Abstract

We demonstrate spectral-focusing based coherent anti-Stokes Raman scattering (SF-CARS) hyper-microscopy capable of probing vibrational frequencies from 630 cm−1 to 3250 cm−1 using a single Ti:Sapphire femtosecond laser operating at 800 nm, and a commercially-available supercontinuum-generating fibre module. A broad Stokes supercontinuum with significant spectral power at wavelengths between 800 nm and 940 nm is generated by power tuning the fibre module using atypically long and/or chirped ~200 fs pump pulses, allowing convenient access to lower vibrational frequencies in the fingerprint spectral region. This work significantly reduces the instrumental and technical requirements for multimodal CARS microscopy, while expanding the spectral capabilities of an established approach to SF-CARS.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative chemical imaging with background-free multiplex coherent anti-Stokes Raman scattering by dual-soliton Stokes pulses

Kun Chen, Tao Wu, Haoyun Wei, Tian Zhou, and Yan Li
Biomed. Opt. Express 7(10) 3927-3939 (2016)

Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths

Sangeeta Murugkar, Craig Brideau, Andrew Ridsdale, Majid Naji, Peter K. Stys, and Hanan Anis
Opt. Express 15(21) 14028-14037 (2007)

Comparison of two photonic crystal fibers for supercontinuum-Stokes spectral-focusing-CARS hyperspectroscopy

J. G. Porquez, R. A. Cole, and A. D. Slepkov
OSA Continuum 1(4) 1385-1399 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [Crossref]
  2. M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
    [Crossref] [PubMed]
  3. W. M. Tolles, J. W. Nibler, J. R. McDonald, and A. B. Harvey, “A review of the theory and application of coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Spectrosc. 31(4), 253–271 (1977).
    [Crossref]
  4. C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
    [Crossref]
  5. H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
    [Crossref]
  6. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
    [Crossref] [PubMed]
  7. R. C. Burruss, A. D. Slepkov, A. F. Pegoraro, and A. Stolow, “Unraveling the complexity of deep gas accumulations with three-dimensional multimodal CARS microscopy,” Geology 40(12), 1063–1066 (2012).
    [Crossref]
  8. A. Zumbusch, W. Langbein, and P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Prog. Lipid Res. 52(4), 615–632 (2013).
    [Crossref] [PubMed]
  9. A. M. Barlow, A. D. Slepkov, A. Ridsdale, P. J. McGinn, and A. Stolow, “Label-free hyperspectral nonlinear optical microscopy of the biofuel micro-algae haematococcus pluvialis,” Biomed. Opt. Express 5(10), 3391–3402 (2014).
    [Crossref] [PubMed]
  10. A. D. Slepkov, A. M. Barlow, A. Ridsdale, P. J. McGinn, and A. Stolow, “In vivo hyperspectral CARS and FWM microscopy of carotenoid accumulation in H. pluvialis,” Proc. SPIE 8937, 893709 (2014).
    [Crossref]
  11. N. L. Garrett, A. Lalatsa, D. Begley, L. Mihoreanu, I. F. Uchegbu, A. G. Schätzlein, and J. Moger, “Label-free imaging of polymeric nanomedicines using coherent anti-stokes Raman scattering microscopy,” J. Raman Spectrosc. 43(5), 681–688 (2012).
    [Crossref]
  12. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
    [Crossref]
  13. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
    [Crossref] [PubMed]
  14. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
    [Crossref] [PubMed]
  15. T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
    [Crossref]
  16. I. Pope, W. Langbein, P. Watson, and P. Borri, “Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser,” Opt. Express 21(6), 7096–7106 (2013).
    [Crossref] [PubMed]
  17. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
    [Crossref] [PubMed]
  18. B. C. Chen, J. Sung, X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
    [Crossref] [PubMed]
  19. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004).
    [Crossref] [PubMed]
  20. SCG-800-CARS Data Sheet, “FemtoWHITE CARS,” http://www.nktphotonics.com/wp-content/uploads/2015/03/femtoWHITE-CARS.pdf .
  21. S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express 15(21), 14028–14037 (2007).
    [Crossref] [PubMed]
  22. Y. Zeng, B. Yan, Q. Sun, S. He, J. Jiang, Z. Wen, and J. Y. Qu, “In vivo micro-vascular imaging and flow cytometry in zebrafish using two-photon excited endogenous fluorescence,” Biomed. Opt. Express 5(3), 653–663 (2014).
    [Crossref] [PubMed]
  23. J. Lin, S. Teh, W. Zheng, Z. Wang, and Z. Huang, “Multimodal nonlinear optical microscopic imaging provides new insights into acetowhitening mechanisms in live mammalian cells without labeling,” Biomed. Opt. Express 5(9), 3116–3122 (2014).
    [Crossref] [PubMed]
  24. A. D. Slepkov, A. Ridsdale, H.-N. Wan, M.-H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F.-J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
    [Crossref] [PubMed]
  25. J.-C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt. 24(9), 1270–1282 (1985).
    [Crossref] [PubMed]
  26. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
    [Crossref] [PubMed]
  27. Newport Application Note, “Coherent anti-Stokes Raman scattering application note 36,” https://www.newport.com/medias/sys_master/images/images/hc0/h9a/8797076226078/Coherent-Anti-Stokes-Raman-Scattering-App-Note-36.pdf .
  28. A. F. Pegoraro, “Developing single-laser sources for multimodal coherent anti-Stokes Raman scattering microscopy” PhD. Thesis (Queen's University, 2011).
  29. A. Kaczor, K. Turnau, and M. Baranska, “In situ Raman imaging of astaxanthin in a single microalgal cell,” Analyst (Lond.) 136(6), 1109–1112 (2011).
    [Crossref] [PubMed]
  30. B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
    [Crossref] [PubMed]
  31. A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express 1(5), 1347–1357 (2010).
    [Crossref] [PubMed]
  32. M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114(31), 10200–10208 (2010).
    [Crossref] [PubMed]
  33. A. Peciulyte, J. Kiskis, P. T. Larsson, L. Olsson, and A. Enejder, “Visualization of structural changes in cellulosic substrates during enzymatic hydrolysis using multimodal nonlinear microscopy,” Cellulose 23(3), 1521–1536 (2016).
    [Crossref]
  34. G. Erdtman, “An Introduction to Pollen Analysis,” Waltham, Mass,: Chronica Botanica Company (1943).
  35. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
    [Crossref] [PubMed]

2016 (2)

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

A. Peciulyte, J. Kiskis, P. T. Larsson, L. Olsson, and A. Enejder, “Visualization of structural changes in cellulosic substrates during enzymatic hydrolysis using multimodal nonlinear microscopy,” Cellulose 23(3), 1521–1536 (2016).
[Crossref]

2015 (1)

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

2014 (6)

A. M. Barlow, A. D. Slepkov, A. Ridsdale, P. J. McGinn, and A. Stolow, “Label-free hyperspectral nonlinear optical microscopy of the biofuel micro-algae haematococcus pluvialis,” Biomed. Opt. Express 5(10), 3391–3402 (2014).
[Crossref] [PubMed]

A. D. Slepkov, A. M. Barlow, A. Ridsdale, P. J. McGinn, and A. Stolow, “In vivo hyperspectral CARS and FWM microscopy of carotenoid accumulation in H. pluvialis,” Proc. SPIE 8937, 893709 (2014).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

Y. Zeng, B. Yan, Q. Sun, S. He, J. Jiang, Z. Wen, and J. Y. Qu, “In vivo micro-vascular imaging and flow cytometry in zebrafish using two-photon excited endogenous fluorescence,” Biomed. Opt. Express 5(3), 653–663 (2014).
[Crossref] [PubMed]

J. Lin, S. Teh, W. Zheng, Z. Wang, and Z. Huang, “Multimodal nonlinear optical microscopic imaging provides new insights into acetowhitening mechanisms in live mammalian cells without labeling,” Biomed. Opt. Express 5(9), 3116–3122 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (3)

R. C. Burruss, A. D. Slepkov, A. F. Pegoraro, and A. Stolow, “Unraveling the complexity of deep gas accumulations with three-dimensional multimodal CARS microscopy,” Geology 40(12), 1063–1066 (2012).
[Crossref]

N. L. Garrett, A. Lalatsa, D. Begley, L. Mihoreanu, I. F. Uchegbu, A. G. Schätzlein, and J. Moger, “Label-free imaging of polymeric nanomedicines using coherent anti-stokes Raman scattering microscopy,” J. Raman Spectrosc. 43(5), 681–688 (2012).
[Crossref]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

2011 (3)

A. Kaczor, K. Turnau, and M. Baranska, “In situ Raman imaging of astaxanthin in a single microalgal cell,” Analyst (Lond.) 136(6), 1109–1112 (2011).
[Crossref] [PubMed]

A. D. Slepkov, A. Ridsdale, H.-N. Wan, M.-H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F.-J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[Crossref] [PubMed]

B. C. Chen, J. Sung, X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

2010 (3)

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express 1(5), 1347–1357 (2010).
[Crossref] [PubMed]

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114(31), 10200–10208 (2010).
[Crossref] [PubMed]

2009 (2)

2007 (2)

2005 (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

2004 (3)

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004).
[Crossref] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

2001 (1)

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

1985 (1)

1977 (1)

Andersen, T.

Anis, H.

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Baranska, M.

A. Kaczor, K. Turnau, and M. Baranska, “In situ Raman imaging of astaxanthin in a single microalgal cell,” Analyst (Lond.) 136(6), 1109–1112 (2011).
[Crossref] [PubMed]

Barlow, A. M.

A. D. Slepkov, A. M. Barlow, A. Ridsdale, P. J. McGinn, and A. Stolow, “In vivo hyperspectral CARS and FWM microscopy of carotenoid accumulation in H. pluvialis,” Proc. SPIE 8937, 893709 (2014).
[Crossref]

A. M. Barlow, A. D. Slepkov, A. Ridsdale, P. J. McGinn, and A. Stolow, “Label-free hyperspectral nonlinear optical microscopy of the biofuel micro-algae haematococcus pluvialis,” Biomed. Opt. Express 5(10), 3391–3402 (2014).
[Crossref] [PubMed]

Begley, D.

N. L. Garrett, A. Lalatsa, D. Begley, L. Mihoreanu, I. F. Uchegbu, A. G. Schätzlein, and J. Moger, “Label-free imaging of polymeric nanomedicines using coherent anti-stokes Raman scattering microscopy,” J. Raman Spectrosc. 43(5), 681–688 (2012).
[Crossref]

Book, L. D.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

Boppart, S. A.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Borri, P.

Brideau, C.

Burruss, R. C.

R. C. Burruss, A. D. Slepkov, A. F. Pegoraro, and A. Stolow, “Unraveling the complexity of deep gas accumulations with three-dimensional multimodal CARS microscopy,” Geology 40(12), 1063–1066 (2012).
[Crossref]

Camp, C. H.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Chaney, E. J.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Chen, B. C.

B. C. Chen, J. Sung, X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

Cheng, J. X.

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

Cicerone, M. T.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
[Crossref] [PubMed]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Dantus, M.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Diels, J.-C. M.

Ding, S. Y.

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Enejder, A.

A. Peciulyte, J. Kiskis, P. T. Larsson, L. Olsson, and A. Enejder, “Visualization of structural changes in cellulosic substrates during enzymatic hydrolysis using multimodal nonlinear microscopy,” Cellulose 23(3), 1521–1536 (2016).
[Crossref]

Enejder, A. M.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Fontaine, J. J.

Freudiger, C. W.

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Garrett, N. L.

N. L. Garrett, A. Lalatsa, D. Begley, L. Mihoreanu, I. F. Uchegbu, A. G. Schätzlein, and J. Moger, “Label-free imaging of polymeric nanomedicines using coherent anti-stokes Raman scattering microscopy,” J. Raman Spectrosc. 43(5), 681–688 (2012).
[Crossref]

Hansen, K.

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Hartshorn, C. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Harvey, A. B.

He, S.

Heddleston, J. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Hellerer, T.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Hight Walker, A. R.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Hilligsøe, K. M.

Himmel, M. E.

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

Huang, Z.

Jia, Y.

Jiang, J.

Kaczor, A.

A. Kaczor, K. Turnau, and M. Baranska, “In situ Raman imaging of astaxanthin in a single microalgal cell,” Analyst (Lond.) 136(6), 1109–1112 (2011).
[Crossref] [PubMed]

Kao, F.-J.

A. D. Slepkov, A. Ridsdale, H.-N. Wan, M.-H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F.-J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[Crossref] [PubMed]

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Keiding, S.

Kiskis, J.

A. Peciulyte, J. Kiskis, P. T. Larsson, L. Olsson, and A. Enejder, “Visualization of structural changes in cellulosic substrates during enzymatic hydrolysis using multimodal nonlinear microscopy,” Cellulose 23(3), 1521–1536 (2016).
[Crossref]

Kristiansen, R.

Lægsgaard, J.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Lalatsa, A.

N. L. Garrett, A. Lalatsa, D. Begley, L. Mihoreanu, I. F. Uchegbu, A. G. Schätzlein, and J. Moger, “Label-free imaging of polymeric nanomedicines using coherent anti-stokes Raman scattering microscopy,” J. Raman Spectrosc. 43(5), 681–688 (2012).
[Crossref]

Langbein, W.

Larsen, J.

Larsson, P. T.

A. Peciulyte, J. Kiskis, P. T. Larsson, L. Olsson, and A. Enejder, “Visualization of structural changes in cellulosic substrates during enzymatic hydrolysis using multimodal nonlinear microscopy,” Cellulose 23(3), 1521–1536 (2016).
[Crossref]

Lathia, J. D.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Lee, Y. J.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
[Crossref] [PubMed]

Lim, S. H.

B. C. Chen, J. Sung, X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Lin, J.

Liu, Y.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
[Crossref] [PubMed]

Liu, Y. S.

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Lyngsø, J. K.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Marjanovic, M.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

McDonald, J. R.

McGinn, P. J.

A. D. Slepkov, A. M. Barlow, A. Ridsdale, P. J. McGinn, and A. Stolow, “In vivo hyperspectral CARS and FWM microscopy of carotenoid accumulation in H. pluvialis,” Proc. SPIE 8937, 893709 (2014).
[Crossref]

A. M. Barlow, A. D. Slepkov, A. Ridsdale, P. J. McGinn, and A. Stolow, “Label-free hyperspectral nonlinear optical microscopy of the biofuel micro-algae haematococcus pluvialis,” Biomed. Opt. Express 5(10), 3391–3402 (2014).
[Crossref] [PubMed]

McMichael, I. C.

Mihoreanu, L.

N. L. Garrett, A. Lalatsa, D. Begley, L. Mihoreanu, I. F. Uchegbu, A. G. Schätzlein, and J. Moger, “Label-free imaging of polymeric nanomedicines using coherent anti-stokes Raman scattering microscopy,” J. Raman Spectrosc. 43(5), 681–688 (2012).
[Crossref]

Moffatt, D. J.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

A. D. Slepkov, A. Ridsdale, H.-N. Wan, M.-H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F.-J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[Crossref] [PubMed]

A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express 1(5), 1347–1357 (2010).
[Crossref] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref] [PubMed]

Moger, J.

N. L. Garrett, A. Lalatsa, D. Begley, L. Mihoreanu, I. F. Uchegbu, A. G. Schätzlein, and J. Moger, “Label-free imaging of polymeric nanomedicines using coherent anti-stokes Raman scattering microscopy,” J. Raman Spectrosc. 43(5), 681–688 (2012).
[Crossref]

Mølmer, K.

Müller, M.

M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[Crossref] [PubMed]

Murugkar, S.

Naji, M.

Nibler, J. W.

Nielsen, C.

Oertel, D. C.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114(31), 10200–10208 (2010).
[Crossref] [PubMed]

Olsson, L.

A. Peciulyte, J. Kiskis, P. T. Larsson, L. Olsson, and A. Enejder, “Visualization of structural changes in cellulosic substrates during enzymatic hydrolysis using multimodal nonlinear microscopy,” Cellulose 23(3), 1521–1536 (2016).
[Crossref]

Paulsen, H.

Peciulyte, A.

A. Peciulyte, J. Kiskis, P. T. Larsson, L. Olsson, and A. Enejder, “Visualization of structural changes in cellulosic substrates during enzymatic hydrolysis using multimodal nonlinear microscopy,” Cellulose 23(3), 1521–1536 (2016).
[Crossref]

Pegoraro, A. F.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

R. C. Burruss, A. D. Slepkov, A. F. Pegoraro, and A. Stolow, “Unraveling the complexity of deep gas accumulations with three-dimensional multimodal CARS microscopy,” Geology 40(12), 1063–1066 (2012).
[Crossref]

A. D. Slepkov, A. Ridsdale, H.-N. Wan, M.-H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F.-J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[Crossref] [PubMed]

A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express 1(5), 1347–1357 (2010).
[Crossref] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref] [PubMed]

Pezacki, J. P.

A. D. Slepkov, A. Ridsdale, H.-N. Wan, M.-H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F.-J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[Crossref] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref] [PubMed]

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Pope, I.

Potma, E. O.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114(31), 10200–10208 (2010).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Qu, J. Y.

Rich, J. N.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Ridsdale, A.

A. D. Slepkov, A. M. Barlow, A. Ridsdale, P. J. McGinn, and A. Stolow, “In vivo hyperspectral CARS and FWM microscopy of carotenoid accumulation in H. pluvialis,” Proc. SPIE 8937, 893709 (2014).
[Crossref]

A. M. Barlow, A. D. Slepkov, A. Ridsdale, P. J. McGinn, and A. Stolow, “Label-free hyperspectral nonlinear optical microscopy of the biofuel micro-algae haematococcus pluvialis,” Biomed. Opt. Express 5(10), 3391–3402 (2014).
[Crossref] [PubMed]

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

A. D. Slepkov, A. Ridsdale, H.-N. Wan, M.-H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F.-J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[Crossref] [PubMed]

A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express 1(5), 1347–1357 (2010).
[Crossref] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref] [PubMed]

S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express 15(21), 14028–14037 (2007).
[Crossref] [PubMed]

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Saar, B. G.

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

Schätzlein, A. G.

N. L. Garrett, A. Lalatsa, D. Begley, L. Mihoreanu, I. F. Uchegbu, A. G. Schätzlein, and J. Moger, “Label-free imaging of polymeric nanomedicines using coherent anti-stokes Raman scattering microscopy,” J. Raman Spectrosc. 43(5), 681–688 (2012).
[Crossref]

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Simoni, F.

Slepkov, A. D.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

A. M. Barlow, A. D. Slepkov, A. Ridsdale, P. J. McGinn, and A. Stolow, “Label-free hyperspectral nonlinear optical microscopy of the biofuel micro-algae haematococcus pluvialis,” Biomed. Opt. Express 5(10), 3391–3402 (2014).
[Crossref] [PubMed]

A. D. Slepkov, A. M. Barlow, A. Ridsdale, P. J. McGinn, and A. Stolow, “In vivo hyperspectral CARS and FWM microscopy of carotenoid accumulation in H. pluvialis,” Proc. SPIE 8937, 893709 (2014).
[Crossref]

R. C. Burruss, A. D. Slepkov, A. F. Pegoraro, and A. Stolow, “Unraveling the complexity of deep gas accumulations with three-dimensional multimodal CARS microscopy,” Geology 40(12), 1063–1066 (2012).
[Crossref]

A. D. Slepkov, A. Ridsdale, H.-N. Wan, M.-H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F.-J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[Crossref] [PubMed]

A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express 1(5), 1347–1357 (2010).
[Crossref] [PubMed]

Stolow, A.

A. D. Slepkov, A. M. Barlow, A. Ridsdale, P. J. McGinn, and A. Stolow, “In vivo hyperspectral CARS and FWM microscopy of carotenoid accumulation in H. pluvialis,” Proc. SPIE 8937, 893709 (2014).
[Crossref]

A. M. Barlow, A. D. Slepkov, A. Ridsdale, P. J. McGinn, and A. Stolow, “Label-free hyperspectral nonlinear optical microscopy of the biofuel micro-algae haematococcus pluvialis,” Biomed. Opt. Express 5(10), 3391–3402 (2014).
[Crossref] [PubMed]

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

R. C. Burruss, A. D. Slepkov, A. F. Pegoraro, and A. Stolow, “Unraveling the complexity of deep gas accumulations with three-dimensional multimodal CARS microscopy,” Geology 40(12), 1063–1066 (2012).
[Crossref]

A. D. Slepkov, A. Ridsdale, H.-N. Wan, M.-H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F.-J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[Crossref] [PubMed]

A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express 1(5), 1347–1357 (2010).
[Crossref] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref] [PubMed]

Stys, P. K.

Sun, Q.

Sung, J.

B. C. Chen, J. Sung, X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

Teh, S.

Tinevez, J.-Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Tolles, W. M.

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Tu, H.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Turchinovich, D.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Turnau, K.

A. Kaczor, K. Turnau, and M. Baranska, “In situ Raman imaging of astaxanthin in a single microalgal cell,” Analyst (Lond.) 136(6), 1109–1112 (2011).
[Crossref] [PubMed]

Uchegbu, I. F.

N. L. Garrett, A. Lalatsa, D. Begley, L. Mihoreanu, I. F. Uchegbu, A. G. Schätzlein, and J. Moger, “Label-free imaging of polymeric nanomedicines using coherent anti-stokes Raman scattering microscopy,” J. Raman Spectrosc. 43(5), 681–688 (2012).
[Crossref]

Valenton, T.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114(31), 10200–10208 (2010).
[Crossref] [PubMed]

Volkmer, A.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

Wan, H.-N.

A. D. Slepkov, A. Ridsdale, H.-N. Wan, M.-H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F.-J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[Crossref] [PubMed]

Wang, M.-H.

A. D. Slepkov, A. Ridsdale, H.-N. Wan, M.-H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F.-J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[Crossref] [PubMed]

Wang, Z.

Ward, J. L.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114(31), 10200–10208 (2010).
[Crossref] [PubMed]

Watson, P.

Wen, Z.

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Wilson, W. L.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Wu, X.

B. C. Chen, J. Sung, X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

Xie, X. S.

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

Xu, B.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Yan, B.

You, S.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Younger, R.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114(31), 10200–10208 (2010).
[Crossref] [PubMed]

Zeng, Y.

Y. Zeng, B. Yan, Q. Sun, S. He, J. Jiang, Z. Wen, and J. Y. Qu, “In vivo micro-vascular imaging and flow cytometry in zebrafish using two-photon excited endogenous fluorescence,” Biomed. Opt. Express 5(3), 653–663 (2014).
[Crossref] [PubMed]

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

Zhao, Y.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

Zheng, W.

Zimmerley, M.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114(31), 10200–10208 (2010).
[Crossref] [PubMed]

Zumbusch, A.

A. Zumbusch, W. Langbein, and P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Prog. Lipid Res. 52(4), 615–632 (2013).
[Crossref] [PubMed]

M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[Crossref] [PubMed]

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Analyst (Lond.) (1)

A. Kaczor, K. Turnau, and M. Baranska, “In situ Raman imaging of astaxanthin in a single microalgal cell,” Analyst (Lond.) 136(6), 1109–1112 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Appl. Spectrosc. (1)

Biomed. Opt. Express (4)

Cellulose (1)

A. Peciulyte, J. Kiskis, P. T. Larsson, L. Olsson, and A. Enejder, “Visualization of structural changes in cellulosic substrates during enzymatic hydrolysis using multimodal nonlinear microscopy,” Cellulose 23(3), 1521–1536 (2016).
[Crossref]

ChemPhysChem (1)

M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[Crossref] [PubMed]

Geology (1)

R. C. Burruss, A. D. Slepkov, A. F. Pegoraro, and A. Stolow, “Unraveling the complexity of deep gas accumulations with three-dimensional multimodal CARS microscopy,” Geology 40(12), 1063–1066 (2012).
[Crossref]

J. Biomed. Opt. (2)

B. C. Chen, J. Sung, X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

A. D. Slepkov, A. Ridsdale, H.-N. Wan, M.-H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F.-J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[Crossref] [PubMed]

J. Biophotonics (1)

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

J. Phys. Chem. B (3)

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114(31), 10200–10208 (2010).
[Crossref] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

J. Raman Spectrosc. (1)

N. L. Garrett, A. Lalatsa, D. Begley, L. Mihoreanu, I. F. Uchegbu, A. G. Schätzlein, and J. Moger, “Label-free imaging of polymeric nanomedicines using coherent anti-stokes Raman scattering microscopy,” J. Raman Spectrosc. 43(5), 681–688 (2012).
[Crossref]

Nat. Methods (1)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Nat. Photonics (3)

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10(8), 534–540 (2016).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Proc. SPIE (1)

A. D. Slepkov, A. M. Barlow, A. Ridsdale, P. J. McGinn, and A. Stolow, “In vivo hyperspectral CARS and FWM microscopy of carotenoid accumulation in H. pluvialis,” Proc. SPIE 8937, 893709 (2014).
[Crossref]

Prog. Lipid Res. (1)

A. Zumbusch, W. Langbein, and P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Prog. Lipid Res. 52(4), 615–632 (2013).
[Crossref] [PubMed]

Other (4)

Newport Application Note, “Coherent anti-Stokes Raman scattering application note 36,” https://www.newport.com/medias/sys_master/images/images/hc0/h9a/8797076226078/Coherent-Anti-Stokes-Raman-Scattering-App-Note-36.pdf .

A. F. Pegoraro, “Developing single-laser sources for multimodal coherent anti-Stokes Raman scattering microscopy” PhD. Thesis (Queen's University, 2011).

SCG-800-CARS Data Sheet, “FemtoWHITE CARS,” http://www.nktphotonics.com/wp-content/uploads/2015/03/femtoWHITE-CARS.pdf .

G. Erdtman, “An Introduction to Pollen Analysis,” Waltham, Mass,: Chronica Botanica Company (1943).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A simplified schematic of the multimodal CARS microscopy setup. A Ti:Sapphire oscillator generates 190 fs pulses at 800 nm, which are split into pump and Stokes-generating beams. The Stokes-generating beam passes through a Faraday isolator (FI) before being coupled into a FemtoWHITE CARS (NKT photonics) microstructured-fibre module that generates the Stokes supercontinuum. Blocks of high-dispersion S-NPH2 glass are used to disperse and match the chirps of the pump and Stokes pulses. The pump and Stokes beams are recombined using a long-pass filter (LPF) and routed to the laser-scanning microscope. Isotropically-generated TPEF is collected in the backwards direction, reflected by a dichroic and detected by a PMT. Forward-generated SHG and CARS signals are isolated with a short-pass filter (SPF) and collected using a customized multimode-fibre assembly and routed off-board, where they are wavelength-separated en route to separate PMTs.
Fig. 2
Fig. 2 Spectra of the FemtoWHITE-CARS output vs. coupled pump power plotted in wavelength (left scale) and the difference frequency (right scale), ΩR = ωPωS. Generated supercontinuum (a) from transform-limited 190 fs input pulses; (b) when the 190 fs input pulses are dispersed to 200 fs by a faraday isolator; (c) when the input pulses are further dispersed to 315 fs with a block of high-dispersion glass. The dashed horizontal lines are guides to the eye that correspond to Stokes wavelengths used to probe some relevant fingerprint and CH/OH vibrational frequencies. The dashed vertical line in (b) represents the slice of the Stokes spectrum (coupled power of 110 mW) used for the proceeding hyperspectral imaging experiments.
Fig. 3
Fig. 3 Frequency-calibrating spectrogram and CARS spectrum of astaxanthin. (a) Spectrogram with a sampling spatial resolution of 50 μm (i.e. temporal resolution of 333 fs). The duration of the highly-chirped Stokes supercontinuum at the sample is approximately 25 ps. (b) CARS spectrum of astaxanthin obtained through point scan having 900 data points obtained in 100 s, and the corresponding Stokes spectrum plotted as a function of both wavelength and the vibrational frequency probed. The power densities of the Stokes at the 897 nm and 1001 nm peaks are estimated to be 43 µW/nm and 24 µW/nm, respectively. The pump power and the integrated Stokes power were measured to be 3.7 mW and 4.2 mW at the sample plane, respectively.
Fig. 4
Fig. 4 A demonstration of the hyperspectral imaging capabilities of the multimodal CARS setup. (a) A 200 x 200 pixel multimodal image of benzonitrile (CARS; blue contrast; 12 frames centred at 3074 cm−1), DMSO (CARS; green contrast; 13 frames centred at 2910 cm−1), and cellulose fibre (SHG; red contrast). (b) CARS spectra from two 10 x 10 pixel regions of interest (ROIs) showing the CARS spectrum from benzonitrile and DMSO. (c) A 200 x 140 pixel (cropped) multimodal image of lily pollen containing carotenoids in the luminae (CARS; red contrast; 43 frames centered at 1154 cm−1), and muri (TPEF; white contrast). (d) Raw CARS spectrum averaged over 10 x 10 pixel ROI in (c). The shaded spectral regions in (b) and (d) correspond to the image stacks averaged to produce the multimodal image. Each image stack was taken at a duration of 0.8 seconds with a 13-μs pixel dwell time using pump powers of 74 mW for (a) and 7.4 mW for (c) measured at the sample plane. The input power in the PCF was maintained at 110 mW (200 fs pulse duration) which generates supercontinuum with a power of 4.2 mW as measured at the sample plane.
Fig. 5
Fig. 5 Demonstration of the efficacy of a Kramers-Kronig-based Raman-retrieval algorithm [35] in spectrally-broad SF-CARS. The Raman-like spectrum (blue) was retrieved from the raw CARS signal (black) and a nonresonant background spectrum collected in the sample coverslip. A comparison to the spontaneous Raman spectrum (red) is shown as a reference.

Metrics