Abstract

In this article we suggest a new concept for cell destruction based upon manipulating magnetic nanoparticles (MNPs) by applying external, low frequency alternating magnetic field (AMF) that oscillates the particles, together with focused laser illumination. Assessment of temperature profiles in a head and neck squamous cell carcinoma sample showed that cells with MNPs, treated with AMF (3 Hz, 300 mW) and laser irradiation (30 mW), reached 42°C after 4.5 min, as opposed to cells treated with laser but without AMF. Moreover, a theoretical model was developed to assess the overall theoretical temperature rise, which was shown to be 50% lower than the experimental temperature. Furthermore, we found that the combination of laser irradiation and AMF decreased the number of live cells by ~50%. Thus, the concentrated assembly of laser heating with AMF-induced MNP oscillations leads to more rapid and efficient cell death. These results suggest that the manipulated MNP technique can serve as a superior agent for PTT, with improved cell death capabilities.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simulation of nanoparticle-mediated near-infrared thermal therapy using GATE

Vesna Cuplov, Frédéric Pain, and Sébastien Jan
Biomed. Opt. Express 8(3) 1665-1681 (2017)

In vivo photothermal treatment with real-time monitoring by optical fiber-needle array

Taeseok Daniel Yang, Kwanjun Park, Hyung-Jin Kim, Nu-Ri Im, Byoungjae Kim, TaeHoon Kim, Sohyun Seo, Jae-Seung Lee, Beop-Min Kim, Youngwoon Choi, and Seung-Kuk Baek
Biomed. Opt. Express 8(7) 3482-3492 (2017)

Modality switching between therapy and imaging based on the excitation wavelength dependence of dual-function agents in folic acid-conjugated graphene oxides

Seung Won Jun, Junyoung Kwon, Soo Kyung Chun, Hyun Ah Lee, Jaebeom Lee, Dae Youn Hwang, Chen-Yuan Dong, and Chang-Seok Kim
Biomed. Opt. Express 9(2) 705-716 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X.-L. Yue, F. Ma, and Z.-F. Dai, “Multifunctional magnetic nanoparticles for magnetic resonance image-guided photothermal therapy for cancer,” Chin. Phys. B 23(4), 044301 (2014).
    [Crossref]
  2. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
    [Crossref] [PubMed]
  3. L. Soustelle, B. Aigouy, M.-L. Asensio, and A. Giangrande, “UV laser mediated cell selective destruction by confocal microscopy,” Neural Dev. 3(1), 11 (2008).
    [Crossref] [PubMed]
  4. I. Marcos-Campos, L. Asín, T. E. Torres, C. Marquina, A. Tres, M. R. Ibarra, and G. F. Goya, “Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells,” Nanotechnology 22(20), 205101 (2011).
    [Crossref] [PubMed]
  5. A. Ito and T. Kobayashi, “Intracellular Hyperthermia Using Magnetic Nanoparticles : A Novel Method for Hyperthermia Clinical Applications,” Therm. Med. 24(4), 113–129 (2008).
    [Crossref]
  6. A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” J. Biosci. Bioeng. 100(1), 1–11 (2005).
    [Crossref] [PubMed]
  7. V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro Characterization of Movement, Heating and Visualization of Magnetic Nanoparticles for Biomedical Applications,” Nanotechnology 16(8), 1221–1233 (2005).
    [Crossref]
  8. M. Kawashita, S. Domi, Y. Saito, M. Aoki, Y. Ebisawa, T. Kokubo, T. Saito, M. Takano, N. Araki, and M. Hiraoka, “In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field,” J. Mater. Sci. Mater. Med. 19(5), 1897–1903 (2008).
    [Crossref] [PubMed]
  9. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [Crossref] [PubMed]
  10. A. W. Sainter, T. A. King, and M. R. Dickinson, “Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography,” J. Biomed. Opt. 9(1), 193–199 (2004).
    [Crossref] [PubMed]
  11. M. Johannsen, U. Gneveckow, B. Thiesen, K. Taymoorian, C. H. Cho, N. Waldöfner, R. Scholz, A. Jordan, S. A. Loening, and P. Wust, “Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution,” Eur. Urol. 52(6), 1653–1662 (2007).
    [Crossref] [PubMed]
  12. T. Roose, “Challenges in imaging and predictive modeling of rhizosphere processes,” Plant Soil 407, 9–38 (2016).
  13. C. C. Berry, “Progress in functionalization of magnetic nanoparticles for applications in biomedicine,” J. Phys. D Appl. Phys. 198, 22 (2009).
  14. Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D Appl. Phys. 42(22), 224001 (2009).
    [Crossref]
  15. V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications,” Nanotechnology 16(8), 1221–1233 (2005).
    [Crossref]
  16. T. Dreifuss, O. Betzer, M. Shilo, A. Popovtzer, M. Motiei, and R. Popovtzer, “A challenge for theranostics: is the optimal particle for therapy also optimal for diagnostics?” Nanoscale 7(37), 15175–15184 (2015).
    [Crossref] [PubMed]
  17. T. Reuveni, M. Motiei, Z. Romman, A. Popovtzer, and R. Popovtzer, “Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study,” Int. J. Nanomedicine 6, 2859–2864 (2011).
    [PubMed]
  18. V. Adi, R. Arkady, B. Yevgeny, D. Hamootal, P. Rachel, and Z. Zeev, “manipulated magnetic nano particles for photonic biomedical mapping,” Nanosci. Nanotechnol. Lett. 7, 1–9 (2015).
  19. H. Deramond, N. T. Wright, and S. M. Belkoff, “Temperature elevation caused by bone cement polymerization during vertebroplasty,” Bone 25(2Suppl), 17S–21S (1999).
    [Crossref] [PubMed]
  20. 20. Ag, L. C. “Technical Reference Guide Protocol for Performing a Trypan Blue Viability Test,” BioResearch 2–3.
  21. NEXCELOM-Innovation and Expertise in the Science of Cell Counting. at < http://www.nexcelom.com/Applications/measure-cell-viability-using-trypan-blue-or-AOPI.php >
  22. Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17(24), 21566–21580 (2009).
    [Crossref] [PubMed]
  23. U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol. 37(1), 21–35 (1992).
    [Crossref] [PubMed]
  24. A. Welch, “The thermal response of laser irradiated tissue,” IEEE J. Quantum Electron. 20(12), 1471–1481 (1984).
    [Crossref]
  25. J. T. Lin, “Selective cancer therapy using IR-laser-excited gold nanorods,” SPIE Newsroom 2–4, 2507 (2010).
  26. D. G. Jay, “Selective destruction of protein function by chromophore-assisted laser inactivation,” Proc. Natl. Acad. Sci. U.S.A. 85(15), 5454–5458 (1988).
    [Crossref] [PubMed]
  27. S. Wang, Y. Zhou, J. Tan, J. Xu, J. Yang, and Y. Liu, “Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field,” Comput. Mech. 53(3), 403–412 (2014).
    [Crossref] [PubMed]
  28. J.-T. Lin, Y.-L. Hong, and C.-L. Chang, “Selective cancer therapy via IR-laser-excited gold nanorods,” Medicine (Baltimore) 7562, 75620R (2010).
  29. Z. G. Forbes, B. B. Yellen, D. S. Halverson, G. Fridman, K. A. Barbee, and G. Friedman, “Validation of High Gradient Magnetic Field Based Drug Delivery to Magnetizable Implants Under Flow,” IEEE Trans. Biomed. Eng. 55(2), 643–649 (2008).
    [Crossref] [PubMed]
  30. C. L. Ondeck, “Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating,” J. Appl. Phys. 105, 07B324 (2009).
  31. K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles,” Adv. Mater. 24(14), 1868–1872 (2012).
    [Crossref] [PubMed]
  32. D. Zhu, F. Liu, L. Ma, D. Liu, and Z. Wang, “Nanoparticle-based systems for t(1)-weighted magnetic resonance imaging contrast agents,” Int. J. Mol. Sci. 14(5), 10591–10607 (2013).
    [Crossref] [PubMed]
  33. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
    [Crossref]
  34. P. Van Den Berg, A. T. De Hoop, A. Segal, and N. Praagman, “A Computational Model of the Electromagnetic Heating of Biological Tissue with Application to Hyperthermic Cancer Therapy,” IEEE Trans. Biomed. Eng. 30, 797–805 (1983).
  35. R. Ludwig, M. Stapf, S. Dutz, R. Müller, U. Teichgräber, and I. Hilger, “Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential,” Nanoscale Res. Lett. 9(1), 602 (2014).
    [Crossref] [PubMed]
  36. K. Du, Y. Zhu, H. Xu, and X. Yang, “Multifunctional magnetic nanoparticles: Synthesis modification and biomedical applications,” Prog. Chem. 23, 2287–2298 (2011).
  37. Y. El Mendili, F. Grasset, N. Randrianantoandro, N. Nerambourg, J.-M. Greneche, and J.-F. Bardeau, “Improvement of thermal stability of maghemite nanoparticles coated with oleic acid and oleylamine molecules: Investigations under laser irradiation,” J. Phys. Chem. C 119(19), 10662–10668 (2015).
    [Crossref]
  38. K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
    [Crossref] [PubMed]
  39. K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
    [Crossref] [PubMed]
  40. C. Tsouris and T. C. Scott, “Flocculation of Paramagnetic Particles in a Magnetic Field,” J. Colloid Interface Sci. 171(2), 319–330 (1995).
    [Crossref]
  41. W. R. Chen, R. L. Adams, K. E. Bartels, and R. E. Nordquist, “Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser,” Cancer Lett. 94(2), 125–131 (1995).
    [Crossref] [PubMed]
  42. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
    [Crossref] [PubMed]
  43. J.-T. Lin, Y.-S. Chiang, G.-H. Lin, H. Lee, and H.-W. Liu, “In Vitro Photothermal Destruction of Cancer Cells Using Gold Nanorods and Pulsed-Train Near-Infrared Laser,” J. Nanomater. 2012, 1–6 (2012).
  44. D. O. Lapotko and V. P. Zharov, “Spectral evaluation of laser-induced cell damage with photothermal microscopy,” Lasers Surg. Med. 36(1), 22–30 (2005).
    [Crossref] [PubMed]
  45. Y. Zhang, Y. Guo, P. Quirke, and D. Zhou, “Ultrasensitive single-nucleotide polymorphism detection using target-recycled ligation, strand displacement and enzymatic amplification,” Nanoscale 5(11), 5027–5035 (2013).
    [Crossref] [PubMed]
  46. M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, “‘Smart’ Diblock Copolymers as templates for magnetic-Core Gold-Shell Nanoparticles Synthesis,” Nano Lett. 10, 85–91 (2011).
    [Crossref] [PubMed]
  47. J. M. El Khoury, D. Caruntu, C. J. O’ Connor, K.-U. Jeong, S. Z. D. Cheng, and J. Hu, “Poly(allylamine) stabilized iron oxide magnetic nanoparticles,” J. Nanopart. Res. 9(5), 959–964 (2007).
    [Crossref]

2016 (1)

T. Roose, “Challenges in imaging and predictive modeling of rhizosphere processes,” Plant Soil 407, 9–38 (2016).

2015 (3)

T. Dreifuss, O. Betzer, M. Shilo, A. Popovtzer, M. Motiei, and R. Popovtzer, “A challenge for theranostics: is the optimal particle for therapy also optimal for diagnostics?” Nanoscale 7(37), 15175–15184 (2015).
[Crossref] [PubMed]

V. Adi, R. Arkady, B. Yevgeny, D. Hamootal, P. Rachel, and Z. Zeev, “manipulated magnetic nano particles for photonic biomedical mapping,” Nanosci. Nanotechnol. Lett. 7, 1–9 (2015).

Y. El Mendili, F. Grasset, N. Randrianantoandro, N. Nerambourg, J.-M. Greneche, and J.-F. Bardeau, “Improvement of thermal stability of maghemite nanoparticles coated with oleic acid and oleylamine molecules: Investigations under laser irradiation,” J. Phys. Chem. C 119(19), 10662–10668 (2015).
[Crossref]

2014 (3)

S. Wang, Y. Zhou, J. Tan, J. Xu, J. Yang, and Y. Liu, “Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field,” Comput. Mech. 53(3), 403–412 (2014).
[Crossref] [PubMed]

X.-L. Yue, F. Ma, and Z.-F. Dai, “Multifunctional magnetic nanoparticles for magnetic resonance image-guided photothermal therapy for cancer,” Chin. Phys. B 23(4), 044301 (2014).
[Crossref]

R. Ludwig, M. Stapf, S. Dutz, R. Müller, U. Teichgräber, and I. Hilger, “Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential,” Nanoscale Res. Lett. 9(1), 602 (2014).
[Crossref] [PubMed]

2013 (2)

Y. Zhang, Y. Guo, P. Quirke, and D. Zhou, “Ultrasensitive single-nucleotide polymorphism detection using target-recycled ligation, strand displacement and enzymatic amplification,” Nanoscale 5(11), 5027–5035 (2013).
[Crossref] [PubMed]

D. Zhu, F. Liu, L. Ma, D. Liu, and Z. Wang, “Nanoparticle-based systems for t(1)-weighted magnetic resonance imaging contrast agents,” Int. J. Mol. Sci. 14(5), 10591–10607 (2013).
[Crossref] [PubMed]

2012 (3)

K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles,” Adv. Mater. 24(14), 1868–1872 (2012).
[Crossref] [PubMed]

K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
[Crossref] [PubMed]

J.-T. Lin, Y.-S. Chiang, G.-H. Lin, H. Lee, and H.-W. Liu, “In Vitro Photothermal Destruction of Cancer Cells Using Gold Nanorods and Pulsed-Train Near-Infrared Laser,” J. Nanomater. 2012, 1–6 (2012).

2011 (4)

K. Du, Y. Zhu, H. Xu, and X. Yang, “Multifunctional magnetic nanoparticles: Synthesis modification and biomedical applications,” Prog. Chem. 23, 2287–2298 (2011).

M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, “‘Smart’ Diblock Copolymers as templates for magnetic-Core Gold-Shell Nanoparticles Synthesis,” Nano Lett. 10, 85–91 (2011).
[Crossref] [PubMed]

I. Marcos-Campos, L. Asín, T. E. Torres, C. Marquina, A. Tres, M. R. Ibarra, and G. F. Goya, “Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells,” Nanotechnology 22(20), 205101 (2011).
[Crossref] [PubMed]

T. Reuveni, M. Motiei, Z. Romman, A. Popovtzer, and R. Popovtzer, “Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study,” Int. J. Nanomedicine 6, 2859–2864 (2011).
[PubMed]

2010 (2)

J.-T. Lin, Y.-L. Hong, and C.-L. Chang, “Selective cancer therapy via IR-laser-excited gold nanorods,” Medicine (Baltimore) 7562, 75620R (2010).

J. T. Lin, “Selective cancer therapy using IR-laser-excited gold nanorods,” SPIE Newsroom 2–4, 2507 (2010).

2009 (4)

C. L. Ondeck, “Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating,” J. Appl. Phys. 105, 07B324 (2009).

C. C. Berry, “Progress in functionalization of magnetic nanoparticles for applications in biomedicine,” J. Phys. D Appl. Phys. 198, 22 (2009).

Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D Appl. Phys. 42(22), 224001 (2009).
[Crossref]

Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17(24), 21566–21580 (2009).
[Crossref] [PubMed]

2008 (4)

L. Soustelle, B. Aigouy, M.-L. Asensio, and A. Giangrande, “UV laser mediated cell selective destruction by confocal microscopy,” Neural Dev. 3(1), 11 (2008).
[Crossref] [PubMed]

A. Ito and T. Kobayashi, “Intracellular Hyperthermia Using Magnetic Nanoparticles : A Novel Method for Hyperthermia Clinical Applications,” Therm. Med. 24(4), 113–129 (2008).
[Crossref]

M. Kawashita, S. Domi, Y. Saito, M. Aoki, Y. Ebisawa, T. Kokubo, T. Saito, M. Takano, N. Araki, and M. Hiraoka, “In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field,” J. Mater. Sci. Mater. Med. 19(5), 1897–1903 (2008).
[Crossref] [PubMed]

Z. G. Forbes, B. B. Yellen, D. S. Halverson, G. Fridman, K. A. Barbee, and G. Friedman, “Validation of High Gradient Magnetic Field Based Drug Delivery to Magnetizable Implants Under Flow,” IEEE Trans. Biomed. Eng. 55(2), 643–649 (2008).
[Crossref] [PubMed]

2007 (4)

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref] [PubMed]

M. Johannsen, U. Gneveckow, B. Thiesen, K. Taymoorian, C. H. Cho, N. Waldöfner, R. Scholz, A. Jordan, S. A. Loening, and P. Wust, “Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution,” Eur. Urol. 52(6), 1653–1662 (2007).
[Crossref] [PubMed]

J. M. El Khoury, D. Caruntu, C. J. O’ Connor, K.-U. Jeong, S. Z. D. Cheng, and J. Hu, “Poly(allylamine) stabilized iron oxide magnetic nanoparticles,” J. Nanopart. Res. 9(5), 959–964 (2007).
[Crossref]

2006 (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

2005 (4)

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” J. Biosci. Bioeng. 100(1), 1–11 (2005).
[Crossref] [PubMed]

V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro Characterization of Movement, Heating and Visualization of Magnetic Nanoparticles for Biomedical Applications,” Nanotechnology 16(8), 1221–1233 (2005).
[Crossref]

V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications,” Nanotechnology 16(8), 1221–1233 (2005).
[Crossref]

D. O. Lapotko and V. P. Zharov, “Spectral evaluation of laser-induced cell damage with photothermal microscopy,” Lasers Surg. Med. 36(1), 22–30 (2005).
[Crossref] [PubMed]

2004 (1)

A. W. Sainter, T. A. King, and M. R. Dickinson, “Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography,” J. Biomed. Opt. 9(1), 193–199 (2004).
[Crossref] [PubMed]

2003 (1)

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

2000 (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

1999 (1)

H. Deramond, N. T. Wright, and S. M. Belkoff, “Temperature elevation caused by bone cement polymerization during vertebroplasty,” Bone 25(2Suppl), 17S–21S (1999).
[Crossref] [PubMed]

1995 (2)

C. Tsouris and T. C. Scott, “Flocculation of Paramagnetic Particles in a Magnetic Field,” J. Colloid Interface Sci. 171(2), 319–330 (1995).
[Crossref]

W. R. Chen, R. L. Adams, K. E. Bartels, and R. E. Nordquist, “Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser,” Cancer Lett. 94(2), 125–131 (1995).
[Crossref] [PubMed]

1992 (1)

U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol. 37(1), 21–35 (1992).
[Crossref] [PubMed]

1988 (1)

D. G. Jay, “Selective destruction of protein function by chromophore-assisted laser inactivation,” Proc. Natl. Acad. Sci. U.S.A. 85(15), 5454–5458 (1988).
[Crossref] [PubMed]

1984 (1)

A. Welch, “The thermal response of laser irradiated tissue,” IEEE J. Quantum Electron. 20(12), 1471–1481 (1984).
[Crossref]

1983 (1)

P. Van Den Berg, A. T. De Hoop, A. Segal, and N. Praagman, “A Computational Model of the Electromagnetic Heating of Biological Tissue with Application to Hyperthermic Cancer Therapy,” IEEE Trans. Biomed. Eng. 30, 797–805 (1983).

Adams, R. L.

W. R. Chen, R. L. Adams, K. E. Bartels, and R. E. Nordquist, “Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser,” Cancer Lett. 94(2), 125–131 (1995).
[Crossref] [PubMed]

Adi, V.

V. Adi, R. Arkady, B. Yevgeny, D. Hamootal, P. Rachel, and Z. Zeev, “manipulated magnetic nano particles for photonic biomedical mapping,” Nanosci. Nanotechnol. Lett. 7, 1–9 (2015).

Aigouy, B.

L. Soustelle, B. Aigouy, M.-L. Asensio, and A. Giangrande, “UV laser mediated cell selective destruction by confocal microscopy,” Neural Dev. 3(1), 11 (2008).
[Crossref] [PubMed]

Aoki, M.

M. Kawashita, S. Domi, Y. Saito, M. Aoki, Y. Ebisawa, T. Kokubo, T. Saito, M. Takano, N. Araki, and M. Hiraoka, “In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field,” J. Mater. Sci. Mater. Med. 19(5), 1897–1903 (2008).
[Crossref] [PubMed]

Araki, N.

M. Kawashita, S. Domi, Y. Saito, M. Aoki, Y. Ebisawa, T. Kokubo, T. Saito, M. Takano, N. Araki, and M. Hiraoka, “In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field,” J. Mater. Sci. Mater. Med. 19(5), 1897–1903 (2008).
[Crossref] [PubMed]

Arkady, R.

V. Adi, R. Arkady, B. Yevgeny, D. Hamootal, P. Rachel, and Z. Zeev, “manipulated magnetic nano particles for photonic biomedical mapping,” Nanosci. Nanotechnol. Lett. 7, 1–9 (2015).

Asensio, M.-L.

L. Soustelle, B. Aigouy, M.-L. Asensio, and A. Giangrande, “UV laser mediated cell selective destruction by confocal microscopy,” Neural Dev. 3(1), 11 (2008).
[Crossref] [PubMed]

Asín, L.

I. Marcos-Campos, L. Asín, T. E. Torres, C. Marquina, A. Tres, M. R. Ibarra, and G. F. Goya, “Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells,” Nanotechnology 22(20), 205101 (2011).
[Crossref] [PubMed]

Barbee, K. A.

Z. G. Forbes, B. B. Yellen, D. S. Halverson, G. Fridman, K. A. Barbee, and G. Friedman, “Validation of High Gradient Magnetic Field Based Drug Delivery to Magnetizable Implants Under Flow,” IEEE Trans. Biomed. Eng. 55(2), 643–649 (2008).
[Crossref] [PubMed]

Bardeau, J.-F.

Y. El Mendili, F. Grasset, N. Randrianantoandro, N. Nerambourg, J.-M. Greneche, and J.-F. Bardeau, “Improvement of thermal stability of maghemite nanoparticles coated with oleic acid and oleylamine molecules: Investigations under laser irradiation,” J. Phys. Chem. C 119(19), 10662–10668 (2015).
[Crossref]

Bartels, K. E.

W. R. Chen, R. L. Adams, K. E. Bartels, and R. E. Nordquist, “Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser,” Cancer Lett. 94(2), 125–131 (1995).
[Crossref] [PubMed]

Beiderman, Y.

Belkoff, S. M.

H. Deramond, N. T. Wright, and S. M. Belkoff, “Temperature elevation caused by bone cement polymerization during vertebroplasty,” Bone 25(2Suppl), 17S–21S (1999).
[Crossref] [PubMed]

Berry, C. C.

C. C. Berry, “Progress in functionalization of magnetic nanoparticles for applications in biomedicine,” J. Phys. D Appl. Phys. 198, 22 (2009).

Betzer, O.

T. Dreifuss, O. Betzer, M. Shilo, A. Popovtzer, M. Motiei, and R. Popovtzer, “A challenge for theranostics: is the optimal particle for therapy also optimal for diagnostics?” Nanoscale 7(37), 15175–15184 (2015).
[Crossref] [PubMed]

Bischof, J. C.

V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications,” Nanotechnology 16(8), 1221–1233 (2005).
[Crossref]

V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro Characterization of Movement, Heating and Visualization of Magnetic Nanoparticles for Biomedical Applications,” Nanotechnology 16(8), 1221–1233 (2005).
[Crossref]

Butler, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Cahill, D. G.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Caruntu, D.

J. M. El Khoury, D. Caruntu, C. J. O’ Connor, K.-U. Jeong, S. Z. D. Cheng, and J. Hu, “Poly(allylamine) stabilized iron oxide magnetic nanoparticles,” J. Nanopart. Res. 9(5), 959–964 (2007).
[Crossref]

Cerussi, A.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Chang, C.-L.

J.-T. Lin, Y.-L. Hong, and C.-L. Chang, “Selective cancer therapy via IR-laser-excited gold nanorods,” Medicine (Baltimore) 7562, 75620R (2010).

Chen, W. R.

W. R. Chen, R. L. Adams, K. E. Bartels, and R. E. Nordquist, “Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser,” Cancer Lett. 94(2), 125–131 (1995).
[Crossref] [PubMed]

Cheng, L.

K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
[Crossref] [PubMed]

K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles,” Adv. Mater. 24(14), 1868–1872 (2012).
[Crossref] [PubMed]

Cheng, S. Z. D.

J. M. El Khoury, D. Caruntu, C. J. O’ Connor, K.-U. Jeong, S. Z. D. Cheng, and J. Hu, “Poly(allylamine) stabilized iron oxide magnetic nanoparticles,” J. Nanopart. Res. 9(5), 959–964 (2007).
[Crossref]

Chiang, Y.-S.

J.-T. Lin, Y.-S. Chiang, G.-H. Lin, H. Lee, and H.-W. Liu, “In Vitro Photothermal Destruction of Cancer Cells Using Gold Nanorods and Pulsed-Train Near-Infrared Laser,” J. Nanomater. 2012, 1–6 (2012).

Cho, C. H.

M. Johannsen, U. Gneveckow, B. Thiesen, K. Taymoorian, C. H. Cho, N. Waldöfner, R. Scholz, A. Jordan, S. A. Loening, and P. Wust, “Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution,” Eur. Urol. 52(6), 1653–1662 (2007).
[Crossref] [PubMed]

Dai, Z.-F.

X.-L. Yue, F. Ma, and Z.-F. Dai, “Multifunctional magnetic nanoparticles for magnetic resonance image-guided photothermal therapy for cancer,” Chin. Phys. B 23(4), 044301 (2014).
[Crossref]

De Hoop, A. T.

P. Van Den Berg, A. T. De Hoop, A. Segal, and N. Praagman, “A Computational Model of the Electromagnetic Heating of Biological Tissue with Application to Hyperthermic Cancer Therapy,” IEEE Trans. Biomed. Eng. 30, 797–805 (1983).

Deramond, H.

H. Deramond, N. T. Wright, and S. M. Belkoff, “Temperature elevation caused by bone cement polymerization during vertebroplasty,” Bone 25(2Suppl), 17S–21S (1999).
[Crossref] [PubMed]

Dickinson, M. R.

A. W. Sainter, T. A. King, and M. R. Dickinson, “Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography,” J. Biomed. Opt. 9(1), 193–199 (2004).
[Crossref] [PubMed]

Dobson, J.

Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D Appl. Phys. 42(22), 224001 (2009).
[Crossref]

Domi, S.

M. Kawashita, S. Domi, Y. Saito, M. Aoki, Y. Ebisawa, T. Kokubo, T. Saito, M. Takano, N. Araki, and M. Hiraoka, “In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field,” J. Mater. Sci. Mater. Med. 19(5), 1897–1903 (2008).
[Crossref] [PubMed]

Dreifuss, T.

T. Dreifuss, O. Betzer, M. Shilo, A. Popovtzer, M. Motiei, and R. Popovtzer, “A challenge for theranostics: is the optimal particle for therapy also optimal for diagnostics?” Nanoscale 7(37), 15175–15184 (2015).
[Crossref] [PubMed]

Du, K.

K. Du, Y. Zhu, H. Xu, and X. Yang, “Multifunctional magnetic nanoparticles: Synthesis modification and biomedical applications,” Prog. Chem. 23, 2287–2298 (2011).

Dutz, S.

R. Ludwig, M. Stapf, S. Dutz, R. Müller, U. Teichgräber, and I. Hilger, “Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential,” Nanoscale Res. Lett. 9(1), 602 (2014).
[Crossref] [PubMed]

Ebisawa, Y.

M. Kawashita, S. Domi, Y. Saito, M. Aoki, Y. Ebisawa, T. Kokubo, T. Saito, M. Takano, N. Araki, and M. Hiraoka, “In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field,” J. Mater. Sci. Mater. Med. 19(5), 1897–1903 (2008).
[Crossref] [PubMed]

El Khoury, J. M.

J. M. El Khoury, D. Caruntu, C. J. O’ Connor, K.-U. Jeong, S. Z. D. Cheng, and J. Hu, “Poly(allylamine) stabilized iron oxide magnetic nanoparticles,” J. Nanopart. Res. 9(5), 959–964 (2007).
[Crossref]

El Mendili, Y.

Y. El Mendili, F. Grasset, N. Randrianantoandro, N. Nerambourg, J.-M. Greneche, and J.-F. Bardeau, “Improvement of thermal stability of maghemite nanoparticles coated with oleic acid and oleylamine molecules: Investigations under laser irradiation,” J. Phys. Chem. C 119(19), 10662–10668 (2015).
[Crossref]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Felix, R.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref] [PubMed]

Feussner, A.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref] [PubMed]

Forbes, Z. G.

Z. G. Forbes, B. B. Yellen, D. S. Halverson, G. Fridman, K. A. Barbee, and G. Friedman, “Validation of High Gradient Magnetic Field Based Drug Delivery to Magnetizable Implants Under Flow,” IEEE Trans. Biomed. Eng. 55(2), 643–649 (2008).
[Crossref] [PubMed]

Ford, W. K.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Fridman, G.

Z. G. Forbes, B. B. Yellen, D. S. Halverson, G. Fridman, K. A. Barbee, and G. Friedman, “Validation of High Gradient Magnetic Field Based Drug Delivery to Magnetizable Implants Under Flow,” IEEE Trans. Biomed. Eng. 55(2), 643–649 (2008).
[Crossref] [PubMed]

Friedman, G.

Z. G. Forbes, B. B. Yellen, D. S. Halverson, G. Fridman, K. A. Barbee, and G. Friedman, “Validation of High Gradient Magnetic Field Based Drug Delivery to Magnetizable Implants Under Flow,” IEEE Trans. Biomed. Eng. 55(2), 643–649 (2008).
[Crossref] [PubMed]

Garcia, J.

Giangrande, A.

L. Soustelle, B. Aigouy, M.-L. Asensio, and A. Giangrande, “UV laser mediated cell selective destruction by confocal microscopy,” Neural Dev. 3(1), 11 (2008).
[Crossref] [PubMed]

Giese, K.

U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol. 37(1), 21–35 (1992).
[Crossref] [PubMed]

Gingold, S.

Gneveckow, U.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref] [PubMed]

M. Johannsen, U. Gneveckow, B. Thiesen, K. Taymoorian, C. H. Cho, N. Waldöfner, R. Scholz, A. Jordan, S. A. Loening, and P. Wust, “Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution,” Eur. Urol. 52(6), 1653–1662 (2007).
[Crossref] [PubMed]

Goodson, K. E.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Goya, G. F.

I. Marcos-Campos, L. Asín, T. E. Torres, C. Marquina, A. Tres, M. R. Ibarra, and G. F. Goya, “Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells,” Nanotechnology 22(20), 205101 (2011).
[Crossref] [PubMed]

Grasset, F.

Y. El Mendili, F. Grasset, N. Randrianantoandro, N. Nerambourg, J.-M. Greneche, and J.-F. Bardeau, “Improvement of thermal stability of maghemite nanoparticles coated with oleic acid and oleylamine molecules: Investigations under laser irradiation,” J. Phys. Chem. C 119(19), 10662–10668 (2015).
[Crossref]

Greneche, J.-M.

Y. El Mendili, F. Grasset, N. Randrianantoandro, N. Nerambourg, J.-M. Greneche, and J.-F. Bardeau, “Improvement of thermal stability of maghemite nanoparticles coated with oleic acid and oleylamine molecules: Investigations under laser irradiation,” J. Phys. Chem. C 119(19), 10662–10668 (2015).
[Crossref]

Guo, Y.

Y. Zhang, Y. Guo, P. Quirke, and D. Zhou, “Ultrasensitive single-nucleotide polymorphism detection using target-recycled ligation, strand displacement and enzymatic amplification,” Nanoscale 5(11), 5027–5035 (2013).
[Crossref] [PubMed]

Halverson, D. S.

Z. G. Forbes, B. B. Yellen, D. S. Halverson, G. Fridman, K. A. Barbee, and G. Friedman, “Validation of High Gradient Magnetic Field Based Drug Delivery to Magnetizable Implants Under Flow,” IEEE Trans. Biomed. Eng. 55(2), 643–649 (2008).
[Crossref] [PubMed]

Hammer, B. E.

V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro Characterization of Movement, Heating and Visualization of Magnetic Nanoparticles for Biomedical Applications,” Nanotechnology 16(8), 1221–1233 (2005).
[Crossref]

V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications,” Nanotechnology 16(8), 1221–1233 (2005).
[Crossref]

Hamootal, D.

V. Adi, R. Arkady, B. Yevgeny, D. Hamootal, P. Rachel, and Z. Zeev, “manipulated magnetic nano particles for photonic biomedical mapping,” Nanosci. Nanotechnol. Lett. 7, 1–9 (2015).

Han, B.

V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications,” Nanotechnology 16(8), 1221–1233 (2005).
[Crossref]

V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro Characterization of Movement, Heating and Visualization of Magnetic Nanoparticles for Biomedical Applications,” Nanotechnology 16(8), 1221–1233 (2005).
[Crossref]

Hilger, I.

R. Ludwig, M. Stapf, S. Dutz, R. Müller, U. Teichgräber, and I. Hilger, “Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential,” Nanoscale Res. Lett. 9(1), 602 (2014).
[Crossref] [PubMed]

Hiraoka, M.

M. Kawashita, S. Domi, Y. Saito, M. Aoki, Y. Ebisawa, T. Kokubo, T. Saito, M. Takano, N. Araki, and M. Hiraoka, “In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field,” J. Mater. Sci. Mater. Med. 19(5), 1897–1903 (2008).
[Crossref] [PubMed]

Hoffman, A. S.

M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, “‘Smart’ Diblock Copolymers as templates for magnetic-Core Gold-Shell Nanoparticles Synthesis,” Nano Lett. 10, 85–91 (2011).
[Crossref] [PubMed]

Honda, H.

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” J. Biosci. Bioeng. 100(1), 1–11 (2005).
[Crossref] [PubMed]

Hong, Y.-L.

J.-T. Lin, Y.-L. Hong, and C.-L. Chang, “Selective cancer therapy via IR-laser-excited gold nanorods,” Medicine (Baltimore) 7562, 75620R (2010).

Hu, J.

J. M. El Khoury, D. Caruntu, C. J. O’ Connor, K.-U. Jeong, S. Z. D. Cheng, and J. Hu, “Poly(allylamine) stabilized iron oxide magnetic nanoparticles,” J. Nanopart. Res. 9(5), 959–964 (2007).
[Crossref]

Hu, L.

K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles,” Adv. Mater. 24(14), 1868–1872 (2012).
[Crossref] [PubMed]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Ibarra, M. R.

I. Marcos-Campos, L. Asín, T. E. Torres, C. Marquina, A. Tres, M. R. Ibarra, and G. F. Goya, “Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells,” Nanotechnology 22(20), 205101 (2011).
[Crossref] [PubMed]

Ito, A.

A. Ito and T. Kobayashi, “Intracellular Hyperthermia Using Magnetic Nanoparticles : A Novel Method for Hyperthermia Clinical Applications,” Therm. Med. 24(4), 113–129 (2008).
[Crossref]

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” J. Biosci. Bioeng. 100(1), 1–11 (2005).
[Crossref] [PubMed]

Jay, D. G.

D. G. Jay, “Selective destruction of protein function by chromophore-assisted laser inactivation,” Proc. Natl. Acad. Sci. U.S.A. 85(15), 5454–5458 (1988).
[Crossref] [PubMed]

Jeong, K.-U.

J. M. El Khoury, D. Caruntu, C. J. O’ Connor, K.-U. Jeong, S. Z. D. Cheng, and J. Hu, “Poly(allylamine) stabilized iron oxide magnetic nanoparticles,” J. Nanopart. Res. 9(5), 959–964 (2007).
[Crossref]

Johannsen, M.

M. Johannsen, U. Gneveckow, B. Thiesen, K. Taymoorian, C. H. Cho, N. Waldöfner, R. Scholz, A. Jordan, S. A. Loening, and P. Wust, “Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution,” Eur. Urol. 52(6), 1653–1662 (2007).
[Crossref] [PubMed]

Jones, S.

Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D Appl. Phys. 42(22), 224001 (2009).
[Crossref]

Jordan, A.

M. Johannsen, U. Gneveckow, B. Thiesen, K. Taymoorian, C. H. Cho, N. Waldöfner, R. Scholz, A. Jordan, S. A. Loening, and P. Wust, “Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution,” Eur. Urol. 52(6), 1653–1662 (2007).
[Crossref] [PubMed]

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref] [PubMed]

Kalambur, V. S.

V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications,” Nanotechnology 16(8), 1221–1233 (2005).
[Crossref]

V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro Characterization of Movement, Heating and Visualization of Magnetic Nanoparticles for Biomedical Applications,” Nanotechnology 16(8), 1221–1233 (2005).
[Crossref]

Kawashita, M.

M. Kawashita, S. Domi, Y. Saito, M. Aoki, Y. Ebisawa, T. Kokubo, T. Saito, M. Takano, N. Araki, and M. Hiraoka, “In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field,” J. Mater. Sci. Mater. Med. 19(5), 1897–1903 (2008).
[Crossref] [PubMed]

King, T. A.

A. W. Sainter, T. A. King, and M. R. Dickinson, “Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography,” J. Biomed. Opt. 9(1), 193–199 (2004).
[Crossref] [PubMed]

Kobayashi, T.

A. Ito and T. Kobayashi, “Intracellular Hyperthermia Using Magnetic Nanoparticles : A Novel Method for Hyperthermia Clinical Applications,” Therm. Med. 24(4), 113–129 (2008).
[Crossref]

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” J. Biosci. Bioeng. 100(1), 1–11 (2005).
[Crossref] [PubMed]

Kokubo, T.

M. Kawashita, S. Domi, Y. Saito, M. Aoki, Y. Ebisawa, T. Kokubo, T. Saito, M. Takano, N. Araki, and M. Hiraoka, “In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field,” J. Mater. Sci. Mater. Med. 19(5), 1897–1903 (2008).
[Crossref] [PubMed]

Kölmel, K.

U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol. 37(1), 21–35 (1992).
[Crossref] [PubMed]

Lai, J. J.

M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, “‘Smart’ Diblock Copolymers as templates for magnetic-Core Gold-Shell Nanoparticles Synthesis,” Nano Lett. 10, 85–91 (2011).
[Crossref] [PubMed]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Lapotko, D. O.

D. O. Lapotko and V. P. Zharov, “Spectral evaluation of laser-induced cell damage with photothermal microscopy,” Lasers Surg. Med. 36(1), 22–30 (2005).
[Crossref] [PubMed]

Lee, H.

J.-T. Lin, Y.-S. Chiang, G.-H. Lin, H. Lee, and H.-W. Liu, “In Vitro Photothermal Destruction of Cancer Cells Using Gold Nanorods and Pulsed-Train Near-Infrared Laser,” J. Nanomater. 2012, 1–6 (2012).

Li, C.

K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles,” Adv. Mater. 24(14), 1868–1872 (2012).
[Crossref] [PubMed]

Li, Y.

K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles,” Adv. Mater. 24(14), 1868–1872 (2012).
[Crossref] [PubMed]

Lin, G.-H.

J.-T. Lin, Y.-S. Chiang, G.-H. Lin, H. Lee, and H.-W. Liu, “In Vitro Photothermal Destruction of Cancer Cells Using Gold Nanorods and Pulsed-Train Near-Infrared Laser,” J. Nanomater. 2012, 1–6 (2012).

Lin, J. T.

J. T. Lin, “Selective cancer therapy using IR-laser-excited gold nanorods,” SPIE Newsroom 2–4, 2507 (2010).

Lin, J.-T.

J.-T. Lin, Y.-S. Chiang, G.-H. Lin, H. Lee, and H.-W. Liu, “In Vitro Photothermal Destruction of Cancer Cells Using Gold Nanorods and Pulsed-Train Near-Infrared Laser,” J. Nanomater. 2012, 1–6 (2012).

J.-T. Lin, Y.-L. Hong, and C.-L. Chang, “Selective cancer therapy via IR-laser-excited gold nanorods,” Medicine (Baltimore) 7562, 75620R (2010).

Liu, D.

D. Zhu, F. Liu, L. Ma, D. Liu, and Z. Wang, “Nanoparticle-based systems for t(1)-weighted magnetic resonance imaging contrast agents,” Int. J. Mol. Sci. 14(5), 10591–10607 (2013).
[Crossref] [PubMed]

Liu, F.

D. Zhu, F. Liu, L. Ma, D. Liu, and Z. Wang, “Nanoparticle-based systems for t(1)-weighted magnetic resonance imaging contrast agents,” Int. J. Mol. Sci. 14(5), 10591–10607 (2013).
[Crossref] [PubMed]

Liu, H.-W.

J.-T. Lin, Y.-S. Chiang, G.-H. Lin, H. Lee, and H.-W. Liu, “In Vitro Photothermal Destruction of Cancer Cells Using Gold Nanorods and Pulsed-Train Near-Infrared Laser,” J. Nanomater. 2012, 1–6 (2012).

Liu, Y.

S. Wang, Y. Zhou, J. Tan, J. Xu, J. Yang, and Y. Liu, “Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field,” Comput. Mech. 53(3), 403–412 (2014).
[Crossref] [PubMed]

Liu, Z.

K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles,” Adv. Mater. 24(14), 1868–1872 (2012).
[Crossref] [PubMed]

K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
[Crossref] [PubMed]

Loening, S. A.

M. Johannsen, U. Gneveckow, B. Thiesen, K. Taymoorian, C. H. Cho, N. Waldöfner, R. Scholz, A. Jordan, S. A. Loening, and P. Wust, “Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution,” Eur. Urol. 52(6), 1653–1662 (2007).
[Crossref] [PubMed]

Ludwig, R.

R. Ludwig, M. Stapf, S. Dutz, R. Müller, U. Teichgräber, and I. Hilger, “Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential,” Nanoscale Res. Lett. 9(1), 602 (2014).
[Crossref] [PubMed]

Ma, F.

X.-L. Yue, F. Ma, and Z.-F. Dai, “Multifunctional magnetic nanoparticles for magnetic resonance image-guided photothermal therapy for cancer,” Chin. Phys. B 23(4), 044301 (2014).
[Crossref]

Ma, L.

D. Zhu, F. Liu, L. Ma, D. Liu, and Z. Wang, “Nanoparticle-based systems for t(1)-weighted magnetic resonance imaging contrast agents,” Int. J. Mol. Sci. 14(5), 10591–10607 (2013).
[Crossref] [PubMed]

Ma, X.

K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles,” Adv. Mater. 24(14), 1868–1872 (2012).
[Crossref] [PubMed]

Mahan, G. D.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Maier-Hauff, K.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref] [PubMed]

Majumdar, A.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Marcos-Campos, I.

I. Marcos-Campos, L. Asín, T. E. Torres, C. Marquina, A. Tres, M. R. Ibarra, and G. F. Goya, “Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells,” Nanotechnology 22(20), 205101 (2011).
[Crossref] [PubMed]

Margalit, I.

Maris, H. J.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Marquina, C.

I. Marcos-Campos, L. Asín, T. E. Torres, C. Marquina, A. Tres, M. R. Ibarra, and G. F. Goya, “Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells,” Nanotechnology 22(20), 205101 (2011).
[Crossref] [PubMed]

Merlin, R.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Mico, V.

Motiei, M.

T. Dreifuss, O. Betzer, M. Shilo, A. Popovtzer, M. Motiei, and R. Popovtzer, “A challenge for theranostics: is the optimal particle for therapy also optimal for diagnostics?” Nanoscale 7(37), 15175–15184 (2015).
[Crossref] [PubMed]

T. Reuveni, M. Motiei, Z. Romman, A. Popovtzer, and R. Popovtzer, “Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study,” Int. J. Nanomedicine 6, 2859–2864 (2011).
[PubMed]

Müller, R.

R. Ludwig, M. Stapf, S. Dutz, R. Müller, U. Teichgräber, and I. Hilger, “Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential,” Nanoscale Res. Lett. 9(1), 602 (2014).
[Crossref] [PubMed]

Nash, M. A.

M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, “‘Smart’ Diblock Copolymers as templates for magnetic-Core Gold-Shell Nanoparticles Synthesis,” Nano Lett. 10, 85–91 (2011).
[Crossref] [PubMed]

Nerambourg, N.

Y. El Mendili, F. Grasset, N. Randrianantoandro, N. Nerambourg, J.-M. Greneche, and J.-F. Bardeau, “Improvement of thermal stability of maghemite nanoparticles coated with oleic acid and oleylamine molecules: Investigations under laser irradiation,” J. Phys. Chem. C 119(19), 10662–10668 (2015).
[Crossref]

Nordquist, R. E.

W. R. Chen, R. L. Adams, K. E. Bartels, and R. E. Nordquist, “Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser,” Cancer Lett. 94(2), 125–131 (1995).
[Crossref] [PubMed]

O’ Connor, C. J.

J. M. El Khoury, D. Caruntu, C. J. O’ Connor, K.-U. Jeong, S. Z. D. Cheng, and J. Hu, “Poly(allylamine) stabilized iron oxide magnetic nanoparticles,” J. Nanopart. Res. 9(5), 959–964 (2007).
[Crossref]

Ondeck, C. L.

C. L. Ondeck, “Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating,” J. Appl. Phys. 105, 07B324 (2009).

Pankhurst, Q.

Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D Appl. Phys. 42(22), 224001 (2009).
[Crossref]

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Phillpot, S. R.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Plamann, K.

U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol. 37(1), 21–35 (1992).
[Crossref] [PubMed]

Popovtzer, A.

T. Dreifuss, O. Betzer, M. Shilo, A. Popovtzer, M. Motiei, and R. Popovtzer, “A challenge for theranostics: is the optimal particle for therapy also optimal for diagnostics?” Nanoscale 7(37), 15175–15184 (2015).
[Crossref] [PubMed]

T. Reuveni, M. Motiei, Z. Romman, A. Popovtzer, and R. Popovtzer, “Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study,” Int. J. Nanomedicine 6, 2859–2864 (2011).
[PubMed]

Popovtzer, R.

T. Dreifuss, O. Betzer, M. Shilo, A. Popovtzer, M. Motiei, and R. Popovtzer, “A challenge for theranostics: is the optimal particle for therapy also optimal for diagnostics?” Nanoscale 7(37), 15175–15184 (2015).
[Crossref] [PubMed]

T. Reuveni, M. Motiei, Z. Romman, A. Popovtzer, and R. Popovtzer, “Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study,” Int. J. Nanomedicine 6, 2859–2864 (2011).
[PubMed]

Praagman, N.

P. Van Den Berg, A. T. De Hoop, A. Segal, and N. Praagman, “A Computational Model of the Electromagnetic Heating of Biological Tissue with Application to Hyperthermic Cancer Therapy,” IEEE Trans. Biomed. Eng. 30, 797–805 (1983).

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Quirke, P.

Y. Zhang, Y. Guo, P. Quirke, and D. Zhou, “Ultrasensitive single-nucleotide polymorphism detection using target-recycled ligation, strand displacement and enzymatic amplification,” Nanoscale 5(11), 5027–5035 (2013).
[Crossref] [PubMed]

Rachel, P.

V. Adi, R. Arkady, B. Yevgeny, D. Hamootal, P. Rachel, and Z. Zeev, “manipulated magnetic nano particles for photonic biomedical mapping,” Nanosci. Nanotechnol. Lett. 7, 1–9 (2015).

Randrianantoandro, N.

Y. El Mendili, F. Grasset, N. Randrianantoandro, N. Nerambourg, J.-M. Greneche, and J.-F. Bardeau, “Improvement of thermal stability of maghemite nanoparticles coated with oleic acid and oleylamine molecules: Investigations under laser irradiation,” J. Phys. Chem. C 119(19), 10662–10668 (2015).
[Crossref]

Reuveni, T.

T. Reuveni, M. Motiei, Z. Romman, A. Popovtzer, and R. Popovtzer, “Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study,” Int. J. Nanomedicine 6, 2859–2864 (2011).
[PubMed]

Romman, Z.

T. Reuveni, M. Motiei, Z. Romman, A. Popovtzer, and R. Popovtzer, “Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study,” Int. J. Nanomedicine 6, 2859–2864 (2011).
[PubMed]

Roose, T.

T. Roose, “Challenges in imaging and predictive modeling of rhizosphere processes,” Plant Soil 407, 9–38 (2016).

Rothe, R.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref] [PubMed]

Sainter, A. W.

A. W. Sainter, T. A. King, and M. R. Dickinson, “Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography,” J. Biomed. Opt. 9(1), 193–199 (2004).
[Crossref] [PubMed]

Saito, T.

M. Kawashita, S. Domi, Y. Saito, M. Aoki, Y. Ebisawa, T. Kokubo, T. Saito, M. Takano, N. Araki, and M. Hiraoka, “In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field,” J. Mater. Sci. Mater. Med. 19(5), 1897–1903 (2008).
[Crossref] [PubMed]

Saito, Y.

M. Kawashita, S. Domi, Y. Saito, M. Aoki, Y. Ebisawa, T. Kokubo, T. Saito, M. Takano, N. Araki, and M. Hiraoka, “In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field,” J. Mater. Sci. Mater. Med. 19(5), 1897–1903 (2008).
[Crossref] [PubMed]

Scholz, R.

M. Johannsen, U. Gneveckow, B. Thiesen, K. Taymoorian, C. H. Cho, N. Waldöfner, R. Scholz, A. Jordan, S. A. Loening, and P. Wust, “Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution,” Eur. Urol. 52(6), 1653–1662 (2007).
[Crossref] [PubMed]

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref] [PubMed]

Scott, T. C.

C. Tsouris and T. C. Scott, “Flocculation of Paramagnetic Particles in a Magnetic Field,” J. Colloid Interface Sci. 171(2), 319–330 (1995).
[Crossref]

Segal, A.

P. Van Den Berg, A. T. De Hoop, A. Segal, and N. Praagman, “A Computational Model of the Electromagnetic Heating of Biological Tissue with Application to Hyperthermic Cancer Therapy,” IEEE Trans. Biomed. Eng. 30, 797–805 (1983).

Sennhenn, B.

U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol. 37(1), 21–35 (1992).
[Crossref] [PubMed]

Shah, N.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Shi, X.

K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles,” Adv. Mater. 24(14), 1868–1872 (2012).
[Crossref] [PubMed]

Shield, T. W.

V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications,” Nanotechnology 16(8), 1221–1233 (2005).
[Crossref]

V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro Characterization of Movement, Heating and Visualization of Magnetic Nanoparticles for Biomedical Applications,” Nanotechnology 16(8), 1221–1233 (2005).
[Crossref]

Shilo, M.

T. Dreifuss, O. Betzer, M. Shilo, A. Popovtzer, M. Motiei, and R. Popovtzer, “A challenge for theranostics: is the optimal particle for therapy also optimal for diagnostics?” Nanoscale 7(37), 15175–15184 (2015).
[Crossref] [PubMed]

Shinkai, M.

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” J. Biosci. Bioeng. 100(1), 1–11 (2005).
[Crossref] [PubMed]

Soustelle, L.

L. Soustelle, B. Aigouy, M.-L. Asensio, and A. Giangrande, “UV laser mediated cell selective destruction by confocal microscopy,” Neural Dev. 3(1), 11 (2008).
[Crossref] [PubMed]

Stapf, M.

R. Ludwig, M. Stapf, S. Dutz, R. Müller, U. Teichgräber, and I. Hilger, “Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential,” Nanoscale Res. Lett. 9(1), 602 (2014).
[Crossref] [PubMed]

Stayton, P. S.

M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, “‘Smart’ Diblock Copolymers as templates for magnetic-Core Gold-Shell Nanoparticles Synthesis,” Nano Lett. 10, 85–91 (2011).
[Crossref] [PubMed]

Sun, C.

K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
[Crossref] [PubMed]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Takano, M.

M. Kawashita, S. Domi, Y. Saito, M. Aoki, Y. Ebisawa, T. Kokubo, T. Saito, M. Takano, N. Araki, and M. Hiraoka, “In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field,” J. Mater. Sci. Mater. Med. 19(5), 1897–1903 (2008).
[Crossref] [PubMed]

Tan, J.

S. Wang, Y. Zhou, J. Tan, J. Xu, J. Yang, and Y. Liu, “Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field,” Comput. Mech. 53(3), 403–412 (2014).
[Crossref] [PubMed]

Taymoorian, K.

M. Johannsen, U. Gneveckow, B. Thiesen, K. Taymoorian, C. H. Cho, N. Waldöfner, R. Scholz, A. Jordan, S. A. Loening, and P. Wust, “Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution,” Eur. Urol. 52(6), 1653–1662 (2007).
[Crossref] [PubMed]

Teicher, M.

Teichgräber, U.

R. Ludwig, M. Stapf, S. Dutz, R. Müller, U. Teichgräber, and I. Hilger, “Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential,” Nanoscale Res. Lett. 9(1), 602 (2014).
[Crossref] [PubMed]

Thanh, N.

Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D Appl. Phys. 42(22), 224001 (2009).
[Crossref]

Thiesen, B.

M. Johannsen, U. Gneveckow, B. Thiesen, K. Taymoorian, C. H. Cho, N. Waldöfner, R. Scholz, A. Jordan, S. A. Loening, and P. Wust, “Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution,” Eur. Urol. 52(6), 1653–1662 (2007).
[Crossref] [PubMed]

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref] [PubMed]

Torres, T. E.

I. Marcos-Campos, L. Asín, T. E. Torres, C. Marquina, A. Tres, M. R. Ibarra, and G. F. Goya, “Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells,” Nanotechnology 22(20), 205101 (2011).
[Crossref] [PubMed]

Tres, A.

I. Marcos-Campos, L. Asín, T. E. Torres, C. Marquina, A. Tres, M. R. Ibarra, and G. F. Goya, “Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells,” Nanotechnology 22(20), 205101 (2011).
[Crossref] [PubMed]

Tromberg, B. J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Tsouris, C.

C. Tsouris and T. C. Scott, “Flocculation of Paramagnetic Particles in a Magnetic Field,” J. Colloid Interface Sci. 171(2), 319–330 (1995).
[Crossref]

Van Den Berg, P.

P. Van Den Berg, A. T. De Hoop, A. Segal, and N. Praagman, “A Computational Model of the Electromagnetic Heating of Biological Tissue with Application to Hyperthermic Cancer Therapy,” IEEE Trans. Biomed. Eng. 30, 797–805 (1983).

von Deimling, A.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref] [PubMed]

Waldoefner, N.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref] [PubMed]

Waldöfner, N.

M. Johannsen, U. Gneveckow, B. Thiesen, K. Taymoorian, C. H. Cho, N. Waldöfner, R. Scholz, A. Jordan, S. A. Loening, and P. Wust, “Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution,” Eur. Urol. 52(6), 1653–1662 (2007).
[Crossref] [PubMed]

Wang, J.

K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
[Crossref] [PubMed]

Wang, S.

S. Wang, Y. Zhou, J. Tan, J. Xu, J. Yang, and Y. Liu, “Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field,” Comput. Mech. 53(3), 403–412 (2014).
[Crossref] [PubMed]

Wang, Z.

D. Zhu, F. Liu, L. Ma, D. Liu, and Z. Wang, “Nanoparticle-based systems for t(1)-weighted magnetic resonance imaging contrast agents,” Int. J. Mol. Sci. 14(5), 10591–10607 (2013).
[Crossref] [PubMed]

Welch, A.

A. Welch, “The thermal response of laser irradiated tissue,” IEEE J. Quantum Electron. 20(12), 1471–1481 (1984).
[Crossref]

Werner, U.

U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol. 37(1), 21–35 (1992).
[Crossref] [PubMed]

Wright, N. T.

H. Deramond, N. T. Wright, and S. M. Belkoff, “Temperature elevation caused by bone cement polymerization during vertebroplasty,” Bone 25(2Suppl), 17S–21S (1999).
[Crossref] [PubMed]

Wust, P.

M. Johannsen, U. Gneveckow, B. Thiesen, K. Taymoorian, C. H. Cho, N. Waldöfner, R. Scholz, A. Jordan, S. A. Loening, and P. Wust, “Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution,” Eur. Urol. 52(6), 1653–1662 (2007).
[Crossref] [PubMed]

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref] [PubMed]

Xu, H.

K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
[Crossref] [PubMed]

K. Du, Y. Zhu, H. Xu, and X. Yang, “Multifunctional magnetic nanoparticles: Synthesis modification and biomedical applications,” Prog. Chem. 23, 2287–2298 (2011).

Xu, J.

S. Wang, Y. Zhou, J. Tan, J. Xu, J. Yang, and Y. Liu, “Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field,” Comput. Mech. 53(3), 403–412 (2014).
[Crossref] [PubMed]

Yager, P.

M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, “‘Smart’ Diblock Copolymers as templates for magnetic-Core Gold-Shell Nanoparticles Synthesis,” Nano Lett. 10, 85–91 (2011).
[Crossref] [PubMed]

Yang, J.

S. Wang, Y. Zhou, J. Tan, J. Xu, J. Yang, and Y. Liu, “Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field,” Comput. Mech. 53(3), 403–412 (2014).
[Crossref] [PubMed]

Yang, K.

K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles,” Adv. Mater. 24(14), 1868–1872 (2012).
[Crossref] [PubMed]

K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
[Crossref] [PubMed]

Yang, X.

K. Du, Y. Zhu, H. Xu, and X. Yang, “Multifunctional magnetic nanoparticles: Synthesis modification and biomedical applications,” Prog. Chem. 23, 2287–2298 (2011).

Ye, S.

K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles,” Adv. Mater. 24(14), 1868–1872 (2012).
[Crossref] [PubMed]

Yellen, B. B.

Z. G. Forbes, B. B. Yellen, D. S. Halverson, G. Fridman, K. A. Barbee, and G. Friedman, “Validation of High Gradient Magnetic Field Based Drug Delivery to Magnetizable Implants Under Flow,” IEEE Trans. Biomed. Eng. 55(2), 643–649 (2008).
[Crossref] [PubMed]

Yevgeny, B.

V. Adi, R. Arkady, B. Yevgeny, D. Hamootal, P. Rachel, and Z. Zeev, “manipulated magnetic nano particles for photonic biomedical mapping,” Nanosci. Nanotechnol. Lett. 7, 1–9 (2015).

Yue, X.-L.

X.-L. Yue, F. Ma, and Z.-F. Dai, “Multifunctional magnetic nanoparticles for magnetic resonance image-guided photothermal therapy for cancer,” Chin. Phys. B 23(4), 044301 (2014).
[Crossref]

Zalevsky, Z.

Zeev, Z.

V. Adi, R. Arkady, B. Yevgeny, D. Hamootal, P. Rachel, and Z. Zeev, “manipulated magnetic nano particles for photonic biomedical mapping,” Nanosci. Nanotechnol. Lett. 7, 1–9 (2015).

Zhang, Y.

Y. Zhang, Y. Guo, P. Quirke, and D. Zhou, “Ultrasensitive single-nucleotide polymorphism detection using target-recycled ligation, strand displacement and enzymatic amplification,” Nanoscale 5(11), 5027–5035 (2013).
[Crossref] [PubMed]

Zharov, V. P.

D. O. Lapotko and V. P. Zharov, “Spectral evaluation of laser-induced cell damage with photothermal microscopy,” Lasers Surg. Med. 36(1), 22–30 (2005).
[Crossref] [PubMed]

Zhou, D.

Y. Zhang, Y. Guo, P. Quirke, and D. Zhou, “Ultrasensitive single-nucleotide polymorphism detection using target-recycled ligation, strand displacement and enzymatic amplification,” Nanoscale 5(11), 5027–5035 (2013).
[Crossref] [PubMed]

Zhou, Y.

S. Wang, Y. Zhou, J. Tan, J. Xu, J. Yang, and Y. Liu, “Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field,” Comput. Mech. 53(3), 403–412 (2014).
[Crossref] [PubMed]

Zhu, D.

D. Zhu, F. Liu, L. Ma, D. Liu, and Z. Wang, “Nanoparticle-based systems for t(1)-weighted magnetic resonance imaging contrast agents,” Int. J. Mol. Sci. 14(5), 10591–10607 (2013).
[Crossref] [PubMed]

Zhu, Y.

K. Du, Y. Zhu, H. Xu, and X. Yang, “Multifunctional magnetic nanoparticles: Synthesis modification and biomedical applications,” Prog. Chem. 23, 2287–2298 (2011).

Adv. Mater. (2)

K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles,” Adv. Mater. 24(14), 1868–1872 (2012).
[Crossref] [PubMed]

K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
[Crossref] [PubMed]

Bone (1)

H. Deramond, N. T. Wright, and S. M. Belkoff, “Temperature elevation caused by bone cement polymerization during vertebroplasty,” Bone 25(2Suppl), 17S–21S (1999).
[Crossref] [PubMed]

Cancer Lett. (1)

W. R. Chen, R. L. Adams, K. E. Bartels, and R. E. Nordquist, “Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser,” Cancer Lett. 94(2), 125–131 (1995).
[Crossref] [PubMed]

Chin. Phys. B (1)

X.-L. Yue, F. Ma, and Z.-F. Dai, “Multifunctional magnetic nanoparticles for magnetic resonance image-guided photothermal therapy for cancer,” Chin. Phys. B 23(4), 044301 (2014).
[Crossref]

Comput. Mech. (1)

S. Wang, Y. Zhou, J. Tan, J. Xu, J. Yang, and Y. Liu, “Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field,” Comput. Mech. 53(3), 403–412 (2014).
[Crossref] [PubMed]

Eur. Urol. (1)

M. Johannsen, U. Gneveckow, B. Thiesen, K. Taymoorian, C. H. Cho, N. Waldöfner, R. Scholz, A. Jordan, S. A. Loening, and P. Wust, “Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution,” Eur. Urol. 52(6), 1653–1662 (2007).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

A. Welch, “The thermal response of laser irradiated tissue,” IEEE J. Quantum Electron. 20(12), 1471–1481 (1984).
[Crossref]

IEEE Trans. Biomed. Eng. (2)

Z. G. Forbes, B. B. Yellen, D. S. Halverson, G. Fridman, K. A. Barbee, and G. Friedman, “Validation of High Gradient Magnetic Field Based Drug Delivery to Magnetizable Implants Under Flow,” IEEE Trans. Biomed. Eng. 55(2), 643–649 (2008).
[Crossref] [PubMed]

P. Van Den Berg, A. T. De Hoop, A. Segal, and N. Praagman, “A Computational Model of the Electromagnetic Heating of Biological Tissue with Application to Hyperthermic Cancer Therapy,” IEEE Trans. Biomed. Eng. 30, 797–805 (1983).

Int. J. Mol. Sci. (1)

D. Zhu, F. Liu, L. Ma, D. Liu, and Z. Wang, “Nanoparticle-based systems for t(1)-weighted magnetic resonance imaging contrast agents,” Int. J. Mol. Sci. 14(5), 10591–10607 (2013).
[Crossref] [PubMed]

Int. J. Nanomedicine (1)

T. Reuveni, M. Motiei, Z. Romman, A. Popovtzer, and R. Popovtzer, “Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study,” Int. J. Nanomedicine 6, 2859–2864 (2011).
[PubMed]

J. Am. Chem. Soc. (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (2)

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

C. L. Ondeck, “Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating,” J. Appl. Phys. 105, 07B324 (2009).

J. Biomed. Opt. (1)

A. W. Sainter, T. A. King, and M. R. Dickinson, “Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography,” J. Biomed. Opt. 9(1), 193–199 (2004).
[Crossref] [PubMed]

J. Biosci. Bioeng. (1)

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” J. Biosci. Bioeng. 100(1), 1–11 (2005).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

C. Tsouris and T. C. Scott, “Flocculation of Paramagnetic Particles in a Magnetic Field,” J. Colloid Interface Sci. 171(2), 319–330 (1995).
[Crossref]

J. Mater. Sci. Mater. Med. (1)

M. Kawashita, S. Domi, Y. Saito, M. Aoki, Y. Ebisawa, T. Kokubo, T. Saito, M. Takano, N. Araki, and M. Hiraoka, “In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field,” J. Mater. Sci. Mater. Med. 19(5), 1897–1903 (2008).
[Crossref] [PubMed]

J. Nanomater. (1)

J.-T. Lin, Y.-S. Chiang, G.-H. Lin, H. Lee, and H.-W. Liu, “In Vitro Photothermal Destruction of Cancer Cells Using Gold Nanorods and Pulsed-Train Near-Infrared Laser,” J. Nanomater. 2012, 1–6 (2012).

J. Nanopart. Res. (1)

J. M. El Khoury, D. Caruntu, C. J. O’ Connor, K.-U. Jeong, S. Z. D. Cheng, and J. Hu, “Poly(allylamine) stabilized iron oxide magnetic nanoparticles,” J. Nanopart. Res. 9(5), 959–964 (2007).
[Crossref]

J. Neurooncol. (1)

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme,” J. Neurooncol. 81(1), 53–60 (2007).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

Y. El Mendili, F. Grasset, N. Randrianantoandro, N. Nerambourg, J.-M. Greneche, and J.-F. Bardeau, “Improvement of thermal stability of maghemite nanoparticles coated with oleic acid and oleylamine molecules: Investigations under laser irradiation,” J. Phys. Chem. C 119(19), 10662–10668 (2015).
[Crossref]

J. Phys. D Appl. Phys. (2)

C. C. Berry, “Progress in functionalization of magnetic nanoparticles for applications in biomedicine,” J. Phys. D Appl. Phys. 198, 22 (2009).

Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D Appl. Phys. 42(22), 224001 (2009).
[Crossref]

Lasers Surg. Med. (1)

D. O. Lapotko and V. P. Zharov, “Spectral evaluation of laser-induced cell damage with photothermal microscopy,” Lasers Surg. Med. 36(1), 22–30 (2005).
[Crossref] [PubMed]

Medicine (Baltimore) (1)

J.-T. Lin, Y.-L. Hong, and C.-L. Chang, “Selective cancer therapy via IR-laser-excited gold nanorods,” Medicine (Baltimore) 7562, 75620R (2010).

Nano Lett. (2)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref] [PubMed]

M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, “‘Smart’ Diblock Copolymers as templates for magnetic-Core Gold-Shell Nanoparticles Synthesis,” Nano Lett. 10, 85–91 (2011).
[Crossref] [PubMed]

Nanoscale (2)

Y. Zhang, Y. Guo, P. Quirke, and D. Zhou, “Ultrasensitive single-nucleotide polymorphism detection using target-recycled ligation, strand displacement and enzymatic amplification,” Nanoscale 5(11), 5027–5035 (2013).
[Crossref] [PubMed]

T. Dreifuss, O. Betzer, M. Shilo, A. Popovtzer, M. Motiei, and R. Popovtzer, “A challenge for theranostics: is the optimal particle for therapy also optimal for diagnostics?” Nanoscale 7(37), 15175–15184 (2015).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

R. Ludwig, M. Stapf, S. Dutz, R. Müller, U. Teichgräber, and I. Hilger, “Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential,” Nanoscale Res. Lett. 9(1), 602 (2014).
[Crossref] [PubMed]

Nanosci. Nanotechnol. Lett. (1)

V. Adi, R. Arkady, B. Yevgeny, D. Hamootal, P. Rachel, and Z. Zeev, “manipulated magnetic nano particles for photonic biomedical mapping,” Nanosci. Nanotechnol. Lett. 7, 1–9 (2015).

Nanotechnology (3)

V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications,” Nanotechnology 16(8), 1221–1233 (2005).
[Crossref]

I. Marcos-Campos, L. Asín, T. E. Torres, C. Marquina, A. Tres, M. R. Ibarra, and G. F. Goya, “Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells,” Nanotechnology 22(20), 205101 (2011).
[Crossref] [PubMed]

V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro Characterization of Movement, Heating and Visualization of Magnetic Nanoparticles for Biomedical Applications,” Nanotechnology 16(8), 1221–1233 (2005).
[Crossref]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Neural Dev. (1)

L. Soustelle, B. Aigouy, M.-L. Asensio, and A. Giangrande, “UV laser mediated cell selective destruction by confocal microscopy,” Neural Dev. 3(1), 11 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (1)

U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol. 37(1), 21–35 (1992).
[Crossref] [PubMed]

Plant Soil (1)

T. Roose, “Challenges in imaging and predictive modeling of rhizosphere processes,” Plant Soil 407, 9–38 (2016).

Proc. Natl. Acad. Sci. U.S.A. (1)

D. G. Jay, “Selective destruction of protein function by chromophore-assisted laser inactivation,” Proc. Natl. Acad. Sci. U.S.A. 85(15), 5454–5458 (1988).
[Crossref] [PubMed]

Prog. Chem. (1)

K. Du, Y. Zhu, H. Xu, and X. Yang, “Multifunctional magnetic nanoparticles: Synthesis modification and biomedical applications,” Prog. Chem. 23, 2287–2298 (2011).

SPIE Newsroom (1)

J. T. Lin, “Selective cancer therapy using IR-laser-excited gold nanorods,” SPIE Newsroom 2–4, 2507 (2010).

Therm. Med. (1)

A. Ito and T. Kobayashi, “Intracellular Hyperthermia Using Magnetic Nanoparticles : A Novel Method for Hyperthermia Clinical Applications,” Therm. Med. 24(4), 113–129 (2008).
[Crossref]

Other (2)

20. Ag, L. C. “Technical Reference Guide Protocol for Performing a Trypan Blue Viability Test,” BioResearch 2–3.

NEXCELOM-Innovation and Expertise in the Science of Cell Counting. at < http://www.nexcelom.com/Applications/measure-cell-viability-using-trypan-blue-or-AOPI.php >

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Scheme of 50 nm Chemicell, ferromagnetic core coated with an amine shell.
Fig. 2
Fig. 2 Scheme of the electrical circuit. An electro-magnet (for AMF treatment) made of copper coil surrounding an EC Ferrite core (30 Ω resistance, L1) is connected to a waveform generator, connected to an oscilloscope that shows the amplitude and frequency on a screen (CH1). Another resistor (10 Ω, R1) is connected to the coil, the generator and the scope (CH2).
Fig. 3
Fig. 3 (a) Schematic illustration of the experimental setup. The cell sample with an inserted and secured thermocouple probe was placed on top of the AMF system (including an electromagnet, coil and generator). The laser was set above the sample, in a straight angle of ~90° towards a mirror set with an oblique angle of ~45° above the sample, thus the laser beam illuminated straight onto the sample. (b) Schematic illustration of the magnetic field. The magnetic field was controlled by adjusting the voltages and frequencies in the waveform generator.
Fig. 4
Fig. 4 Temperature of the cell sample (blue, green) and deionized water (DI) sample (red) with 5 mg/ml particles, treated with 30 mW laser irradation, with or without alternating magnetic field (AMF) and cell sample (purple) treated with AMF and without laser, over time. The sample reached a the goal temperature of 42°C when treated with laser combined with AMF after 4.5 min of treatment, while the sample treated with laser alone reached only 38.1°C. DI showed a temperature profile similar to that of the cell solution treated with AMF.
Fig. 5
Fig. 5 Profiles of temperature change (∂T) at the sample surface, with 5 mg/ml particles, during treatment with 30-80 mW laser irradiations and AMF (3 Hz, 300 mW). No significant difference in temperature change was found between the different laser fluencies.
Fig. 6
Fig. 6 .Profile of temperature change (∂T) at the sample surface, with 5 mg/ml particles, 30 mW laser irradiation and 3 Hz, 300 mW AMF (‘30 mW’; green line). The theoretical curve (blue) was obtained from the heat diffusion equation solution Eqs. (1)-(5).
Fig. 7
Fig. 7 Temperature and number of live cells over time in a sample with 10 mg/ml particles, treated with 30 mW laser irradiation and 3 Hz, 300 mW AMF. As the temperature of the sample rose, the number of live cells decreased over the 5-min treatment, up to ~50% of the initial amount.
Fig. 8
Fig. 8 Number of cells in A431 cell solution (1 ml). Columns left-to-right: Cells with 10 mg/ml particles and treatment with 30 mW laser irradiation + 3 Hz, 300 mW AMF; cells treated with laser + AMF, without particles; cells with particles, treated with laser only; and cells with particles and treated with AMF only. Treatment duration was 5 min. Dead cells were found only in cells solutions that contained particles and were treated with AMF, irrespective of laser treatment.
Fig. 9
Fig. 9 Number of cells with different particle concentrations (2-10 mg/ml) in 1 ml solution after 30 mw laser irradiation and AMF (3 Hz, 300 mW) for 5 min. The amount of dead cells increased as the concentration of MNPs increased.
Fig. 10
Fig. 10 Cell viability test. 74e4 A431 cells in Petri dishes containing (a) untreated cells, (b) cells incubated with 10 mg/ml MNPs for 48 hrs, (c) cells with 10 mg/ml MNPs examined immediately after 5 min of 30mW laser illumination and AMF (3 Hz, 300 mW) treatment. Only cells with MNPs and treated with laser + AMF showed complete cell death. Imaged by Leica microscope X20.

Tables (2)

Tables Icon

Table 1 The effect of AMF and different laser fluencies on temperature change of near-surface A431 cells.

Tables Icon

Table 2 The effect of the treatments and different MNP concentrations on A431 cell death.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

2 T(x,t) x 2 = 1 α T(x,t) T H(x,t)
α= k ρ C P
H= I(x,t) x .
H= AF D e Ax
T t (x=0)= DT(x,0) h
P=π μ 0 χ 0 H 0 2 f 2πfτ 1+ (2πfτ) 2
ΔT Δt = P ρ C P
dT dt (x=0)= DT(x,0) h + P ρ C P .

Metrics