Abstract

In this study, optical-triggered multifunctional theranostic agents for photoacoustic/fluorescent imaging and cancer therapy have been developed. This system consists of a perfluorohexane liquid and gold nanoparticles (GNPs) in the core, stabilized by a Poly (lactide-co-glycolic acid) (PLGA) polymer shell. When cancer cells containing PLGA-GNPs were exposed to laser pulses, cell viability decreased due to the vaporization of the particles in and around the cells. The particle chemo drug loading and delivery capacity was also investigated in vitro experiments. These particles show potential as photoacoustic imaging and therapy agents for future clinical translation in cancer therapy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Yb3+-enhanced UCNP@SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy

Nana Li, Xuanyuan Wen, Jing Liu, Baoju Wang, Qiuqiang Zhan, and Sailing He
Opt. Mater. Express 6(4) 1161-1171 (2016)

Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm

Alexander S. Hannah, Donald VanderLaan, Yun-Sheng Chen, and Stanislav Y. Emelianov
Biomed. Opt. Express 5(9) 3042-3052 (2014)

Real-time, contrast enhanced photoacoustic imaging of cancer in a mouse window chamber

Ragnar Olafsson, Daniel R. Bauer, Leonardo G. Montilla, and Russell S. Witte
Opt. Express 18(18) 18625-18632 (2010)

References

  • View by:
  • |
  • |
  • |

  1. X. Wang, Y. Wang, Z. G. Chen, and D. M. Shin, “Advances of Cancer Therapy by Nanotechnology,” Cancer Res. Treat. 41(1), 1–11 (2009).
    [Crossref] [PubMed]
  2. R. Duncan, “Polymer conjugates as anticancer nanomedicines,” Nat. Rev. Cancer 6(9), 688–701 (2006).
    [Crossref] [PubMed]
  3. I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Adv. Drug Deliv. Rev. 54(5), 631–651 (2002).
    [Crossref] [PubMed]
  4. J. Panyam and V. Labhasetwar, “Biodegradable nanoparticles for drug and gene delivery to cells and tissue,” Adv. Drug Deliv. Rev. 55(3), 329–347 (2003).
    [Crossref] [PubMed]
  5. S. K. Sahoo and V. Labhasetwar, “Nanotech approaches to drug delivery and imaging,” Drug Discov. Today 8(24), 1112–1120 (2003).
    [Crossref] [PubMed]
  6. A. Kumari, S. K. Yadav, and S. C. Yadav, “Biodegradable polymeric nanoparticles based drug delivery systems,” Colloids Surf. B Biointerfaces 75(1), 1–18 (2010).
    [Crossref] [PubMed]
  7. J. Liu, J. Li, T. J. Rosol, X. Pan, and J. L. Voorhees, “Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro,” Phys. Med. Biol. 52(16), 4739–4747 (2007).
    [Crossref] [PubMed]
  8. P. Kocbek, N. Obermajer, M. Cegnar, J. Kos, and J. Kristl, “Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody,” J. Control. Release 120(1-2), 18–26 (2007).
    [Crossref] [PubMed]
  9. A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H. Takeuchi, P. Maincent, Y. Kawashima, and C.-M. Lehr, “Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease,” J. Pharmacol. Exp. Ther. 299(2), 775–781 (2001).
    [PubMed]
  10. J. Panyam and V. Labhasetwar, “Sustained Cytoplasmic Delivery of Drugs with Intracellular Receptors Using Biodegradable Nanoparticles,” Mol. Pharm. 1(1), 77–84 (2004).
    [Crossref] [PubMed]
  11. J. M. Koziara, T. R. Whisman, M. T. Tseng, and R. J. Mumper, “In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors,” J. Control. Release 112(3), 312–319 (2006).
    [Crossref] [PubMed]
  12. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Proceedings of Optics, Electro-Optics, & Laser Applications in Science& Engineering, (International Society for Optics and Photonics,1993), pp. 86–101.
  13. E. Hysi, E. M. Strohm, and M. C. Kolios, “Probing Different Biological Length Scales Using Photoacoustics: From 1 To 1000 MHz,” in Handbook of Photonics for Biomedical Engineering, A. H.-P. Ho, D. Kim, and M. G. Somekh, Eds. (Springer, 2014).
  14. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [Crossref]
  15. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref] [PubMed]
  16. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
    [Crossref] [PubMed]
  17. A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
    [Crossref] [PubMed]
  18. R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
    [Crossref] [PubMed]
  19. A. A. Oraevsky, A. A. Karabutov, and E. V. Savateeva, “Enhancement of optoacoustic tissue contrast with absorbing nanoparticles,” in Proceedings of European Conference on Biomedical Optics, (International Society for Optics and Photonics, 2001), pp. 60–69.
  20. C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages,” ACS Nano 4(8), 4559–4564 (2010).
    [Crossref] [PubMed]
  21. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
    [Crossref] [PubMed]
  22. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
    [Crossref] [PubMed]
  23. Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
    [Crossref]
  24. J. G. Riess, “Perfluorocarbon-based oxygen delivery,” Artif. Cells Blood Substit. Immobil. Biotechnol. 34(6), 567–580 (2006).
    [Crossref] [PubMed]
  25. O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
    [Crossref] [PubMed]
  26. R. E. Apfel, “Activatable infusable dispersions containing drops of a superheated liquid for methods of therapy and diagnosis,” US5840276 A (1998).
  27. P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and Acoustic Studies of a New Phase-Shift Agent for Diagnostic and Therapeutic Ultrasound,” Langmuir 27(17), 10412–10420 (2011).
    [Crossref] [PubMed]
  28. E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
    [Crossref] [PubMed]
  29. K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3, 618 (2012).
    [Crossref] [PubMed]
  30. W. Cui, J. Bei, S. Wang, G. Zhi, Y. Zhao, X. Zhou, H. Zhang, and Y. Xu, “Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography,” J. Biomed. Mater. Res. B Appl. Biomater. 73B(1), 171–178 (2005).
    [Crossref] [PubMed]
  31. E. Pisani, N. Tsapis, J. Paris, V. Nicolas, L. Cattel, and E. Fattal, “Polymeric Nano/Microcapsules of Liquid Perfluorocarbons for Ultrasonic Imaging: Physical Characterization,” Langmuir 22(9), 4397–4402 (2006).
    [Crossref] [PubMed]
  32. K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, and K. M. Shakesheff, “Polymeric systems for controlled drug release,” Chem. Rev. 99(11), 3181–3198 (1999).
    [Crossref] [PubMed]
  33. M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of Water-Soluble Drugs Using Acoustically Triggered Perfluorocarbon Double Emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
    [Crossref] [PubMed]
  34. J. Spratlin and M. B. Sawyer, “Pharmacogenetics of paclitaxel metabolism,” Crit. Rev. Oncol. Hematol. 61(3), 222–229 (2007).
    [Crossref] [PubMed]
  35. M. Ishitobi, E. Shin, and N. Kikkawa, “Metastatic breast cancer with resistance to both anthracycline and docetaxel successfully treated with weekly paclitaxel,” Int. J. Clin. Oncol. 6(1), 55–58 (2001).
    [Crossref] [PubMed]
  36. M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue, “Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer,” Cancer Res. 50(6), 1693–1700 (1990).
    [PubMed]
  37. M. Talelli, C. J. F. Rijcken, W. E. Hennink, and T. Lammers, “Polymeric micelles for cancer therapy: 3 C’s to enhance efficacy,” Curr. Opin. Solid State Mater. Sci. 16(6), 302–309 (2012).
    [Crossref]
  38. J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11(0), 55–75 (1951).
    [Crossref]
  39. G. Frens, “Particle size and sol stability in metal colloids,” Kolloid-Z. Z. Für Polym. 250(7), 736–741 (1972).
    [Crossref]
  40. N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing Versus Ostwald Ripening,” Langmuir 27(17), 11098–11105 (2011).
    [Crossref] [PubMed]
  41. S. H. Liu and M. Y. Han, “Synthesis, Functionalization, and Bioconjugation of Monodisperse, Silica-Coated Gold Nanoparticles: Robust Bioprobes,” Adv. Funct. Mater. 15(6), 961–967 (2005).
    [Crossref]
  42. I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, “Silica-coated quantum dots for optical evaluation of perfluorocarbon droplet interactions with cells,” Langmuir 27(24), 15024–15033 (2011).
    [Crossref] [PubMed]
  43. Y. J. Wang, E. M. Strohm, Y. Sun, C. Niu, Y. Zheng, Z. Wang, and M. C. Kolios, “PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging,” Proc. SPIE 8943, 89433M (2014).
    [Crossref]
  44. S. L. Lombardi, ed., Nanoparticles: new research, (Nova Science Publishers, 2008).
  45. Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
    [Crossref] [PubMed]
  46. Y. Matsumura and H. Maeda, “A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs,” Cancer Res. 46(12 Pt 1), 6387–6392 (1986).
    [PubMed]
  47. F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain, “Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size,” Cancer Res. 55(17), 3752–3756 (1995).
    [PubMed]
  48. C. L. Didychuk, P. Ephrat, A. Chamson-Reig, S. L. Jacques, and J. J. L. Carson, “Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom,” Nanotechnology 20(19), 195102 (2009).
    [Crossref] [PubMed]
  49. C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
    [Crossref] [PubMed]
  50. A. J. Dixon, S. Hu, A. L. Klibanov, and J. A. Hossack, “Oscillatory Dynamics and In Vivo Photoacoustic Imaging Performance of Plasmonic Nanoparticle-Coated Microbubbles,” Small 11(25), 3066–3077 (2015).
    [Crossref] [PubMed]
  51. J. L. Goldstein, R. G. W. Anderson, and M. S. Brown, “Coated pits, coated vesicles, and receptor-mediated endocytosis,” Nature 279(5715), 679–685 (1979).
    [Crossref] [PubMed]
  52. D. B. Chithrani, “Intracellular uptake, transport, and processing of gold nanostructures,” Mol. Membr. Biol. 27(7), 299–311 (2010).
    [Crossref] [PubMed]

2015 (1)

A. J. Dixon, S. Hu, A. L. Klibanov, and J. A. Hossack, “Oscillatory Dynamics and In Vivo Photoacoustic Imaging Performance of Plasmonic Nanoparticle-Coated Microbubbles,” Small 11(25), 3066–3077 (2015).
[Crossref] [PubMed]

2014 (3)

Y. J. Wang, E. M. Strohm, Y. Sun, C. Niu, Y. Zheng, Z. Wang, and M. C. Kolios, “PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging,” Proc. SPIE 8943, 89433M (2014).
[Crossref]

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
[Crossref]

2012 (2)

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3, 618 (2012).
[Crossref] [PubMed]

M. Talelli, C. J. F. Rijcken, W. E. Hennink, and T. Lammers, “Polymeric micelles for cancer therapy: 3 C’s to enhance efficacy,” Curr. Opin. Solid State Mater. Sci. 16(6), 302–309 (2012).
[Crossref]

2011 (6)

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing Versus Ostwald Ripening,” Langmuir 27(17), 11098–11105 (2011).
[Crossref] [PubMed]

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and Acoustic Studies of a New Phase-Shift Agent for Diagnostic and Therapeutic Ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
[Crossref] [PubMed]

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, “Silica-coated quantum dots for optical evaluation of perfluorocarbon droplet interactions with cells,” Langmuir 27(24), 15024–15033 (2011).
[Crossref] [PubMed]

2010 (4)

D. B. Chithrani, “Intracellular uptake, transport, and processing of gold nanostructures,” Mol. Membr. Biol. 27(7), 299–311 (2010).
[Crossref] [PubMed]

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

A. Kumari, S. K. Yadav, and S. C. Yadav, “Biodegradable polymeric nanoparticles based drug delivery systems,” Colloids Surf. B Biointerfaces 75(1), 1–18 (2010).
[Crossref] [PubMed]

M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of Water-Soluble Drugs Using Acoustically Triggered Perfluorocarbon Double Emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
[Crossref] [PubMed]

2009 (2)

X. Wang, Y. Wang, Z. G. Chen, and D. M. Shin, “Advances of Cancer Therapy by Nanotechnology,” Cancer Res. Treat. 41(1), 1–11 (2009).
[Crossref] [PubMed]

C. L. Didychuk, P. Ephrat, A. Chamson-Reig, S. L. Jacques, and J. J. L. Carson, “Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom,” Nanotechnology 20(19), 195102 (2009).
[Crossref] [PubMed]

2007 (3)

J. Liu, J. Li, T. J. Rosol, X. Pan, and J. L. Voorhees, “Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro,” Phys. Med. Biol. 52(16), 4739–4747 (2007).
[Crossref] [PubMed]

P. Kocbek, N. Obermajer, M. Cegnar, J. Kos, and J. Kristl, “Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody,” J. Control. Release 120(1-2), 18–26 (2007).
[Crossref] [PubMed]

J. Spratlin and M. B. Sawyer, “Pharmacogenetics of paclitaxel metabolism,” Crit. Rev. Oncol. Hematol. 61(3), 222–229 (2007).
[Crossref] [PubMed]

2006 (5)

J. G. Riess, “Perfluorocarbon-based oxygen delivery,” Artif. Cells Blood Substit. Immobil. Biotechnol. 34(6), 567–580 (2006).
[Crossref] [PubMed]

E. Pisani, N. Tsapis, J. Paris, V. Nicolas, L. Cattel, and E. Fattal, “Polymeric Nano/Microcapsules of Liquid Perfluorocarbons for Ultrasonic Imaging: Physical Characterization,” Langmuir 22(9), 4397–4402 (2006).
[Crossref] [PubMed]

R. Duncan, “Polymer conjugates as anticancer nanomedicines,” Nat. Rev. Cancer 6(9), 688–701 (2006).
[Crossref] [PubMed]

J. M. Koziara, T. R. Whisman, M. T. Tseng, and R. J. Mumper, “In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors,” J. Control. Release 112(3), 312–319 (2006).
[Crossref] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

2005 (2)

W. Cui, J. Bei, S. Wang, G. Zhi, Y. Zhao, X. Zhou, H. Zhang, and Y. Xu, “Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography,” J. Biomed. Mater. Res. B Appl. Biomater. 73B(1), 171–178 (2005).
[Crossref] [PubMed]

S. H. Liu and M. Y. Han, “Synthesis, Functionalization, and Bioconjugation of Monodisperse, Silica-Coated Gold Nanoparticles: Robust Bioprobes,” Adv. Funct. Mater. 15(6), 961–967 (2005).
[Crossref]

2004 (2)

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[Crossref] [PubMed]

J. Panyam and V. Labhasetwar, “Sustained Cytoplasmic Delivery of Drugs with Intracellular Receptors Using Biodegradable Nanoparticles,” Mol. Pharm. 1(1), 77–84 (2004).
[Crossref] [PubMed]

2003 (3)

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

J. Panyam and V. Labhasetwar, “Biodegradable nanoparticles for drug and gene delivery to cells and tissue,” Adv. Drug Deliv. Rev. 55(3), 329–347 (2003).
[Crossref] [PubMed]

S. K. Sahoo and V. Labhasetwar, “Nanotech approaches to drug delivery and imaging,” Drug Discov. Today 8(24), 1112–1120 (2003).
[Crossref] [PubMed]

2002 (1)

I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Adv. Drug Deliv. Rev. 54(5), 631–651 (2002).
[Crossref] [PubMed]

2001 (3)

A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H. Takeuchi, P. Maincent, Y. Kawashima, and C.-M. Lehr, “Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease,” J. Pharmacol. Exp. Ther. 299(2), 775–781 (2001).
[PubMed]

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

M. Ishitobi, E. Shin, and N. Kikkawa, “Metastatic breast cancer with resistance to both anthracycline and docetaxel successfully treated with weekly paclitaxel,” Int. J. Clin. Oncol. 6(1), 55–58 (2001).
[Crossref] [PubMed]

2000 (2)

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[Crossref] [PubMed]

1999 (2)

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, and K. M. Shakesheff, “Polymeric systems for controlled drug release,” Chem. Rev. 99(11), 3181–3198 (1999).
[Crossref] [PubMed]

1995 (1)

F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain, “Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size,” Cancer Res. 55(17), 3752–3756 (1995).
[PubMed]

1990 (1)

M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue, “Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer,” Cancer Res. 50(6), 1693–1700 (1990).
[PubMed]

1986 (1)

Y. Matsumura and H. Maeda, “A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs,” Cancer Res. 46(12 Pt 1), 6387–6392 (1986).
[PubMed]

1979 (1)

J. L. Goldstein, R. G. W. Anderson, and M. S. Brown, “Coated pits, coated vesicles, and receptor-mediated endocytosis,” Nature 279(5715), 679–685 (1979).
[Crossref] [PubMed]

1972 (1)

G. Frens, “Particle size and sol stability in metal colloids,” Kolloid-Z. Z. Für Polym. 250(7), 736–741 (1972).
[Crossref]

1951 (1)

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11(0), 55–75 (1951).
[Crossref]

Anderson, R. G. W.

J. L. Goldstein, R. G. W. Anderson, and M. S. Brown, “Coated pits, coated vesicles, and receptor-mediated endocytosis,” Nature 279(5715), 679–685 (1979).
[Crossref] [PubMed]

Au, L.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Bastús, N. G.

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing Versus Ostwald Ripening,” Langmuir 27(17), 11098–11105 (2011).
[Crossref] [PubMed]

Beard, P.

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

Bei, J.

W. Cui, J. Bei, S. Wang, G. Zhi, Y. Zhao, X. Zhou, H. Zhang, and Y. Xu, “Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography,” J. Biomed. Mater. Res. B Appl. Biomater. 73B(1), 171–178 (2005).
[Crossref] [PubMed]

Berk, D. A.

F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain, “Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size,” Cancer Res. 55(17), 3752–3756 (1995).
[PubMed]

Brigger, I.

I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Adv. Drug Deliv. Rev. 54(5), 631–651 (2002).
[Crossref] [PubMed]

Brown, M. S.

J. L. Goldstein, R. G. W. Anderson, and M. S. Brown, “Coated pits, coated vesicles, and receptor-mediated endocytosis,” Nature 279(5715), 679–685 (1979).
[Crossref] [PubMed]

Cannizzaro, S. M.

K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, and K. M. Shakesheff, “Polymeric systems for controlled drug release,” Chem. Rev. 99(11), 3181–3198 (1999).
[Crossref] [PubMed]

Carmeliet, P.

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[Crossref] [PubMed]

Carson, J. J. L.

C. L. Didychuk, P. Ephrat, A. Chamson-Reig, S. L. Jacques, and J. J. L. Carson, “Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom,” Nanotechnology 20(19), 195102 (2009).
[Crossref] [PubMed]

Carson, P. L.

M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of Water-Soluble Drugs Using Acoustically Triggered Perfluorocarbon Double Emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
[Crossref] [PubMed]

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Cattel, L.

E. Pisani, N. Tsapis, J. Paris, V. Nicolas, L. Cattel, and E. Fattal, “Polymeric Nano/Microcapsules of Liquid Perfluorocarbons for Ultrasonic Imaging: Physical Characterization,” Langmuir 22(9), 4397–4402 (2006).
[Crossref] [PubMed]

Cegnar, M.

P. Kocbek, N. Obermajer, M. Cegnar, J. Kos, and J. Kristl, “Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody,” J. Control. Release 120(1-2), 18–26 (2007).
[Crossref] [PubMed]

Chamson-Reig, A.

C. L. Didychuk, P. Ephrat, A. Chamson-Reig, S. L. Jacques, and J. J. L. Carson, “Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom,” Nanotechnology 20(19), 195102 (2009).
[Crossref] [PubMed]

Chance, B.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

Chen, J.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Chen, Y.-S.

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Chen, Z. G.

X. Wang, Y. Wang, Z. G. Chen, and D. M. Shin, “Advances of Cancer Therapy by Nanotechnology,” Cancer Res. Treat. 41(1), 1–11 (2009).
[Crossref] [PubMed]

Chithrani, D. B.

D. B. Chithrani, “Intracellular uptake, transport, and processing of gold nanostructures,” Mol. Membr. Biol. 27(7), 299–311 (2010).
[Crossref] [PubMed]

Cho, E. C.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Choe, R.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

Cobley, C. M.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Comenge, J.

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing Versus Ostwald Ripening,” Langmuir 27(17), 11098–11105 (2011).
[Crossref] [PubMed]

Copland, J. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[Crossref] [PubMed]

Couvreur, P.

I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Adv. Drug Deliv. Rev. 54(5), 631–651 (2002).
[Crossref] [PubMed]

Cui, W.

W. Cui, J. Bei, S. Wang, G. Zhi, Y. Zhao, X. Zhou, H. Zhang, and Y. Xu, “Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography,” J. Biomed. Mater. Res. B Appl. Biomater. 73B(1), 171–178 (2005).
[Crossref] [PubMed]

Culver, J. P.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

Dayton, P. A.

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and Acoustic Studies of a New Phase-Shift Agent for Diagnostic and Therapeutic Ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

Dellian, M.

F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain, “Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size,” Cancer Res. 55(17), 3752–3756 (1995).
[PubMed]

Didychuk, C. L.

C. L. Didychuk, P. Ephrat, A. Chamson-Reig, S. L. Jacques, and J. J. L. Carson, “Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom,” Nanotechnology 20(19), 195102 (2009).
[Crossref] [PubMed]

Dixon, A. J.

A. J. Dixon, S. Hu, A. L. Klibanov, and J. A. Hossack, “Oscillatory Dynamics and In Vivo Photoacoustic Imaging Performance of Plasmonic Nanoparticle-Coated Microbubbles,” Small 11(25), 3066–3077 (2015).
[Crossref] [PubMed]

Do Rschel, K.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Dubernet, C.

I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Adv. Drug Deliv. Rev. 54(5), 631–651 (2002).
[Crossref] [PubMed]

Duncan, R.

R. Duncan, “Polymer conjugates as anticancer nanomedicines,” Nat. Rev. Cancer 6(9), 688–701 (2006).
[Crossref] [PubMed]

Durduran, T.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

Eghtedari, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[Crossref] [PubMed]

Eldevik, O. P.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Emelianov, S.

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3, 618 (2012).
[Crossref] [PubMed]

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Ephrat, P.

C. L. Didychuk, P. Ephrat, A. Chamson-Reig, S. L. Jacques, and J. J. L. Carson, “Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom,” Nanotechnology 20(19), 195102 (2009).
[Crossref] [PubMed]

Fabiilli, M. L.

M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of Water-Soluble Drugs Using Acoustically Triggered Perfluorocarbon Double Emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
[Crossref] [PubMed]

Fattal, E.

E. Pisani, N. Tsapis, J. Paris, V. Nicolas, L. Cattel, and E. Fattal, “Polymeric Nano/Microcapsules of Liquid Perfluorocarbons for Ultrasonic Imaging: Physical Characterization,” Langmuir 22(9), 4397–4402 (2006).
[Crossref] [PubMed]

Favazza, C.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Fowlkes, J. B.

M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of Water-Soluble Drugs Using Acoustically Triggered Perfluorocarbon Double Emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
[Crossref] [PubMed]

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Frens, G.

G. Frens, “Particle size and sol stability in metal colloids,” Kolloid-Z. Z. Für Polym. 250(7), 736–741 (1972).
[Crossref]

Frey, W.

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Friebel, M.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Fukumura, D.

F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain, “Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size,” Cancer Res. 55(17), 3752–3756 (1995).
[PubMed]

Gao, F.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Goldstein, J. L.

J. L. Goldstein, R. G. W. Anderson, and M. S. Brown, “Coated pits, coated vesicles, and receptor-mediated endocytosis,” Nature 279(5715), 679–685 (1979).
[Crossref] [PubMed]

Gong, Y.

Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
[Crossref]

Gorelikov, I.

E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
[Crossref] [PubMed]

I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, “Silica-coated quantum dots for optical evaluation of perfluorocarbon droplet interactions with cells,” Langmuir 27(24), 15024–15033 (2011).
[Crossref] [PubMed]

Hahn, A.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Han, M. Y.

S. H. Liu and M. Y. Han, “Synthesis, Functionalization, and Bioconjugation of Monodisperse, Silica-Coated Gold Nanoparticles: Robust Bioprobes,” Adv. Funct. Mater. 15(6), 961–967 (2005).
[Crossref]

Hennink, W. E.

M. Talelli, C. J. F. Rijcken, W. E. Hennink, and T. Lammers, “Polymeric micelles for cancer therapy: 3 C’s to enhance efficacy,” Curr. Opin. Solid State Mater. Sci. 16(6), 302–309 (2012).
[Crossref]

Hillier, J.

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11(0), 55–75 (1951).
[Crossref]

Holboke, M. J.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

Homan, K.

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3, 618 (2012).
[Crossref] [PubMed]

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Hossack, J. A.

A. J. Dixon, S. Hu, A. L. Klibanov, and J. A. Hossack, “Oscillatory Dynamics and In Vivo Photoacoustic Imaging Performance of Plasmonic Nanoparticle-Coated Microbubbles,” Small 11(25), 3066–3077 (2015).
[Crossref] [PubMed]

Hu, S.

A. J. Dixon, S. Hu, A. L. Klibanov, and J. A. Hossack, “Oscillatory Dynamics and In Vivo Photoacoustic Imaging Performance of Plasmonic Nanoparticle-Coated Microbubbles,” Small 11(25), 3066–3077 (2015).
[Crossref] [PubMed]

Huang, R.

Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
[Crossref]

Inoue, S.

M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue, “Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer,” Cancer Res. 50(6), 1693–1700 (1990).
[PubMed]

Ishitobi, M.

M. Ishitobi, E. Shin, and N. Kikkawa, “Metastatic breast cancer with resistance to both anthracycline and docetaxel successfully treated with weekly paclitaxel,” Int. J. Clin. Oncol. 6(1), 55–58 (2001).
[Crossref] [PubMed]

Jacques, S. L.

C. L. Didychuk, P. Ephrat, A. Chamson-Reig, S. L. Jacques, and J. J. L. Carson, “Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom,” Nanotechnology 20(19), 195102 (2009).
[Crossref] [PubMed]

Jain, R. K.

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[Crossref] [PubMed]

F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain, “Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size,” Cancer Res. 55(17), 3752–3756 (1995).
[PubMed]

Karabutov, A. A.

A. A. Oraevsky, A. A. Karabutov, and E. V. Savateeva, “Enhancement of optoacoustic tissue contrast with absorbing nanoparticles,” in Proceedings of European Conference on Biomedical Optics, (International Society for Optics and Photonics, 2001), pp. 60–69.

Kataoka, K.

M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue, “Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer,” Cancer Res. 50(6), 1693–1700 (1990).
[PubMed]

Kawashima, Y.

A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H. Takeuchi, P. Maincent, Y. Kawashima, and C.-M. Lehr, “Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease,” J. Pharmacol. Exp. Ther. 299(2), 775–781 (2001).
[PubMed]

Kikkawa, N.

M. Ishitobi, E. Shin, and N. Kikkawa, “Metastatic breast cancer with resistance to both anthracycline and docetaxel successfully treated with weekly paclitaxel,” Int. J. Clin. Oncol. 6(1), 55–58 (2001).
[Crossref] [PubMed]

Kim, C.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Kim, S.

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Klibanov, A. L.

A. J. Dixon, S. Hu, A. L. Klibanov, and J. A. Hossack, “Oscillatory Dynamics and In Vivo Photoacoustic Imaging Performance of Plasmonic Nanoparticle-Coated Microbubbles,” Small 11(25), 3066–3077 (2015).
[Crossref] [PubMed]

Kocbek, P.

P. Kocbek, N. Obermajer, M. Cegnar, J. Kos, and J. Kristl, “Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody,” J. Control. Release 120(1-2), 18–26 (2007).
[Crossref] [PubMed]

Kolios, M.

Kolios, M. C.

Y. J. Wang, E. M. Strohm, Y. Sun, C. Niu, Y. Zheng, Z. Wang, and M. C. Kolios, “PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging,” Proc. SPIE 8943, 89433M (2014).
[Crossref]

Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
[Crossref]

Kos, J.

P. Kocbek, N. Obermajer, M. Cegnar, J. Kos, and J. Kristl, “Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody,” J. Control. Release 120(1-2), 18–26 (2007).
[Crossref] [PubMed]

Kotov, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[Crossref] [PubMed]

Koziara, J. M.

J. M. Koziara, T. R. Whisman, M. T. Tseng, and R. J. Mumper, “In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors,” J. Control. Release 112(3), 312–319 (2006).
[Crossref] [PubMed]

Kripfgans, O. D.

M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of Water-Soluble Drugs Using Acoustically Triggered Perfluorocarbon Double Emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
[Crossref] [PubMed]

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Kristl, J.

P. Kocbek, N. Obermajer, M. Cegnar, J. Kos, and J. Kristl, “Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody,” J. Control. Release 120(1-2), 18–26 (2007).
[Crossref] [PubMed]

Kruizinga, P.

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Kumari, A.

A. Kumari, S. K. Yadav, and S. C. Yadav, “Biodegradable polymeric nanoparticles based drug delivery systems,” Colloids Surf. B Biointerfaces 75(1), 1–18 (2010).
[Crossref] [PubMed]

Labhasetwar, V.

J. Panyam and V. Labhasetwar, “Sustained Cytoplasmic Delivery of Drugs with Intracellular Receptors Using Biodegradable Nanoparticles,” Mol. Pharm. 1(1), 77–84 (2004).
[Crossref] [PubMed]

S. K. Sahoo and V. Labhasetwar, “Nanotech approaches to drug delivery and imaging,” Drug Discov. Today 8(24), 1112–1120 (2003).
[Crossref] [PubMed]

J. Panyam and V. Labhasetwar, “Biodegradable nanoparticles for drug and gene delivery to cells and tissue,” Adv. Drug Deliv. Rev. 55(3), 329–347 (2003).
[Crossref] [PubMed]

Lammers, T.

M. Talelli, C. J. F. Rijcken, W. E. Hennink, and T. Lammers, “Polymeric micelles for cancer therapy: 3 C’s to enhance efficacy,” Curr. Opin. Solid State Mater. Sci. 16(6), 302–309 (2012).
[Crossref]

Lamprecht, A.

A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H. Takeuchi, P. Maincent, Y. Kawashima, and C.-M. Lehr, “Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease,” J. Pharmacol. Exp. Ther. 299(2), 775–781 (2001).
[PubMed]

Langer, R. S.

K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, and K. M. Shakesheff, “Polymeric systems for controlled drug release,” Chem. Rev. 99(11), 3181–3198 (1999).
[Crossref] [PubMed]

Larson-Smith, K.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Lee, J. A.

M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of Water-Soluble Drugs Using Acoustically Triggered Perfluorocarbon Double Emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
[Crossref] [PubMed]

Lehr, C.-M.

A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H. Takeuchi, P. Maincent, Y. Kawashima, and C.-M. Lehr, “Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease,” J. Pharmacol. Exp. Ther. 299(2), 775–781 (2001).
[PubMed]

Leunig, M.

F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain, “Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size,” Cancer Res. 55(17), 3752–3756 (1995).
[PubMed]

Li, J.

J. Liu, J. Li, T. J. Rosol, X. Pan, and J. L. Voorhees, “Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro,” Phys. Med. Biol. 52(16), 4739–4747 (2007).
[Crossref] [PubMed]

Liu, J.

J. Liu, J. Li, T. J. Rosol, X. Pan, and J. L. Voorhees, “Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro,” Phys. Med. Biol. 52(16), 4739–4747 (2007).
[Crossref] [PubMed]

Liu, S. H.

S. H. Liu and M. Y. Han, “Synthesis, Functionalization, and Bioconjugation of Monodisperse, Silica-Coated Gold Nanoparticles: Robust Bioprobes,” Adv. Funct. Mater. 15(6), 961–967 (2005).
[Crossref]

Lombardo, M.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Luois, S.

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and Acoustic Studies of a New Phase-Shift Agent for Diagnostic and Therapeutic Ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

Maeda, H.

Y. Matsumura and H. Maeda, “A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs,” Cancer Res. 46(12 Pt 1), 6387–6392 (1986).
[PubMed]

Maincent, P.

A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H. Takeuchi, P. Maincent, Y. Kawashima, and C.-M. Lehr, “Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease,” J. Pharmacol. Exp. Ther. 299(2), 775–781 (2001).
[PubMed]

Mamedova, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[Crossref] [PubMed]

Martin, A. L.

I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, “Silica-coated quantum dots for optical evaluation of perfluorocarbon droplet interactions with cells,” Langmuir 27(24), 15024–15033 (2011).
[Crossref] [PubMed]

Matsumura, Y.

Y. Matsumura and H. Maeda, “A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs,” Cancer Res. 46(12 Pt 1), 6387–6392 (1986).
[PubMed]

Matsunaga, T. O.

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and Acoustic Studies of a New Phase-Shift Agent for Diagnostic and Therapeutic Ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

Matsuura, N.

I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, “Silica-coated quantum dots for optical evaluation of perfluorocarbon droplet interactions with cells,” Langmuir 27(24), 15024–15033 (2011).
[Crossref] [PubMed]

E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
[Crossref] [PubMed]

Matula, T.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Miller, D. L.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Miyauchi, M.

M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue, “Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer,” Cancer Res. 50(6), 1693–1700 (1990).
[PubMed]

Motamedi, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[Crossref] [PubMed]

Mu Ller, G.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Mumper, R. J.

J. M. Koziara, T. R. Whisman, M. T. Tseng, and R. J. Mumper, “In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors,” J. Control. Release 112(3), 312–319 (2006).
[Crossref] [PubMed]

Nicolas, V.

E. Pisani, N. Tsapis, J. Paris, V. Nicolas, L. Cattel, and E. Fattal, “Polymeric Nano/Microcapsules of Liquid Perfluorocarbons for Ultrasonic Imaging: Physical Characterization,” Langmuir 22(9), 4397–4402 (2006).
[Crossref] [PubMed]

Niu, C.

Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
[Crossref]

Y. J. Wang, E. M. Strohm, Y. Sun, C. Niu, Y. Zheng, Z. Wang, and M. C. Kolios, “PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging,” Proc. SPIE 8943, 89433M (2014).
[Crossref]

Ntziachristos, V.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

O’Donnell, M.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Obermajer, N.

P. Kocbek, N. Obermajer, M. Cegnar, J. Kos, and J. Kristl, “Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody,” J. Control. Release 120(1-2), 18–26 (2007).
[Crossref] [PubMed]

Okano, T.

M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue, “Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer,” Cancer Res. 50(6), 1693–1700 (1990).
[PubMed]

Oraevsky, A. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[Crossref] [PubMed]

A. A. Oraevsky, A. A. Karabutov, and E. V. Savateeva, “Enhancement of optoacoustic tissue contrast with absorbing nanoparticles,” in Proceedings of European Conference on Biomedical Optics, (International Society for Optics and Photonics, 2001), pp. 60–69.

Pan, X.

J. Liu, J. Li, T. J. Rosol, X. Pan, and J. L. Voorhees, “Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro,” Phys. Med. Biol. 52(16), 4739–4747 (2007).
[Crossref] [PubMed]

Panyam, J.

J. Panyam and V. Labhasetwar, “Sustained Cytoplasmic Delivery of Drugs with Intracellular Receptors Using Biodegradable Nanoparticles,” Mol. Pharm. 1(1), 77–84 (2004).
[Crossref] [PubMed]

J. Panyam and V. Labhasetwar, “Biodegradable nanoparticles for drug and gene delivery to cells and tissue,” Adv. Drug Deliv. Rev. 55(3), 329–347 (2003).
[Crossref] [PubMed]

Paris, J.

E. Pisani, N. Tsapis, J. Paris, V. Nicolas, L. Cattel, and E. Fattal, “Polymeric Nano/Microcapsules of Liquid Perfluorocarbons for Ultrasonic Imaging: Physical Characterization,” Langmuir 22(9), 4397–4402 (2006).
[Crossref] [PubMed]

Pelivanov, I.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Perez, C.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Pisani, E.

E. Pisani, N. Tsapis, J. Paris, V. Nicolas, L. Cattel, and E. Fattal, “Polymeric Nano/Microcapsules of Liquid Perfluorocarbons for Ultrasonic Imaging: Physical Characterization,” Langmuir 22(9), 4397–4402 (2006).
[Crossref] [PubMed]

Popov, V. L.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[Crossref] [PubMed]

Pozzo, D.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Puntes, V.

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing Versus Ostwald Ripening,” Langmuir 27(17), 11098–11105 (2011).
[Crossref] [PubMed]

Ran, H.

Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
[Crossref]

Riess, J. G.

J. G. Riess, “Perfluorocarbon-based oxygen delivery,” Artif. Cells Blood Substit. Immobil. Biotechnol. 34(6), 567–580 (2006).
[Crossref] [PubMed]

Rijcken, C. J. F.

M. Talelli, C. J. F. Rijcken, W. E. Hennink, and T. Lammers, “Polymeric micelles for cancer therapy: 3 C’s to enhance efficacy,” Curr. Opin. Solid State Mater. Sci. 16(6), 302–309 (2012).
[Crossref]

Roggan, A.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Rosol, T. J.

J. Liu, J. Li, T. J. Rosol, X. Pan, and J. L. Voorhees, “Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro,” Phys. Med. Biol. 52(16), 4739–4747 (2007).
[Crossref] [PubMed]

Rui, M.

Sahoo, S. K.

S. K. Sahoo and V. Labhasetwar, “Nanotech approaches to drug delivery and imaging,” Drug Discov. Today 8(24), 1112–1120 (2003).
[Crossref] [PubMed]

Sakurai, Y.

M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue, “Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer,” Cancer Res. 50(6), 1693–1700 (1990).
[PubMed]

Savateeva, E. V.

A. A. Oraevsky, A. A. Karabutov, and E. V. Savateeva, “Enhancement of optoacoustic tissue contrast with absorbing nanoparticles,” in Proceedings of European Conference on Biomedical Optics, (International Society for Optics and Photonics, 2001), pp. 60–69.

Sawyer, M. B.

J. Spratlin and M. B. Sawyer, “Pharmacogenetics of paclitaxel metabolism,” Crit. Rev. Oncol. Hematol. 61(3), 222–229 (2007).
[Crossref] [PubMed]

Schäfer, U.

A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H. Takeuchi, P. Maincent, Y. Kawashima, and C.-M. Lehr, “Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease,” J. Pharmacol. Exp. Ther. 299(2), 775–781 (2001).
[PubMed]

Seo, M.

I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, “Silica-coated quantum dots for optical evaluation of perfluorocarbon droplet interactions with cells,” Langmuir 27(24), 15024–15033 (2011).
[Crossref] [PubMed]

Shakesheff, K. M.

K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, and K. M. Shakesheff, “Polymeric systems for controlled drug release,” Chem. Rev. 99(11), 3181–3198 (1999).
[Crossref] [PubMed]

Sheeran, P. S.

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and Acoustic Studies of a New Phase-Shift Agent for Diagnostic and Therapeutic Ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

Shin, D. M.

X. Wang, Y. Wang, Z. G. Chen, and D. M. Shin, “Advances of Cancer Therapy by Nanotechnology,” Cancer Res. Treat. 41(1), 1–11 (2009).
[Crossref] [PubMed]

Shin, E.

M. Ishitobi, E. Shin, and N. Kikkawa, “Metastatic breast cancer with resistance to both anthracycline and docetaxel successfully treated with weekly paclitaxel,” Int. J. Clin. Oncol. 6(1), 55–58 (2001).
[Crossref] [PubMed]

Slemp, A.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

Song, K. H.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Spratlin, J.

J. Spratlin and M. B. Sawyer, “Pharmacogenetics of paclitaxel metabolism,” Crit. Rev. Oncol. Hematol. 61(3), 222–229 (2007).
[Crossref] [PubMed]

Stevenson, P. C.

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11(0), 55–75 (1951).
[Crossref]

Strohm, E.

Strohm, E. M.

Y. J. Wang, E. M. Strohm, Y. Sun, C. Niu, Y. Zheng, Z. Wang, and M. C. Kolios, “PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging,” Proc. SPIE 8943, 89433M (2014).
[Crossref]

Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
[Crossref]

Sun, Y.

Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
[Crossref]

Y. J. Wang, E. M. Strohm, Y. Sun, C. Niu, Y. Zheng, Z. Wang, and M. C. Kolios, “PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging,” Proc. SPIE 8943, 89433M (2014).
[Crossref]

Takeuchi, H.

A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H. Takeuchi, P. Maincent, Y. Kawashima, and C.-M. Lehr, “Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease,” J. Pharmacol. Exp. Ther. 299(2), 775–781 (2001).
[PubMed]

Talelli, M.

M. Talelli, C. J. F. Rijcken, W. E. Hennink, and T. Lammers, “Polymeric micelles for cancer therapy: 3 C’s to enhance efficacy,” Curr. Opin. Solid State Mater. Sci. 16(6), 302–309 (2012).
[Crossref]

Torchilin, V. P.

F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain, “Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size,” Cancer Res. 55(17), 3752–3756 (1995).
[PubMed]

Tsapis, N.

E. Pisani, N. Tsapis, J. Paris, V. Nicolas, L. Cattel, and E. Fattal, “Polymeric Nano/Microcapsules of Liquid Perfluorocarbons for Ultrasonic Imaging: Physical Characterization,” Langmuir 22(9), 4397–4402 (2006).
[Crossref] [PubMed]

Tseng, M. T.

J. M. Koziara, T. R. Whisman, M. T. Tseng, and R. J. Mumper, “In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors,” J. Control. Release 112(3), 312–319 (2006).
[Crossref] [PubMed]

Turkevich, J.

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11(0), 55–75 (1951).
[Crossref]

Ubrich, N.

A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H. Takeuchi, P. Maincent, Y. Kawashima, and C.-M. Lehr, “Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease,” J. Pharmacol. Exp. Ther. 299(2), 775–781 (2001).
[PubMed]

Uhrich, K. E.

K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, and K. M. Shakesheff, “Polymeric systems for controlled drug release,” Chem. Rev. 99(11), 3181–3198 (1999).
[Crossref] [PubMed]

Voorhees, J. L.

J. Liu, J. Li, T. J. Rosol, X. Pan, and J. L. Voorhees, “Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro,” Phys. Med. Biol. 52(16), 4739–4747 (2007).
[Crossref] [PubMed]

Wang, D.

Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
[Crossref]

Wang, L. V.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Wang, S.

W. Cui, J. Bei, S. Wang, G. Zhi, Y. Zhao, X. Zhou, H. Zhang, and Y. Xu, “Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography,” J. Biomed. Mater. Res. B Appl. Biomater. 73B(1), 171–178 (2005).
[Crossref] [PubMed]

Wang, X.

X. Wang, Y. Wang, Z. G. Chen, and D. M. Shin, “Advances of Cancer Therapy by Nanotechnology,” Cancer Res. Treat. 41(1), 1–11 (2009).
[Crossref] [PubMed]

Wang, Y.

Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
[Crossref]

X. Wang, Y. Wang, Z. G. Chen, and D. M. Shin, “Advances of Cancer Therapy by Nanotechnology,” Cancer Res. Treat. 41(1), 1–11 (2009).
[Crossref] [PubMed]

Wang, Y. J.

Y. J. Wang, E. M. Strohm, Y. Sun, C. Niu, Y. Zheng, Z. Wang, and M. C. Kolios, “PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging,” Proc. SPIE 8943, 89433M (2014).
[Crossref]

Wang, Z.

Y. J. Wang, E. M. Strohm, Y. Sun, C. Niu, Y. Zheng, Z. Wang, and M. C. Kolios, “PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging,” Proc. SPIE 8943, 89433M (2014).
[Crossref]

Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
[Crossref]

Wei, C. W.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Weissleder, R.

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Whisman, T. R.

J. M. Koziara, T. R. Whisman, M. T. Tseng, and R. J. Mumper, “In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors,” J. Control. Release 112(3), 312–319 (2006).
[Crossref] [PubMed]

Wilson, K.

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3, 618 (2012).
[Crossref] [PubMed]

Xia, J.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Xia, Y.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Xu, Y.

W. Cui, J. Bei, S. Wang, G. Zhi, Y. Zhao, X. Zhou, H. Zhang, and Y. Xu, “Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography,” J. Biomed. Mater. Res. B Appl. Biomater. 73B(1), 171–178 (2005).
[Crossref] [PubMed]

Yadav, S. C.

A. Kumari, S. K. Yadav, and S. C. Yadav, “Biodegradable polymeric nanoparticles based drug delivery systems,” Colloids Surf. B Biointerfaces 75(1), 1–18 (2010).
[Crossref] [PubMed]

Yadav, S. K.

A. Kumari, S. K. Yadav, and S. C. Yadav, “Biodegradable polymeric nanoparticles based drug delivery systems,” Colloids Surf. B Biointerfaces 75(1), 1–18 (2010).
[Crossref] [PubMed]

Yamada, N.

M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue, “Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer,” Cancer Res. 50(6), 1693–1700 (1990).
[PubMed]

Yamamoto, H.

A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H. Takeuchi, P. Maincent, Y. Kawashima, and C.-M. Lehr, “Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease,” J. Pharmacol. Exp. Ther. 299(2), 775–781 (2001).
[PubMed]

Yodh, A. G.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

Yokoyama, M.

M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue, “Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer,” Cancer Res. 50(6), 1693–1700 (1990).
[PubMed]

Yuan, F.

F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain, “Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size,” Cancer Res. 55(17), 3752–3756 (1995).
[PubMed]

Zhang, H.

W. Cui, J. Bei, S. Wang, G. Zhi, Y. Zhao, X. Zhou, H. Zhang, and Y. Xu, “Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography,” J. Biomed. Mater. Res. B Appl. Biomater. 73B(1), 171–178 (2005).
[Crossref] [PubMed]

Zhang, Q.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Zhao, Y.

W. Cui, J. Bei, S. Wang, G. Zhi, Y. Zhao, X. Zhou, H. Zhang, and Y. Xu, “Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography,” J. Biomed. Mater. Res. B Appl. Biomater. 73B(1), 171–178 (2005).
[Crossref] [PubMed]

Zheng, Y.

Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
[Crossref]

Y. J. Wang, E. M. Strohm, Y. Sun, C. Niu, Y. Zheng, Z. Wang, and M. C. Kolios, “PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging,” Proc. SPIE 8943, 89433M (2014).
[Crossref]

Zhi, G.

W. Cui, J. Bei, S. Wang, G. Zhi, Y. Zhao, X. Zhou, H. Zhang, and Y. Xu, “Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography,” J. Biomed. Mater. Res. B Appl. Biomater. 73B(1), 171–178 (2005).
[Crossref] [PubMed]

Zhou, D.

Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
[Crossref]

Zhou, X.

W. Cui, J. Bei, S. Wang, G. Zhi, Y. Zhao, X. Zhou, H. Zhang, and Y. Xu, “Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography,” J. Biomed. Mater. Res. B Appl. Biomater. 73B(1), 171–178 (2005).
[Crossref] [PubMed]

Zubkov, L.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

ACS Nano (1)

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (2)

I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Adv. Drug Deliv. Rev. 54(5), 631–651 (2002).
[Crossref] [PubMed]

J. Panyam and V. Labhasetwar, “Biodegradable nanoparticles for drug and gene delivery to cells and tissue,” Adv. Drug Deliv. Rev. 55(3), 329–347 (2003).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
[Crossref]

S. H. Liu and M. Y. Han, “Synthesis, Functionalization, and Bioconjugation of Monodisperse, Silica-Coated Gold Nanoparticles: Robust Bioprobes,” Adv. Funct. Mater. 15(6), 961–967 (2005).
[Crossref]

Appl. Phys. Lett. (1)

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Artif. Cells Blood Substit. Immobil. Biotechnol. (1)

J. G. Riess, “Perfluorocarbon-based oxygen delivery,” Artif. Cells Blood Substit. Immobil. Biotechnol. 34(6), 567–580 (2006).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Cancer Res. (3)

Y. Matsumura and H. Maeda, “A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs,” Cancer Res. 46(12 Pt 1), 6387–6392 (1986).
[PubMed]

F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain, “Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size,” Cancer Res. 55(17), 3752–3756 (1995).
[PubMed]

M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue, “Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer,” Cancer Res. 50(6), 1693–1700 (1990).
[PubMed]

Cancer Res. Treat. (1)

X. Wang, Y. Wang, Z. G. Chen, and D. M. Shin, “Advances of Cancer Therapy by Nanotechnology,” Cancer Res. Treat. 41(1), 1–11 (2009).
[Crossref] [PubMed]

Chem. Rev. (1)

K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, and K. M. Shakesheff, “Polymeric systems for controlled drug release,” Chem. Rev. 99(11), 3181–3198 (1999).
[Crossref] [PubMed]

Colloids Surf. B Biointerfaces (1)

A. Kumari, S. K. Yadav, and S. C. Yadav, “Biodegradable polymeric nanoparticles based drug delivery systems,” Colloids Surf. B Biointerfaces 75(1), 1–18 (2010).
[Crossref] [PubMed]

Crit. Rev. Oncol. Hematol. (1)

J. Spratlin and M. B. Sawyer, “Pharmacogenetics of paclitaxel metabolism,” Crit. Rev. Oncol. Hematol. 61(3), 222–229 (2007).
[Crossref] [PubMed]

Curr. Opin. Solid State Mater. Sci. (1)

M. Talelli, C. J. F. Rijcken, W. E. Hennink, and T. Lammers, “Polymeric micelles for cancer therapy: 3 C’s to enhance efficacy,” Curr. Opin. Solid State Mater. Sci. 16(6), 302–309 (2012).
[Crossref]

Discuss. Faraday Soc. (1)

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11(0), 55–75 (1951).
[Crossref]

Drug Discov. Today (1)

S. K. Sahoo and V. Labhasetwar, “Nanotech approaches to drug delivery and imaging,” Drug Discov. Today 8(24), 1112–1120 (2003).
[Crossref] [PubMed]

Int. J. Clin. Oncol. (1)

M. Ishitobi, E. Shin, and N. Kikkawa, “Metastatic breast cancer with resistance to both anthracycline and docetaxel successfully treated with weekly paclitaxel,” Int. J. Clin. Oncol. 6(1), 55–58 (2001).
[Crossref] [PubMed]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

J. Biomed. Mater. Res. B Appl. Biomater. (1)

W. Cui, J. Bei, S. Wang, G. Zhi, Y. Zhao, X. Zhou, H. Zhang, and Y. Xu, “Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography,” J. Biomed. Mater. Res. B Appl. Biomater. 73B(1), 171–178 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

J. Control. Release (2)

J. M. Koziara, T. R. Whisman, M. T. Tseng, and R. J. Mumper, “In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors,” J. Control. Release 112(3), 312–319 (2006).
[Crossref] [PubMed]

P. Kocbek, N. Obermajer, M. Cegnar, J. Kos, and J. Kristl, “Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody,” J. Control. Release 120(1-2), 18–26 (2007).
[Crossref] [PubMed]

J. Pharmacol. Exp. Ther. (1)

A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H. Takeuchi, P. Maincent, Y. Kawashima, and C.-M. Lehr, “Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease,” J. Pharmacol. Exp. Ther. 299(2), 775–781 (2001).
[PubMed]

Kolloid-Z. Z. Für Polym. (1)

G. Frens, “Particle size and sol stability in metal colloids,” Kolloid-Z. Z. Für Polym. 250(7), 736–741 (1972).
[Crossref]

Langmuir (4)

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing Versus Ostwald Ripening,” Langmuir 27(17), 11098–11105 (2011).
[Crossref] [PubMed]

E. Pisani, N. Tsapis, J. Paris, V. Nicolas, L. Cattel, and E. Fattal, “Polymeric Nano/Microcapsules of Liquid Perfluorocarbons for Ultrasonic Imaging: Physical Characterization,” Langmuir 22(9), 4397–4402 (2006).
[Crossref] [PubMed]

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and Acoustic Studies of a New Phase-Shift Agent for Diagnostic and Therapeutic Ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, “Silica-coated quantum dots for optical evaluation of perfluorocarbon droplet interactions with cells,” Langmuir 27(24), 15024–15033 (2011).
[Crossref] [PubMed]

Med. Phys. (1)

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
[Crossref] [PubMed]

Mol. Imaging Biol. (1)

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[Crossref] [PubMed]

Mol. Membr. Biol. (1)

D. B. Chithrani, “Intracellular uptake, transport, and processing of gold nanostructures,” Mol. Membr. Biol. 27(7), 299–311 (2010).
[Crossref] [PubMed]

Mol. Pharm. (1)

J. Panyam and V. Labhasetwar, “Sustained Cytoplasmic Delivery of Drugs with Intracellular Receptors Using Biodegradable Nanoparticles,” Mol. Pharm. 1(1), 77–84 (2004).
[Crossref] [PubMed]

Nano Lett. (1)

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

C. L. Didychuk, P. Ephrat, A. Chamson-Reig, S. L. Jacques, and J. J. L. Carson, “Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom,” Nanotechnology 20(19), 195102 (2009).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3, 618 (2012).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

R. Duncan, “Polymer conjugates as anticancer nanomedicines,” Nat. Rev. Cancer 6(9), 688–701 (2006).
[Crossref] [PubMed]

Nature (2)

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[Crossref] [PubMed]

J. L. Goldstein, R. G. W. Anderson, and M. S. Brown, “Coated pits, coated vesicles, and receptor-mediated endocytosis,” Nature 279(5715), 679–685 (1979).
[Crossref] [PubMed]

Pharm. Res. (1)

M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of Water-Soluble Drugs Using Acoustically Triggered Perfluorocarbon Double Emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

J. Liu, J. Li, T. J. Rosol, X. Pan, and J. L. Voorhees, “Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro,” Phys. Med. Biol. 52(16), 4739–4747 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

Y. J. Wang, E. M. Strohm, Y. Sun, C. Niu, Y. Zheng, Z. Wang, and M. C. Kolios, “PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging,” Proc. SPIE 8943, 89433M (2014).
[Crossref]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Small (1)

A. J. Dixon, S. Hu, A. L. Klibanov, and J. A. Hossack, “Oscillatory Dynamics and In Vivo Photoacoustic Imaging Performance of Plasmonic Nanoparticle-Coated Microbubbles,” Small 11(25), 3066–3077 (2015).
[Crossref] [PubMed]

Ultrasound Med. Biol. (1)

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Other (5)

R. E. Apfel, “Activatable infusable dispersions containing drops of a superheated liquid for methods of therapy and diagnosis,” US5840276 A (1998).

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Proceedings of Optics, Electro-Optics, & Laser Applications in Science& Engineering, (International Society for Optics and Photonics,1993), pp. 86–101.

E. Hysi, E. M. Strohm, and M. C. Kolios, “Probing Different Biological Length Scales Using Photoacoustics: From 1 To 1000 MHz,” in Handbook of Photonics for Biomedical Engineering, A. H.-P. Ho, D. Kim, and M. G. Somekh, Eds. (Springer, 2014).

A. A. Oraevsky, A. A. Karabutov, and E. V. Savateeva, “Enhancement of optoacoustic tissue contrast with absorbing nanoparticles,” in Proceedings of European Conference on Biomedical Optics, (International Society for Optics and Photonics, 2001), pp. 60–69.

S. L. Lombardi, ed., Nanoparticles: new research, (Nova Science Publishers, 2008).

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (11811 KB)      The video shows that a bubble formed inside the cell escaped from the cell. The cell membrane integrity was lost, and Propidium iodide fluorescence was observed within 20 seconds.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (Top) TEM images of silica-coated GNPs, 14 nm, 35 nm, and 55 nm in diameter (dark areas) with silica shells (light gray areas). (Bottom) Optical extinction coefficients as function of wavelength are shown here in dashed yellow, blue and red lines, respectively. The extinction coefficient spectra of 14, 35 and 55 nm GNP solution are shown in solid yellow, blue and red lines. The scale bar is 100 nm for all figures.
Fig. 2
Fig. 2 (a) Schematic demonstration of the composition of a PLGA particle containing silica-coated gold nanoparticles and a PFH liquid. (b) – (d) TEM images of single PLGA particles loaded with PFH liquids and silica-coated GNPs. The black dots are the GNPs, and the gray pancake-shaped objects are the PLGA shells. (e) A SEM image of PLGA-GNP particles shows the spherical morphology. (f) The particle size distribution ranged from 0.486 to 9.25 µm with a mean size of 562 ± 91 nm. (g) Extinction coefficient as functions of laser wavelength for GNPs, PLGA particles and PLGA-GNP particles loaded with 35 nm GNPs.
Fig. 3
Fig. 3 (b)(c)(d) The PA signal as function of the laser fluence for three particle sizes are shown here. At the low energy level (<40mJ/cm2), the PA signal is linearly proportional to the laser fluence for three types of PLGA particles (2, 5, and 10 µm). (a) The slope (0.141, 0.064, and 0.055 cm−1) obtained from 2 µm PLGA-GNP particles is proportional to the GNP size, 55 nm, 35 nm, and 14 nm. In each graph, orange squares represent 55 nm GNPs, pink triangles represent 35 nm GNPs, and blue diamonds represent 14 nm GNPs. Error bars represent the standard deviation of ten measurements of one size of the PLGA particles.
Fig. 4
Fig. 4 (a) Optical images of PLGA-GNPs before and after vaporization. The initial particle diameter was 2, 5 and 10 μm (top row from left to right). The bubble diameter slowly increased to 20, 35, and 50 μm respectively after 2 seconds (bottom row from left to right). The scale bar is 30 μm for all images. (b) Photoacoustic signal amplitudes and vaporization threshold as functions of laser fluence and GNP sizes. The circle positions indicate when more than 50% of the particles vaporized.
Fig. 5
Fig. 5 (a)(b) TEM images of a single PLGA-GNP particle adherent to the surface of the cell and internalized in a cytoplasmic vesicle. The black dots are the GNPs (solid white arrows). The white areas are the hollow parts of the PLGA particles (dash yellow arrows). (c) Confocal laser scanning fluorescence images of PLGA-GNP particles uptake by MCF7 cells after 5-hour (top row) and 20-hour (bottom row) incubation. The images were cross sections at the centers of the cells at xy-, yz-, and xz- plane. The PLGA-GNP particles are labeled by DiI dye in red and are localized in the cell cytoplasm. The nuclei are stained blue by Hoechst. The cytoplasmic membranes are stained green by DiD dye. The scale bar is the same for all images.
Fig. 6
Fig. 6 Images of MCF7 cells loaded with DiI labeled PLGA-GNPs. (a)(d) The optical images were recorded using a 20x phase contrast objective. (b)(e) In the fluorescence images, the cell nuclei are shown in blue due to the Hoechst stain, and the cell membranes are shown in green by the DiO stain. (c)(f) The PA images were obtained using the 375 MHz transducer. The PLGA-GNPs particles are shown in yellow-orange in the fluorescence image (b)(e), and bright white in the PA image (c)(f). The scale bar is the same for all images.
Fig. 7
Fig. 7 (Left) MCF7 cells were exposed to PLGA-GNPs for 6, 12 and 24 hours. Then cells were irradiated with a 532 nm pulsed laser for 10 s/spot with a fluence of 100 mJ/cm2. The cell viability was tested using MTT assay. (Right) MCF7 Cell viability after incubated with PLGA-PAC for 6, 12 and 24 hours was tested using a MTT assay. Error bars represent the standard deviation of 8 duplicates of each group.

Metrics