Abstract

A scheme for reducing image distortion in photothermal microscopy is presented. In photothermal microscopy, the signal shape exhibits twin peaks corresponding to the focusing or defocusing of the probe beam when a sample is scanned in the axial direction. This causes a distortion when imaging a structured sample in the axial plane. Here, we demonstrate that image distortion caused by the twin peaks is effectively suppressed by providing a small offset between two the focal planes of the pump and the probe beams. Experimental results demonstrate improvement in resolution, especially in the axial direction, over conventional optical microscopy—even with the focal offset. When a dry objective lens with a numerical aperture of 0.95 is used, the full width at half the maximum of the axial point spread function is 0.6 μm, which is 50% (62%) smaller than the focal spot sizes of the pump (probe) beam. Herein, we present high-resolution three-dimensional imaging of thick biological tissues based on the present scheme.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimal detection angle in sub-diffraction resolution photothermal microscopy: application for high sensitivity imaging of biological tissues

Jun Miyazaki, Hiromichi Tsurui, Koshi Kawasumi, and Takayoshi Kobayashi
Opt. Express 22(16) 18833-18842 (2014)

Simultaneous dual-wavelength imaging of nonfluorescent tissues with 3D subdiffraction photothermal microscopy

Jun Miyazaki, Hiromichi Tsurui, Koshi Kawasumi, and Takayoshi Kobayashi
Opt. Express 23(3) 3647-3656 (2015)

Submicrometer resolution images of absorbance and thermal diffusivity with the photothermal microscope

Dean S. Burgi and Norman J. Dovichi
Appl. Opt. 26(21) 4665-4669 (1987)

References

  • View by:
  • |
  • |
  • |

  1. E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
    [Crossref] [PubMed]
  2. D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
    [Crossref] [PubMed]
  3. A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
    [Crossref] [PubMed]
  4. S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
    [Crossref]
  5. J. Miyazaki, H. Tsurui, K. Kawasumi, and T. Kobayashi, “Simultaneous dual-wavelength imaging of nonfluorescent tissues with 3D subdiffraction photothermal microscopy,” Opt. Express 23(3), 3647–3656 (2015).
    [Crossref] [PubMed]
  6. C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
    [PubMed]
  7. C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
    [Crossref] [PubMed]
  8. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
    [Crossref] [PubMed]
  9. M. Selmke, M. Braun, and F. Cichos, “Photothermal single-particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012).
    [Crossref] [PubMed]
  10. M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle,” Opt. Express 20(7), 8055–8070 (2012).
    [Crossref] [PubMed]
  11. K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
    [Crossref]
  12. J. Moreau and V. Loriette, “Confocal dual-beam thermal-lens microscope: Model and experimental results,” Jpn. J. Appl. Phys. 45(9A), 7141–7151 (2006).
    [Crossref]
  13. J. Moreau and V. Loriette, “Confocal thermal-lens microscope,” Opt. Lett. 29(13), 1488–1490 (2004).
    [Crossref] [PubMed]
  14. J. Miyazaki, K. Kawasumi, and T. Kobayashi, “Frequency domain approach for time-resolved pump-probe microscopy using intensity modulated laser diodes,” Rev. Sci. Instrum. 85(9), 093703 (2014).
    [Crossref] [PubMed]
  15. J. Miyazaki, H. Tsurui, A. Hayashi-Takagi, H. Kasai, and T. Kobayashi, “Sub-diffraction resolution pump-probe microscopy with shot-noise limited sensitivity using laser diodes,” Opt. Express 22(8), 9024–9032 (2014).
    [Crossref] [PubMed]
  16. J. Miyazaki, H. Tsurui, K. Kawasumi, and T. Kobayashi, “Sensitivity enhancement of photothermal microscopy with radially segmented balanced detection,” Opt. Lett. 40(4), 479–482 (2015).
    [Crossref] [PubMed]

2015 (2)

2014 (2)

J. Miyazaki, K. Kawasumi, and T. Kobayashi, “Frequency domain approach for time-resolved pump-probe microscopy using intensity modulated laser diodes,” Rev. Sci. Instrum. 85(9), 093703 (2014).
[Crossref] [PubMed]

J. Miyazaki, H. Tsurui, A. Hayashi-Takagi, H. Kasai, and T. Kobayashi, “Sub-diffraction resolution pump-probe microscopy with shot-noise limited sensitivity using laser diodes,” Opt. Express 22(8), 9024–9032 (2014).
[Crossref] [PubMed]

2013 (1)

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

2012 (3)

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Photothermal single-particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012).
[Crossref] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle,” Opt. Express 20(7), 8055–8070 (2012).
[Crossref] [PubMed]

2011 (1)

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[Crossref] [PubMed]

2010 (2)

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

2006 (1)

J. Moreau and V. Loriette, “Confocal dual-beam thermal-lens microscope: Model and experimental results,” Jpn. J. Appl. Phys. 45(9A), 7141–7151 (2006).
[Crossref]

2004 (1)

2003 (1)

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

2002 (1)

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

2000 (1)

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
[Crossref]

Aihara, M.

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

Ayyadevara, S.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref] [PubMed]

Boyer, D.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

Braun, M.

M. Selmke, M. Braun, and F. Cichos, “Photothermal single-particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012).
[Crossref] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle,” Opt. Express 20(7), 8055–8070 (2012).
[Crossref] [PubMed]

Brusnichkin, A. V.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

Carney, R. P.

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[Crossref] [PubMed]

Chong, S.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

Choquet, D.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

Cichos, F.

M. Selmke, M. Braun, and F. Cichos, “Photothermal single-particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012).
[Crossref] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle,” Opt. Express 20(7), 8055–8070 (2012).
[Crossref] [PubMed]

Cognet, L.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

Galanzha, E. I.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref] [PubMed]

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

Gautier, J.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

Gautreau, A.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

Giannone, G.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

Hayashi-Takagi, A.

Hibara, A.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
[Crossref]

Holtom, G. R.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

Jung, J. M.

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[Crossref] [PubMed]

Kasai, H.

Kawasumi, K.

Kimura, H.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
[Crossref]

Kitamori, T.

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
[Crossref]

Kobayashi, T.

Leduc, C.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[Crossref] [PubMed]

Loriette, V.

J. Moreau and V. Loriette, “Confocal dual-beam thermal-lens microscope: Model and experimental results,” Jpn. J. Appl. Phys. 45(9A), 7141–7151 (2006).
[Crossref]

J. Moreau and V. Loriette, “Confocal thermal-lens microscope,” Opt. Lett. 29(13), 1488–1490 (2004).
[Crossref] [PubMed]

Lounis, B.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[Crossref] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

Lu, S.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

Min, W.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

Miyazaki, J.

Moreau, J.

J. Moreau and V. Loriette, “Confocal dual-beam thermal-lens microscope: Model and experimental results,” Jpn. J. Appl. Phys. 45(9A), 7141–7151 (2006).
[Crossref]

J. Moreau and V. Loriette, “Confocal thermal-lens microscope,” Opt. Lett. 29(13), 1488–1490 (2004).
[Crossref] [PubMed]

Nedosekin, D. A.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref] [PubMed]

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

Proskurnin, M. A.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

Sato, K.

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

Sawada, T.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
[Crossref]

Selmke, M.

M. Selmke, M. Braun, and F. Cichos, “Photothermal single-particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012).
[Crossref] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle,” Opt. Express 20(7), 8055–8070 (2012).
[Crossref] [PubMed]

Shevtsova, E. F.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

Shmookler Reis, R. J.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref] [PubMed]

Si, S.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

Soto-Ribeiro, M.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

Stellacci, F.

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[Crossref] [PubMed]

Tamaki, E.

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

Tamarat, P.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

Tardin, C.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

Tokeshi, M.

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

Tsurui, H.

Uchiyama, K.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
[Crossref]

Vladimirov, Y. A.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

Wehrle-Haller, B.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

Xie, X. S.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

Zharov, V. P.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref] [PubMed]

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

ACS Nano (2)

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[Crossref] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Photothermal single-particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012).
[Crossref] [PubMed]

Anal. Chem. (1)

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

Biophys. J. (1)

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref] [PubMed]

J. Biophotonics (1)

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (2)

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
[Crossref]

J. Moreau and V. Loriette, “Confocal dual-beam thermal-lens microscope: Model and experimental results,” Jpn. J. Appl. Phys. 45(9A), 7141–7151 (2006).
[Crossref]

Nano Lett. (1)

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

Opt. Express (3)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

J. Miyazaki, K. Kawasumi, and T. Kobayashi, “Frequency domain approach for time-resolved pump-probe microscopy using intensity modulated laser diodes,” Rev. Sci. Instrum. 85(9), 093703 (2014).
[Crossref] [PubMed]

Supplementary Material (2)

NameDescription
» Visualization 1: MOV (1376 KB)      Media1
» Visualization 2: MOV (1734 KB)      Media2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of laser diode-based photothermal microscopy. SMF: single mode fiber, DM: dichroic mirror, OBL: objective lens, CL: condenser lens. The distance Δz between the focal planes of the pump and probe beams is controlled by positioning the doublet lens after the SMF in the pump beam path.
Fig. 2
Fig. 2 Intensity profiles of pump (blue) and probe (red) beams in the (a) lateral and (b) axial planes, as measured using a knife edge method. (c) Axial intensity distribution of the pump beam with several offsets of focal plane Δz. The broken line is the intensity profile of the probe beam. (d) Relation between Δz and the position of the doublet lens, which is mounted on a translation stage with a micrometer.
Fig. 3
Fig. 3 Photothermal images of a single gold nanoparticle exhibiting twin peaks when the focal offset Δz was close to zero. (a) Intensity distribution in the axial plane with several values of Δz. (b) Axial and (c) lateral FWHM values as a function of Δz. The filled circles and open triangles are the FWHM values for positive (in-phase) and negative (180° out of phase) peaks, respectively.
Fig. 4
Fig. 4 Photothermal images of a single gold nanoparticle that exhibits a single peak in the axial direction, regardless of the focal plane offset Δz. (a) Intensity distribution in the axial plane with several values of Δz. The upper and lower panels are amplitude and phase images, respectively. The scale bar is 0.5μm. (b) Axial and (c) lateral FWHM values as a function of Δz.
Fig. 5
Fig. 5 Photothermal (PT) images of a heamatoxlimai and eosin (HE)-stained tissue. (a) Bright field image of HE-stained tissue. A doublet lens and the same objective lens are used to produce the image on a CMOS camera with a white LED backlight. PT images of the tissue in the (b) lateral and (c) axial planes without focal plane offset. The upper and lower panels indicate amplitude and phase images, respectively. Scale bars are 4 μm. (d) 3D image of HE-stained tissue (see Visualization 1).
Fig. 6
Fig. 6 Photothermal (PT) images of a slice of mouse melanoma in the lateral plane with (a) Δz = 0 μm and (b) Δz = −0.5 μm. The upper and lower panels indicate amplitude and phase images, respectively. The arrows in (a) indicate a negative (180° out of phase) signal that causes image distortion. The PT images in the axial plane with (c) Δz = 0 μm and (d) Δz = −0.5 μm. Lower panels show intensity and phase profiles along the broken lines. Scale bars are 4 μm. (e) 3D rendering of a set of 50 image slices (see Visualization 2). Image size is 19.6 x 19.6 x 13.9 μm at 200 x 200 x 50 voxel. The time constant of the lock-in amplifier is 0.5 ms and the dwell time per point is 1 ms.

Metrics