. Taylor, and I. Iordachita, “Force-based puncture detection and active position holding for assisted retinal vein cannulation,” in Proceeding of IEEE International Conference on Multisensor Fusion and Information Integration (IEEE, 2015), pp. 322–327.
[Crossref]

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

Rollins, A. M.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Roppenecker, D.

X. He, D. Roppenecker, D. Gierlach, M. Balicki, K. Olds, P. L. Gehlbach, J. Handa, R. Taylor, and I. Iordachita, “Toward clinically applicable steady-hand eye robot for vitreoretinal surgery,” in Proceedings of International Mechanical Engineering Congress and Exposition (IEEE, 2012), pp. 145–153.
[Crossref]

Shah, R. J.

Shee, C. Y.

W. T. Latt, U. X. Tan, C. Y. Shee, and W. T. Ang, “A compact hand-held active physiological tremor compensation instrument,” in Proceedings of IEEE Conference on Advanced Intelligent Mechatronics (IEEE, 2009), pp. 711–716.
[Crossref]

Shen, J. H.

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

Shen, J.-H.

Shimada, Y.

M. Horiguchi, Y. Kojima, and Y. Shimada, “New system for fiberoptic-free bimanual vitreous surgery,” Arch. Ophthalmol. 120(4), 491–494 (2002).
[Crossref] [PubMed]

Simaan, N.

H. Yu, J.-H. Shen, R. J. Shah, N. Simaan, and K. M. Joos, “Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps,” Biomed. Opt. Express 6(2), 457–472 (2015).
[Crossref] [PubMed]

W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans. Robot. 25(1), 147–157 (2009).
[Crossref]

H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Design, calibration and preliminary testing of a robotic telemanipulator for OCT guided retinal surgery,” in Proceedings of IEEE Conference on Robotics and Automation (IEEE, 2013), pp. 225–231.
[Crossref]

Smith, G. M.

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

Song, C.

H. C. Park, C. B. Yeo, and C. Song, “SMART micro-scissors based precise incision,” Proc. SPIE 9317, 93170P (2015).
[Crossref]

C. Song, P. L. Gehlbach, and J. U. Kang, “CP-OCT sensor guided SMART micro-forceps,” Proc. SPIE 8938, 893814 (2014).
[Crossref]

C. Song, D. Y. Park, P. L. Gehlbach, S. J. Park, and J. U. Kang, “Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery,” Biomed. Opt. Express 4(7), 1045–1050 (2013).
[Crossref] [PubMed]

C. Song, P. L. Gehlbach, and J. U. Kang, “Ball lens fiber optic sensor based smart handheld microsurgical instrument,” Proc SPIE 8576, 857601 (2013).
[Crossref] [PubMed]

C. Song, P. L. Gehlbach, and J. U. Kang, “Active tremor cancellation by a “smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography,” Opt. Express 20(21), 23414–23421 (2012).
[Crossref] [PubMed]

H. C. Park, C. B. Yeo, P. L. Gehlbach, and C. Song, “Development of the dual smart micro-surgical system using common-path swept source optical coherence tomography,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2015), pp. 5–8.
[Crossref]

C. Song, P. L. Gehlbach, and J. U. Kang, “Swept source optical coherence tomography based smart handheld vitreoretinal microsurgical tool for tremor suppression,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2012), pp.1405–1408.

Song, C. G.

J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010).
[Crossref] [PubMed]

Srivastava, S. K.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

Stoianovici, D.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res. 18(12), 1201–1210 (1999).
[Crossref]

Sun, Z.

Z. Sun, M. Balicki, J. Kang, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A sub-millemetric, 0.25 mN resolution fully integrated fiber-optic force sensing tool for retinal microsurgery,” Int. J. Comput. Assist. Radiol. Surg 4(4), 383–390 (2009).
[Crossref]

Swindle, K. E.

K. E. Swindle, P. D. Hamilton, and N. Ravi, “In situ formation of hydrogels as vitreous substitutes: Viscoelastic comparison to porcine vitreous,” J. Biomed. Mater. Res. A 87(3), 656–665 (2008).
[Crossref] [PubMed]

Sznitman, R.

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

Tam, T.

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

Tan, U. X.

W. T. Latt, U. X. Tan, C. Y. Shee, and W. T. Ang, “A compact hand-held active physiological tremor compensation instrument,” in Proceedings of IEEE Conference on Advanced Intelligent Mechatronics (IEEE, 2009), pp. 711–716.
[Crossref]

Tao, Y. K.

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Taylor, R.

X. He, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery,” IEEE Trans. Biomed. Eng. 61(2), 522–534 (2014).
[Crossref] [PubMed]

N. Cutler, M. Balicki, M. Finkelstein, J. Wang, P. Gehlbach, J. McGready, I. Iordachita, R. Taylor, and J. T. Handa, “Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 54(2), 1316–1324 (2013).
[Crossref] [PubMed]

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 303–310 (2010).
[PubMed]

Z. Sun, M. Balicki, J. Kang, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A sub-millemetric, 0.25 mN resolution fully integrated fiber-optic force sensing tool for retinal microsurgery,” Int. J. Comput. Assist. Radiol. Surg 4(4), 383–390 (2009).
[Crossref]

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Med. Image Comput. Comput .Assist. Interv. 12(Pt 1), 108–115 (2009).
[PubMed]

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res. 18(12), 1201–1210 (1999).
[Crossref]

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

Y. Horise, X. He, P. Gehlbach, R. Taylor, and I. Iordachita, “FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2015), pp. 13–16.
[Crossref]

X. He, D. Roppenecker, D. Gierlach, M. Balicki, K. Olds, P. L. Gehlbach, J. Handa, R. Taylor, and I. Iordachita, “Toward clinically applicable steady-hand eye robot for vitreoretinal surgery,” in Proceedings of International Mechanical Engineering Congress and Exposition (IEEE, 2012), pp. 145–153.
[Crossref]

Taylor, R. H.

Teo, C. L.

E. Burdet, R. Gassert, F. Mani, F. Wang, C. L. Teo, and H. Bleuler, “Design of a haptic forceps for microsurgery training,” in Proceedings of the 4th International Conference Eurohaptics (2004), pp. 74–81.

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Digital phase stabilization to improve detection sensitivity for optical coherence tomography,” Meas. Sci. Technol. 18(11), 3365–3372 (2007).
[Crossref]

Tran, N.

B. Gonenc, N. Tran, C. N. Riviere, P. Gehlbach, R. H. Taylor, and I. Iordachita, “Force-based puncture detection and active position holding for assisted retinal vein cannulation,” in Proceeding of IEEE International Conference on Multisensor Fusion and Information Integration (IEEE, 2015), pp. 322–327.
[Crossref]

Uneri, A.

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 303–310 (2010).
[PubMed]

Vagvolgyi, B.

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

Wang, F.

E. Burdet, R. Gassert, F. Mani, F. Wang, C. L. Teo, and H. Bleuler, “Design of a haptic forceps for microsurgery training,” in Proceedings of the 4th International Conference Eurohaptics (2004), pp. 74–81.

Wang, J.

N. Cutler, M. Balicki, M. Finkelstein, J. Wang, P. Gehlbach, J. McGready, I. Iordachita, R. Taylor, and J. T. Handa, “Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 54(2), 1316–1324 (2013).
[Crossref] [PubMed]

Wang, R. K.

P. H. Tomlins and R. K. Wang, “Digital phase stabilization to improve detection sensitivity for optical coherence tomography,” Meas. Sci. Technol. 18(11), 3365–3372 (2007).
[Crossref]

Wang, W.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[Crossref] [PubMed]

Wang, Z.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res. 18(12), 1201–1210 (1999).
[Crossref]

Wei, W.

W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans. Robot. 25(1), 147–157 (2009).
[Crossref]

Whitcomb, L.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res. 18(12), 1201–1210 (1999).
[Crossref]

Yang, G.-Z.

C. J. Payne, H. J. Marcus, and G.-Z. Yang, “A smart haptic hand-held device for neurosurgical microdissection,” Ann. Biomed. Eng. 43(9), 2185–2195 (2015).
[Crossref] [PubMed]

Yang, S.

S. Yang, R. A. MacLachlan, and C. N. Riviere, “Manipulator design and operation of a six-degree-of-freedom handheld tremor-canceling microsurgical instrument,” IEEE/ASME Trans. Mechatron. 20(2), 761–772 (2015).
[Crossref] [PubMed]

Yeo, C. B.

H. C. Park, C. B. Yeo, and C. Song, “SMART micro-scissors based precise incision,” Proc. SPIE 9317, 93170P (2015).
[Crossref]

H. C. Park, C. B. Yeo, P. L. Gehlbach, and C. Song, “Development of the dual smart micro-surgical system using common-path swept source optical coherence tomography,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2015), pp. 5–8.
[Crossref]

Yu, H.

H. Yu, J.-H. Shen, R. J. Shah, N. Simaan, and K. M. Joos, “Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps,” Biomed. Opt. Express 6(2), 457–472 (2015).
[Crossref] [PubMed]

H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Design, calibration and preliminary testing of a robotic telemanipulator for OCT guided retinal surgery,” in Proceedings of IEEE Conference on Robotics and Automation (IEEE, 2013), pp. 225–231.
[Crossref]

Zak, H.

H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Comput. Aided Surg. 4(1), 15–25 (1999).
[Crossref] [PubMed]

Zhang, K.

J. U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W. P. Lee, G. Brandacher, and P. L. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref] [PubMed]

J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010).
[Crossref] [PubMed]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

C. J. Payne, H. J. Marcus, and G.-Z. Yang, “A smart haptic hand-held device for neurosurgical microdissection,” Ann. Biomed. Eng. 43(9), 2185–2195 (2015).
[Crossref] [PubMed]

Arch. Ophthalmol. (1)

M. Horiguchi, Y. Kojima, and Y. Shimada, “New system for fiberoptic-free bimanual vitreous surgery,” Arch. Ophthalmol. 120(4), 491–494 (2002).
[Crossref] [PubMed]

Biomed. Opt. Express (6)

Comput. Aided Surg. (1)

H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Comput. Aided Surg. 4(1), 15–25 (1999).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (2)

X. He, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery,” IEEE Trans. Biomed. Eng. 61(2), 522–534 (2014).
[Crossref] [PubMed]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[Crossref] [PubMed]

IEEE Trans. Robot. (1)

W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans. Robot. 25(1), 147–157 (2009).
[Crossref]

IEEE/ASME Trans. Mechatron. (1)

S. Yang, R. A. MacLachlan, and C. N. Riviere, “Manipulator design and operation of a six-degree-of-freedom handheld tremor-canceling microsurgical instrument,” IEEE/ASME Trans. Mechatron. 20(2), 761–772 (2015).
[Crossref] [PubMed]

Int. J. Comput. Assist. Radiol. Surg (1)

Z. Sun, M. Balicki, J. Kang, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A sub-millemetric, 0.25 mN resolution fully integrated fiber-optic force sensing tool for retinal microsurgery,” Int. J. Comput. Assist. Radiol. Surg 4(4), 383–390 (2009).
[Crossref]

Int. J. Robot. Res. (1)

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res. 18(12), 1201–1210 (1999).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

N. Cutler, M. Balicki, M. Finkelstein, J. Wang, P. Gehlbach, J. McGready, I. Iordachita, R. Taylor, and J. T. Handa, “Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 54(2), 1316–1324 (2013).
[Crossref] [PubMed]

J. Biomed. Mater. Res. A (1)

K. E. Swindle, P. D. Hamilton, and N. Ravi, “In situ formation of hydrogels as vitreous substitutes: Viscoelastic comparison to porcine vitreous,” J. Biomed. Mater. Res. A 87(3), 656–665 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

J. U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W. P. Lee, G. Brandacher, and P. L. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (1)

I. H. Fine, R. S. Hoffman, and M. Packer, “Optimizing refractive lens exchange with bimanual microincision phacoemulsification,” J. Cataract Refract. Surg. 30(3), 550–554 (2004).
[Crossref] [PubMed]

Lasers Surg. Med. (2)

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

B. C. Becker, R. A. MacLachlan, L. A. Lobes, and C. N. Riviere, “Semiautomated intraocular laser surgery using handheld instruments,” Lasers Surg. Med. 42(3), 264–273 (2010).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

P. H. Tomlins and R. K. Wang, “Digital phase stabilization to improve detection sensitivity for optical coherence tomography,” Meas. Sci. Technol. 18(11), 3365–3372 (2007).
[Crossref]

Med. Image Comput. Comput .Assist. Interv. (1)

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Med. Image Comput. Comput .Assist. Interv. 12(Pt 1), 108–115 (2009).
[PubMed]

Med. Image Comput. Comput. Assist. Interv. (1)

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 303–310 (2010).
[PubMed]

Opt. Express (2)

PLoS One (1)

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref] [PubMed]

Proc SPIE (1)

C. Song, P. L. Gehlbach, and J. U. Kang, “Ball lens fiber optic sensor based smart handheld microsurgical instrument,” Proc SPIE 8576, 857601 (2013).
[Crossref] [PubMed]

Proc. IEEE (1)

C. N. Riviere, J. Gangloff, and M. de Mathelin, “Robotic compensation of biological motion to enhance surgical accuracy,” Proc. IEEE 94(9), 1705–1716 (2006).
[Crossref]

Proc. SPIE (2)

C. Song, P. L. Gehlbach, and J. U. Kang, “CP-OCT sensor guided SMART micro-forceps,” Proc. SPIE 8938, 893814 (2014).
[Crossref]

H. C. Park, C. B. Yeo, and C. Song, “SMART micro-scissors based precise incision,” Proc. SPIE 9317, 93170P (2015).
[Crossref]

Retina (1)

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

Other (13)

B. Gonenc, N. Tran, C. N. Riviere, P. Gehlbach, R. H. Taylor, and I. Iordachita, “Force-based puncture detection and active position holding for assisted retinal vein cannulation,” in Proceeding of IEEE International Conference on Multisensor Fusion and Information Integration (IEEE, 2015), pp. 322–327.
[Crossref]

E. Burdet, R. Gassert, F. Mani, F. Wang, C. L. Teo, and H. Bleuler, “Design of a haptic forceps for microsurgery training,” in Proceedings of the 4th International Conference Eurohaptics (2004), pp. 74–81.

H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Design, calibration and preliminary testing of a robotic telemanipulator for OCT guided retinal surgery,” in Proceedings of IEEE Conference on Robotics and Automation (IEEE, 2013), pp. 225–231.
[Crossref]

H. C. Park, C. B. Yeo, P. L. Gehlbach, and C. Song, “Development of the dual smart micro-surgical system using common-path swept source optical coherence tomography,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2015), pp. 5–8.
[Crossref]

E. Sohn, U. scott, and D. Eliott, “Bimanual vitreoretinal surgery for tractional retinal detachment due to proliferative diabetic retinopathy,” July/August Retina Today, 41–43 (2011).

Y. Horise, X. He, P. Gehlbach, R. Taylor, and I. Iordachita, “FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2015), pp. 13–16.
[Crossref]

M. Balicki, R. Richa, M. Balicki, B. Vagvolgyi, P. Kazanides, P. Gehlbach, J. Handa, J. Kang, and R. Taylor, “Interactive OCT annotation and visualization for vitreoretinal surgery” Augmented Environments for Computer-Assisted Interventions. Lecture Notes in Computer Science. 7815, 142–152 (2013).

C. Song, P. L. Gehlbach, and J. U. Kang, “Swept source optical coherence tomography based smart handheld vitreoretinal microsurgical tool for tremor suppression,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (IEEE, 2012), pp.1405–1408.

A. Uneri, M. Balicki, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “New steady-hand eye robot with micro-force sensing for vitreoretinal surgery,” in Proceedings of. IEEE BioRob (IEEE, 2010), pp. 814–819.

R. Taylor, J. U. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. N. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. L. Gehlbach, and J. Handa, “Recent work toward a microsurgical assistant for retinal surgery,” in Hamlyn Symposium on Medical Robotics (2011), pp. 3–4.

X. He, D. Roppenecker, D. Gierlach, M. Balicki, K. Olds, P. L. Gehlbach, J. Handa, R. Taylor, and I. Iordachita, “Toward clinically applicable steady-hand eye robot for vitreoretinal surgery,” in Proceedings of International Mechanical Engineering Congress and Exposition (IEEE, 2012), pp. 145–153.
[Crossref]

B. Gonenc, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A comparative study for robot assisted vitreoretinal surgery: micron vs. the steady-hand robot,” in Proceedings of IEEE Conference on Robotics and Automation (IEEE, 2013), pp. 4832–4837.
[Crossref]

W. T. Latt, U. X. Tan, C. Y. Shee, and W. T. Ang, “A compact hand-held active physiological tremor compensation instrument,” in Proceedings of IEEE Conference on Advanced Intelligent Mechatronics (IEEE, 2009), pp. 711–716.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The bimanual SMART micro-surgical system using ball-lens coupled CP SS-OCT distance sensors. (a) Schematic of the proposed system. (b) Configuration of a SMART micro-scissors probe including a PZT motor. (c) A magnified view of the scissors’ blades including a ball lens probe.
Fig. 2
Fig. 2 The control algorithm of SMART system.
Fig. 3
Fig. 3 Comparison of OCT SNR at various angles of the ball-lens coupled OCT distance sensor relative to a target plane. The optimal 90-degree result represents when the sensor is perpendicular to the horizontal plane.
Fig. 4
Fig. 4 Simulation results of the ray tracing. A demonstration of the correlation between the back focal length, and the distance between optical fiber tip and the ball lens.
Fig. 5
Fig. 5 Schematic of bimanual micro-dissection performed on an egg membrane.
Fig. 6
Fig. 6 Stability performance of the SMART micro-scissors in water. (a) Height signal (distance from target) result at 90 degree. Blue line is freehand signals and red line is SMART-assisted signals. (b) The comparison of Fourier analysis between SMART-assisted and freehand. (c) Stable height positioning results at three angles. (d) Optical images of the setup at three different angles.
Fig. 7
Fig. 7 Comparison between freehand dissection (blue) and bimanual SMART-assisted dissection (red) of an egg membrane. (a) Height variation of each end-effector. (b) Results of the Fourier analysis of the corresponding OCT sensor signals. (c) Optical image of each dissection: freehand and bimanual (Dual SMART).
Fig. 8
Fig. 8 Bimanual grasping in an open sky porcine eye. (a) Height signal (blue line: SMART forceps, red line: SMART scissors). (b) Optical image of the bimanual procedure in an open sky porcine eye.

Tables (1)

Tables Icon

Table 1 Comparison of assisted and freehand manipulation performance from the point of view of completion time, and root mean square error (RMSE)

Metrics