Abstract

Laser propagation through a turbid rat dura mater membrane is shown to be controllable with a wavefront modulation technique. The scattered light field can be refocused into a target area behind the rat dura mater membrane with a 110 times intensity enhancement using a spatial light modulator. The efficient laser intensity concentration system is demonstrated to imitate the phototherapy for human brain tumors. The power density in the target area is enhanced more than 200 times compared with the input power density on the dura mater membrane, thus allowing continued irradiation concentration to the deep lesion without damage to the dura mater. Multibeam inputs along different directions, or at different positions, can be guided to focus to the same spot behind the membrane, hence providing a similar gamma knife function in optical spectral range. Moreover, both the polarization and the phase of the input field can be recovered in the target area, allowing coherent field superposition in comparison with the linear intensity superposition for the gamma knife.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo photothermal treatment with real-time monitoring by optical fiber-needle array

Taeseok Daniel Yang, Kwanjun Park, Hyung-Jin Kim, Nu-Ri Im, Byoungjae Kim, TaeHoon Kim, Sohyun Seo, Jae-Seung Lee, Beop-Min Kim, Youngwoon Choi, and Seung-Kuk Baek
Biomed. Opt. Express 8(7) 3482-3492 (2017)

Hyperosmotic chemical agent’s effect on in vivo cerebral blood flow revealed by laser speckle

Haiying Cheng, Qingming Luo, Shaoqun Zeng, Shangbin Chen, Weihua Luo, and Hui Gong
Appl. Opt. 43(31) 5772-5777 (2004)

Quantitative imaging of light-triggered doxorubicin release

Jeremy Kress, Daniel J. Rohrbach, Kevin A. Carter, Dandan Luo, Shuai Shao, Shashikant Lele, Jonathan F. Lovell, and Ulas Sunar
Biomed. Opt. Express 6(9) 3546-3555 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Biel, “Advances in photodynamic therapy for the treatment of head and neck cancers,” Lasers Surg. Med. 38(5), 349–355 (2006).
    [Crossref] [PubMed]
  2. S. Yano, S. Hiroharab, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Photochem. Rev. 12(1), 46–67 (2011).
    [Crossref]
  3. Q. Chen, C. Wang, L. Cheng, W. He, Z. Cheng, and Z. Liu, “Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy,” Biomaterials 35(9), 2915–2923 (2014).
    [Crossref] [PubMed]
  4. K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo Near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
    [Crossref] [PubMed]
  5. D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
    [Crossref] [PubMed]
  6. A. Sahu, W. I. Choi, J. H. Lee, and G. Tae, “Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy,” Biomaterials 34(26), 6239–6248 (2013).
    [Crossref] [PubMed]
  7. A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
    [Crossref] [PubMed]
  8. J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
    [Crossref] [PubMed]
  9. N. L. Oleinick, R. L. Morris, and I. Belichenko, “The role of apoptosis in response to photodynamic therapy: what, where, why, and how,” Photochem. Photobiol. Sci. 1(1), 1–21 (2002).
    [Crossref] [PubMed]
  10. C.-K. Lim, J. Heo, S. Shin, K. Jeong, Y. H. Seo, W. D. Jang, C. R. Park, S. Y. Park, S. Kim, and I. C. Kwon, “Nanophotosensitizers toward advanced photodynamic therapy of Cancer,” Cancer Lett. 334(2), 176–187 (2013).
    [Crossref] [PubMed]
  11. D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
    [Crossref] [PubMed]
  12. X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
    [Crossref] [PubMed]
  13. C. Grecco, C. Kurachi, and V. S. Bagnato, “Photodynamic therapy with ultrashort pulsed laser”, in Latin America Optics and Photonics Conference, OSA Technical Digest, (Optical Society of America, 2010)paper: MC1.
    [Crossref]
  14. B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in Light Microscopy for Neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
    [Crossref] [PubMed]
  15. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
    [Crossref] [PubMed]
  16. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [Crossref] [PubMed]
  17. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref] [PubMed]
  18. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
    [Crossref] [PubMed]
  19. H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21(10), 12539–12545 (2013).
    [Crossref] [PubMed]
  20. Y. Guan, O. Katz, E. Small, J. Zhou, and Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping,” Opt. Lett. 37(22), 4663–4665 (2012).
    [Crossref] [PubMed]
  21. I. M. Vellekoop and C. M. Aegerter, “Focusing light through living tissue,” Proc. SPIE 7554, 755430 (2010).
    [Crossref]
  22. X. Yang, Y. Pu, and D. Psaltis, “Imaging blood cells through scattering biological tissue using speckle scanning microscopy,” Opt. Express 22(3), 3405–3413 (2014).
    [Crossref] [PubMed]
  23. G. K. Bejjani and J. Zabramski, “Safety and efficacy of the porcine small intestinal submucosa dural substitute: results of a prospective multicenter study and literature review,” J. Neurosurg. 106(6), 1028–1033 (2007).
    [Crossref] [PubMed]
  24. C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
    [Crossref] [PubMed]
  25. É. A. Genina, A. N. Bashkatov, V. I. Kochubey, and V. V. Tuchin, “Optical clearing of human dura mater,” Opt. Spectrosc. 98(3), 470–476 (2005).
    [Crossref]
  26. A. N. Bashkatov, E. A. Genina, Y. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, and V. V. Tuchin, “Glucose and Mannitol Diffusion in Human Dura Mater,” Biophys. J. 85(5), 3310–3318 (2003).
    [Crossref] [PubMed]
  27. M. Gerosa, A. Nicolato, and R. Foroni, “The role of gamma knife radiosurgery in the treatment of primary and metastatic brain tumors,” Curr. Opin. Oncol. 15(3), 188–196 (2003).
    [Crossref] [PubMed]
  28. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [Crossref] [PubMed]
  29. O. Katz, E. Small, Y. F. Guan, and Y. Silberberg, “Noninvasive nonlinear imaging through strongly- scattering turbid layers,” Optica 1(3), 170–174 (2014).
  30. J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci. Rep. 4, 3918 (2014).
    [Crossref] [PubMed]
  31. A. M. Caravaca-Aguirre, D. B. Conkey, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “High contrast three-dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement,” Opt. Express 21(22), 26671–26676 (2013).
    [Crossref] [PubMed]
  32. M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19(4), 2989–2995 (2011).
    [Crossref] [PubMed]
  33. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
    [Crossref] [PubMed]
  34. S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” Proc. SPIE 8979, 897905 (2014).
    [Crossref]
  35. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20(14), 15086–15092 (2012).
    [PubMed]

2014 (7)

Q. Chen, C. Wang, L. Cheng, W. He, Z. Cheng, and Z. Liu, “Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy,” Biomaterials 35(9), 2915–2923 (2014).
[Crossref] [PubMed]

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

X. Yang, Y. Pu, and D. Psaltis, “Imaging blood cells through scattering biological tissue using speckle scanning microscopy,” Opt. Express 22(3), 3405–3413 (2014).
[Crossref] [PubMed]

O. Katz, E. Small, Y. F. Guan, and Y. Silberberg, “Noninvasive nonlinear imaging through strongly- scattering turbid layers,” Optica 1(3), 170–174 (2014).

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci. Rep. 4, 3918 (2014).
[Crossref] [PubMed]

S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” Proc. SPIE 8979, 897905 (2014).
[Crossref]

2013 (4)

A. M. Caravaca-Aguirre, D. B. Conkey, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “High contrast three-dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement,” Opt. Express 21(22), 26671–26676 (2013).
[Crossref] [PubMed]

H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21(10), 12539–12545 (2013).
[Crossref] [PubMed]

C.-K. Lim, J. Heo, S. Shin, K. Jeong, Y. H. Seo, W. D. Jang, C. R. Park, S. Y. Park, S. Kim, and I. C. Kwon, “Nanophotosensitizers toward advanced photodynamic therapy of Cancer,” Cancer Lett. 334(2), 176–187 (2013).
[Crossref] [PubMed]

A. Sahu, W. I. Choi, J. H. Lee, and G. Tae, “Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy,” Biomaterials 34(26), 6239–6248 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (2)

M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19(4), 2989–2995 (2011).
[Crossref] [PubMed]

S. Yano, S. Hiroharab, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Photochem. Rev. 12(1), 46–67 (2011).
[Crossref]

2010 (3)

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

I. M. Vellekoop and C. M. Aegerter, “Focusing light through living tissue,” Proc. SPIE 7554, 755430 (2010).
[Crossref]

2009 (1)

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in Light Microscopy for Neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref] [PubMed]

2008 (1)

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

2007 (2)

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

G. K. Bejjani and J. Zabramski, “Safety and efficacy of the porcine small intestinal submucosa dural substitute: results of a prospective multicenter study and literature review,” J. Neurosurg. 106(6), 1028–1033 (2007).
[Crossref] [PubMed]

2006 (2)

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref] [PubMed]

M. Biel, “Advances in photodynamic therapy for the treatment of head and neck cancers,” Lasers Surg. Med. 38(5), 349–355 (2006).
[Crossref] [PubMed]

2005 (2)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

É. A. Genina, A. N. Bashkatov, V. I. Kochubey, and V. V. Tuchin, “Optical clearing of human dura mater,” Opt. Spectrosc. 98(3), 470–476 (2005).
[Crossref]

2004 (1)

C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
[Crossref] [PubMed]

2003 (3)

A. N. Bashkatov, E. A. Genina, Y. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, and V. V. Tuchin, “Glucose and Mannitol Diffusion in Human Dura Mater,” Biophys. J. 85(5), 3310–3318 (2003).
[Crossref] [PubMed]

M. Gerosa, A. Nicolato, and R. Foroni, “The role of gamma knife radiosurgery in the treatment of primary and metastatic brain tumors,” Curr. Opin. Oncol. 15(3), 188–196 (2003).
[Crossref] [PubMed]

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref] [PubMed]

2002 (1)

N. L. Oleinick, R. L. Morris, and I. Belichenko, “The role of apoptosis in response to photodynamic therapy: what, where, why, and how,” Photochem. Photobiol. Sci. 1(1), 1–21 (2002).
[Crossref] [PubMed]

Aegerter, C. M.

I. M. Vellekoop and C. M. Aegerter, “Focusing light through living tissue,” Proc. SPIE 7554, 755430 (2010).
[Crossref]

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

Bashkatov, A. N.

É. A. Genina, A. N. Bashkatov, V. I. Kochubey, and V. V. Tuchin, “Optical clearing of human dura mater,” Opt. Spectrosc. 98(3), 470–476 (2005).
[Crossref]

A. N. Bashkatov, E. A. Genina, Y. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, and V. V. Tuchin, “Glucose and Mannitol Diffusion in Human Dura Mater,” Biophys. J. 85(5), 3310–3318 (2003).
[Crossref] [PubMed]

Bejjani, G. K.

G. K. Bejjani and J. Zabramski, “Safety and efficacy of the porcine small intestinal submucosa dural substitute: results of a prospective multicenter study and literature review,” J. Neurosurg. 106(6), 1028–1033 (2007).
[Crossref] [PubMed]

Belichenko, I.

N. L. Oleinick, R. L. Morris, and I. Belichenko, “The role of apoptosis in response to photodynamic therapy: what, where, why, and how,” Photochem. Photobiol. Sci. 1(1), 1–21 (2002).
[Crossref] [PubMed]

Benayas, A.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Biel, M.

M. Biel, “Advances in photodynamic therapy for the treatment of head and neck cancers,” Lasers Surg. Med. 38(5), 349–355 (2006).
[Crossref] [PubMed]

Bifano, T.

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Burns, L. D.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in Light Microscopy for Neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref] [PubMed]

Caravaca-Aguirre, A. M.

Castano, A. P.

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref] [PubMed]

Celli, J. P.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

Chandrasekaran, S. N.

S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” Proc. SPIE 8979, 897905 (2014).
[Crossref]

Chen, Q.

Q. Chen, C. Wang, L. Cheng, W. He, Z. Cheng, and Z. Liu, “Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy,” Biomaterials 35(9), 2915–2923 (2014).
[Crossref] [PubMed]

Cheng, L.

Q. Chen, C. Wang, L. Cheng, W. He, Z. Cheng, and Z. Liu, “Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy,” Biomaterials 35(9), 2915–2923 (2014).
[Crossref] [PubMed]

K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo Near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
[Crossref] [PubMed]

Cheng, Z.

Q. Chen, C. Wang, L. Cheng, W. He, Z. Cheng, and Z. Liu, “Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy,” Biomaterials 35(9), 2915–2923 (2014).
[Crossref] [PubMed]

Choi, W. I.

A. Sahu, W. I. Choi, J. H. Lee, and G. Tae, “Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy,” Biomaterials 34(26), 6239–6248 (2013).
[Crossref] [PubMed]

Conkey, D. B.

Cui, M.

del Rosal, B.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Ding, X.

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

Dolmans, D. E.

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref] [PubMed]

Dove, J. D.

Evans, C. L.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

Foroni, R.

M. Gerosa, A. Nicolato, and R. Foroni, “The role of gamma knife radiosurgery in the treatment of primary and metastatic brain tumors,” Curr. Opin. Oncol. 15(3), 188–196 (2003).
[Crossref] [PubMed]

Fukumura, D.

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref] [PubMed]

Gao, N.

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

García Solé, J.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, Y. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, and V. V. Tuchin, “Glucose and Mannitol Diffusion in Human Dura Mater,” Biophys. J. 85(5), 3310–3318 (2003).
[Crossref] [PubMed]

Genina, É. A.

É. A. Genina, A. N. Bashkatov, V. I. Kochubey, and V. V. Tuchin, “Optical clearing of human dura mater,” Opt. Spectrosc. 98(3), 470–476 (2005).
[Crossref]

Gerosa, M.

M. Gerosa, A. Nicolato, and R. Foroni, “The role of gamma knife radiosurgery in the treatment of primary and metastatic brain tumors,” Curr. Opin. Oncol. 15(3), 188–196 (2003).
[Crossref] [PubMed]

Ghosh, K. K.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in Light Microscopy for Neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref] [PubMed]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

Guan, Y.

Guan, Y. F.

Hagiya, Y.

S. Yano, S. Hiroharab, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Photochem. Rev. 12(1), 46–67 (2011).
[Crossref]

Hamblin, M. R.

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref] [PubMed]

Haro-Gonzalez, P.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Hasan, T.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

He, H.

He, W.

Q. Chen, C. Wang, L. Cheng, W. He, Z. Cheng, and Z. Liu, “Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy,” Biomaterials 35(9), 2915–2923 (2014).
[Crossref] [PubMed]

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

Heo, J.

C.-K. Lim, J. Heo, S. Shin, K. Jeong, Y. H. Seo, W. D. Jang, C. R. Park, S. Y. Park, S. Kim, and I. C. Kwon, “Nanophotosensitizers toward advanced photodynamic therapy of Cancer,” Cancer Lett. 334(2), 176–187 (2013).
[Crossref] [PubMed]

Hiroharab, S.

S. Yano, S. Hiroharab, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Photochem. Rev. 12(1), 46–67 (2011).
[Crossref]

Hoffman, S.

Hoopes, P. J.

C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
[Crossref] [PubMed]

Huang, R.

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

Hutchins, J. E.

C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
[Crossref] [PubMed]

Ikeda, A.

S. Yano, S. Hiroharab, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Photochem. Rev. 12(1), 46–67 (2011).
[Crossref]

Jain, R. K.

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref] [PubMed]

Jang, W. D.

C.-K. Lim, J. Heo, S. Shin, K. Jeong, Y. H. Seo, W. D. Jang, C. R. Park, S. Y. Park, S. Kim, and I. C. Kwon, “Nanophotosensitizers toward advanced photodynamic therapy of Cancer,” Cancer Lett. 334(2), 176–187 (2013).
[Crossref] [PubMed]

Jaque, D.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Jeong, K.

C.-K. Lim, J. Heo, S. Shin, K. Jeong, Y. H. Seo, W. D. Jang, C. R. Park, S. Y. Park, S. Kim, and I. C. Kwon, “Nanophotosensitizers toward advanced photodynamic therapy of Cancer,” Cancer Lett. 334(2), 176–187 (2013).
[Crossref] [PubMed]

Jiang, J.

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

Joh, T.

S. Yano, S. Hiroharab, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Photochem. Rev. 12(1), 46–67 (2011).
[Crossref]

Ju, H.

Kataoka, H.

S. Yano, S. Hiroharab, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Photochem. Rev. 12(1), 46–67 (2011).
[Crossref]

Katz, O.

Kim, S.

C.-K. Lim, J. Heo, S. Shin, K. Jeong, Y. H. Seo, W. D. Jang, C. R. Park, S. Y. Park, S. Kim, and I. C. Kwon, “Nanophotosensitizers toward advanced photodynamic therapy of Cancer,” Cancer Lett. 334(2), 176–187 (2013).
[Crossref] [PubMed]

Kochubey, V. I.

É. A. Genina, A. N. Bashkatov, V. I. Kochubey, and V. V. Tuchin, “Optical clearing of human dura mater,” Opt. Spectrosc. 98(3), 470–476 (2005).
[Crossref]

A. N. Bashkatov, E. A. Genina, Y. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, and V. V. Tuchin, “Glucose and Mannitol Diffusion in Human Dura Mater,” Biophys. J. 85(5), 3310–3318 (2003).
[Crossref] [PubMed]

Kwon, I. C.

C.-K. Lim, J. Heo, S. Shin, K. Jeong, Y. H. Seo, W. D. Jang, C. R. Park, S. Y. Park, S. Kim, and I. C. Kwon, “Nanophotosensitizers toward advanced photodynamic therapy of Cancer,” Cancer Lett. 334(2), 176–187 (2013).
[Crossref] [PubMed]

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Lai, P.

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci. Rep. 4, 3918 (2014).
[Crossref] [PubMed]

Lakodina, N. A.

A. N. Bashkatov, E. A. Genina, Y. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, and V. V. Tuchin, “Glucose and Mannitol Diffusion in Human Dura Mater,” Biophys. J. 85(5), 3310–3318 (2003).
[Crossref] [PubMed]

Lee, J. H.

A. Sahu, W. I. Choi, J. H. Lee, and G. Tae, “Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy,” Biomaterials 34(26), 6239–6248 (2013).
[Crossref] [PubMed]

Li, C.

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

Li, S.

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

Li, Y.

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

Ligtenberg, H.

S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” Proc. SPIE 8979, 897905 (2014).
[Crossref]

Lim, C.-K.

C.-K. Lim, J. Heo, S. Shin, K. Jeong, Y. H. Seo, W. D. Jang, C. R. Park, S. Y. Park, S. Kim, and I. C. Kwon, “Nanophotosensitizers toward advanced photodynamic therapy of Cancer,” Cancer Lett. 334(2), 176–187 (2013).
[Crossref] [PubMed]

Liow, C. H.

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

Liu, M.

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

Liu, Z.

Q. Chen, C. Wang, L. Cheng, W. He, Z. Cheng, and Z. Liu, “Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy,” Biomaterials 35(9), 2915–2923 (2014).
[Crossref] [PubMed]

K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo Near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
[Crossref] [PubMed]

Lu, Y.

Martín Rodríguez, E.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Martínez Maestro, L.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Moore, J.

Morris, R. L.

N. L. Oleinick, R. L. Morris, and I. Belichenko, “The role of apoptosis in response to photodynamic therapy: what, where, why, and how,” Photochem. Photobiol. Sci. 1(1), 1–21 (2002).
[Crossref] [PubMed]

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

Mroz, P.

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref] [PubMed]

Mukamel, E. A.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in Light Microscopy for Neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref] [PubMed]

Murray, T. W.

Nicolato, A.

M. Gerosa, A. Nicolato, and R. Foroni, “The role of gamma knife radiosurgery in the treatment of primary and metastatic brain tumors,” Curr. Opin. Oncol. 15(3), 188–196 (2003).
[Crossref] [PubMed]

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Obata, M.

S. Yano, S. Hiroharab, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Photochem. Rev. 12(1), 46–67 (2011).
[Crossref]

Ogura, S.

S. Yano, S. Hiroharab, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Photochem. Rev. 12(1), 46–67 (2011).
[Crossref]

Oleinick, N. L.

N. L. Oleinick, R. L. Morris, and I. Belichenko, “The role of apoptosis in response to photodynamic therapy: what, where, why, and how,” Photochem. Photobiol. Sci. 1(1), 1–21 (2002).
[Crossref] [PubMed]

Park, C. R.

C.-K. Lim, J. Heo, S. Shin, K. Jeong, Y. H. Seo, W. D. Jang, C. R. Park, S. Y. Park, S. Kim, and I. C. Kwon, “Nanophotosensitizers toward advanced photodynamic therapy of Cancer,” Cancer Lett. 334(2), 176–187 (2013).
[Crossref] [PubMed]

Park, S. Y.

C.-K. Lim, J. Heo, S. Shin, K. Jeong, Y. H. Seo, W. D. Jang, C. R. Park, S. Y. Park, S. Kim, and I. C. Kwon, “Nanophotosensitizers toward advanced photodynamic therapy of Cancer,” Cancer Lett. 334(2), 176–187 (2013).
[Crossref] [PubMed]

Paxman, R.

Piestun, R.

Plaza, J. L.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Pogue, B. W.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
[Crossref] [PubMed]

Psaltis, D.

Pu, Y.

Rizvi, I.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

Sahu, A.

A. Sahu, W. I. Choi, J. H. Lee, and G. Tae, “Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy,” Biomaterials 34(26), 6239–6248 (2013).
[Crossref] [PubMed]

Samkoe, K. S.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

Schnitzer, M. J.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in Light Microscopy for Neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref] [PubMed]

Seo, Y. H.

C.-K. Lim, J. Heo, S. Shin, K. Jeong, Y. H. Seo, W. D. Jang, C. R. Park, S. Y. Park, S. Kim, and I. C. Kwon, “Nanophotosensitizers toward advanced photodynamic therapy of Cancer,” Cancer Lett. 334(2), 176–187 (2013).
[Crossref] [PubMed]

Shen, H.

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

Sheng, C.

C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
[Crossref] [PubMed]

Shin, S.

C.-K. Lim, J. Heo, S. Shin, K. Jeong, Y. H. Seo, W. D. Jang, C. R. Park, S. Y. Park, S. Kim, and I. C. Kwon, “Nanophotosensitizers toward advanced photodynamic therapy of Cancer,” Cancer Lett. 334(2), 176–187 (2013).
[Crossref] [PubMed]

Silberberg, Y.

Sinichkin, Y. P.

A. N. Bashkatov, E. A. Genina, Y. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, and V. V. Tuchin, “Glucose and Mannitol Diffusion in Human Dura Mater,” Biophys. J. 85(5), 3310–3318 (2003).
[Crossref] [PubMed]

Small, E.

Spring, B. Q.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

Steenbergen, W.

S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” Proc. SPIE 8979, 897905 (2014).
[Crossref]

Stockbridge, C.

Sun, C.

K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo Near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
[Crossref] [PubMed]

Suzuki, Y.

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci. Rep. 4, 3918 (2014).
[Crossref] [PubMed]

Tae, G.

A. Sahu, W. I. Choi, J. H. Lee, and G. Tae, “Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy,” Biomaterials 34(26), 6239–6248 (2013).
[Crossref] [PubMed]

Tanaka, M.

S. Yano, S. Hiroharab, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Photochem. Rev. 12(1), 46–67 (2011).
[Crossref]

Tay, J. W.

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci. Rep. 4, 3918 (2014).
[Crossref] [PubMed]

Toussaint, K.

Tuchin, V. V.

É. A. Genina, A. N. Bashkatov, V. I. Kochubey, and V. V. Tuchin, “Optical clearing of human dura mater,” Opt. Spectrosc. 98(3), 470–476 (2005).
[Crossref]

A. N. Bashkatov, E. A. Genina, Y. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, and V. V. Tuchin, “Glucose and Mannitol Diffusion in Human Dura Mater,” Biophys. J. 85(5), 3310–3318 (2003).
[Crossref] [PubMed]

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Vellekoop, I. M.

S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” Proc. SPIE 8979, 897905 (2014).
[Crossref]

I. M. Vellekoop and C. M. Aegerter, “Focusing light through living tissue,” Proc. SPIE 7554, 755430 (2010).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

Verma, S.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Wang, C.

Q. Chen, C. Wang, L. Cheng, W. He, Z. Cheng, and Z. Liu, “Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy,” Biomaterials 35(9), 2915–2923 (2014).
[Crossref] [PubMed]

Wang, E.

C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
[Crossref] [PubMed]

Wang, J.

K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo Near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
[Crossref] [PubMed]

Wang, L. V.

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci. Rep. 4, 3918 (2014).
[Crossref] [PubMed]

Wang, Q.

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

Wei Ho, E. T.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in Light Microscopy for Neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref] [PubMed]

Wilt, B. A.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in Light Microscopy for Neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref] [PubMed]

Xu, H.

K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo Near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
[Crossref] [PubMed]

Yang, K.

K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo Near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
[Crossref] [PubMed]

Yang, X.

Yano, S.

S. Yano, S. Hiroharab, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Photochem. Rev. 12(1), 46–67 (2011).
[Crossref]

Zabramski, J.

G. K. Bejjani and J. Zabramski, “Safety and efficacy of the porcine small intestinal submucosa dural substitute: results of a prospective multicenter study and literature review,” J. Neurosurg. 106(6), 1028–1033 (2007).
[Crossref] [PubMed]

Zhang, M.

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

Zhang, Z.

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

Zhou, J.

Zou, Y.

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In vitro and in vivo Near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles,” Adv. Mater. 24(41), 5586–5592 (2012).
[Crossref] [PubMed]

Annu. Rev. Neurosci. (1)

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in Light Microscopy for Neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref] [PubMed]

Biomaterials (2)

A. Sahu, W. I. Choi, J. H. Lee, and G. Tae, “Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy,” Biomaterials 34(26), 6239–6248 (2013).
[Crossref] [PubMed]

Q. Chen, C. Wang, L. Cheng, W. He, Z. Cheng, and Z. Liu, “Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy,” Biomaterials 35(9), 2915–2923 (2014).
[Crossref] [PubMed]

Biophys. J. (1)

A. N. Bashkatov, E. A. Genina, Y. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, and V. V. Tuchin, “Glucose and Mannitol Diffusion in Human Dura Mater,” Biophys. J. 85(5), 3310–3318 (2003).
[Crossref] [PubMed]

Cancer Lett. (1)

C.-K. Lim, J. Heo, S. Shin, K. Jeong, Y. H. Seo, W. D. Jang, C. R. Park, S. Y. Park, S. Kim, and I. C. Kwon, “Nanophotosensitizers toward advanced photodynamic therapy of Cancer,” Cancer Lett. 334(2), 176–187 (2013).
[Crossref] [PubMed]

Chem. Rev. (1)

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

Curr. Opin. Oncol. (1)

M. Gerosa, A. Nicolato, and R. Foroni, “The role of gamma knife radiosurgery in the treatment of primary and metastatic brain tumors,” Curr. Opin. Oncol. 15(3), 188–196 (2003).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, “Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window,” J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
[Crossref] [PubMed]

J. Neurosurg. (1)

G. K. Bejjani and J. Zabramski, “Safety and efficacy of the porcine small intestinal submucosa dural substitute: results of a prospective multicenter study and literature review,” J. Neurosurg. 106(6), 1028–1033 (2007).
[Crossref] [PubMed]

J. Photochem. Photobiol. Photochem. Rev. (1)

S. Yano, S. Hiroharab, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Photochem. Rev. 12(1), 46–67 (2011).
[Crossref]

Lasers Surg. Med. (1)

M. Biel, “Advances in photodynamic therapy for the treatment of head and neck cancers,” Lasers Surg. Med. 38(5), 349–355 (2006).
[Crossref] [PubMed]

Nanoscale (1)

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Nat. Rev. Cancer (2)

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref] [PubMed]

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref] [PubMed]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Opt. Spectrosc. (1)

É. A. Genina, A. N. Bashkatov, V. I. Kochubey, and V. V. Tuchin, “Optical clearing of human dura mater,” Opt. Spectrosc. 98(3), 470–476 (2005).
[Crossref]

Optica (1)

Photochem. Photobiol. (1)

C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol. 79(6), 520–525 (2004).
[Crossref] [PubMed]

Photochem. Photobiol. Sci. (1)

N. L. Oleinick, R. L. Morris, and I. Belichenko, “The role of apoptosis in response to photodynamic therapy: what, where, why, and how,” Photochem. Photobiol. Sci. 1(1), 1–21 (2002).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

Proc. SPIE (2)

S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” Proc. SPIE 8979, 897905 (2014).
[Crossref]

I. M. Vellekoop and C. M. Aegerter, “Focusing light through living tissue,” Proc. SPIE 7554, 755430 (2010).
[Crossref]

Sci. Rep. (1)

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci. Rep. 4, 3918 (2014).
[Crossref] [PubMed]

Other (1)

C. Grecco, C. Kurachi, and V. S. Bagnato, “Photodynamic therapy with ultrashort pulsed laser”, in Latin America Optics and Photonics Conference, OSA Technical Digest, (Optical Society of America, 2010)paper: MC1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 The system schematic of wavefront shaping and light concentration. A 632.8nm He-Ne laser beam is shaped by an SLM to penetrate through the dura mater membrane and focused to a spot.
Fig. 2
Fig. 2 Light concentration through biological tissues by wavefront modulation. (a) The intensity pattern transmitted through the dura mater without phase modulation. (b) The scattered light is focused to a spot with optimized phase distribution imposed by SLM. (c) The iteration process of the genetic algorithm. (d) The phase pattern loaded on the SLM that exactly inverts the diffusion of the dura mater structure.
Fig. 3
Fig. 3 (a) Experimental set up for dual-beam light concentration through rat dura mater. (b) shows the optimized light spots obtained with individual beam 1 or 2 and with simultaneous two-beam illumination when the two spots are in phase. (c) shows the controlled variation of the intensity by varying the compensated phase between the two beams from 0 to 2π.

Tables (1)

Tables Icon

Table 1 Power density enhancement and collection efficiency

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E m = n=1 N t mn A n e i ϕ n
I= | n=1 M A n e i ϕ n | 2

Metrics