Abstract

We investigated the influence of thermal initiation pathway on the irradiance threshold for laser induced breakdown in transparent, absorbing and scattering phantoms. We observed a transition from laser-induced optical breakdown to laser-induced thermal breakdown as the absorption coefficient of the medium is increased. We found that the irradiance threshold after correction for the path length dependent absorption and scattering losses in the medium is lower due to the thermal pathway for the generation of seed electrons compared to the laser-induced optical breakdown. Furthermore, irradiance threshold gradually decreases with the increase in the absorption properties of the medium. Creating breakdown with lower irradiance threshold that is specific at the target chromophore can provide intrinsic target selectivity and improve safety and efficacy of skin treatment methods that use laser induced breakdown.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of polarization and apodization on laser induced optical breakdown threshold

Babu Varghese, Simona Turco, Valentina Bonito, and Rieko Verhagen
Opt. Express 21(15) 18304-18310 (2013)

Aerosol-induced laser breakdown thresholds: wavelength dependence

Ronald G. Pinnick, Petr Chýlek, M. Jarzembski, E. Creegan, V. Srivastava, Gilbert Fernandez, J. D. Pendleton, and A. Biswas
Appl. Opt. 27(5) 987-996 (1988)

Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics

Anja Hansen, Romain Géneaux, Axel Günther, Alexander Krüger, and Tammo Ripken
Biomed. Opt. Express 4(6) 852-867 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. Papadavid and A. Katsambas, “Lasers for facial rejuvenation: a review,” Int. J. Dermatol. 42(6), 480–487 (2003).
    [Crossref] [PubMed]
  2. L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J. Biophotonics 5(2), 194–199 (2012).
    [Crossref] [PubMed]
  3. L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci. 28(3), 935–940 (2013).
    [Crossref] [PubMed]
  4. D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
    [Crossref]
  5. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
    [Crossref]
  6. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
    [Crossref]
  7. M. H. Niemz, Laser Iissue Interactions: Fundamentals and Applications (Springer 1996) Chap. 3.
  8. Y. R. Shen, The Principles of Nonlinear Optics (John-Wiley & Sons, Canada 1993).
  9. B. Varghese, S. Turco, V. Bonito, and R. Verhagen, “Effects of polarization and apodization on laser induced optical breakdown threshold,” Opt. Express 21(15), 18304–18310 (2013).
    [Crossref] [PubMed]
  10. F. Williams, S. P. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chern. Phys. 64(4), 1549–1554 (1976).
    [Crossref]
  11. P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,” IEEE J. Quantum Electron. 31(12), 2241–2249 (1995).
    [Crossref]
  12. D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
    [Crossref]
  13. P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
    [Crossref]
  14. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
    [Crossref]
  15. A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
    [Crossref] [PubMed]
  16. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
    [Crossref]
  17. J. B. Zysset, J. G. Fujimoto, and T. F. Deutsch, “Time-resolved measurementsof picosecond optical breakdown,” Appl. Phys. B 48(2), 139–147 (1989).
    [Crossref]
  18. A. Vogel, S. Busch, K. Jungnickel, and R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15(1), 32–43 (1994).
    [Crossref] [PubMed]
  19. S. J. Gitomer and R. D. Jones, “Laser-produced plasmas in medicine,” IEEE Trans. Plasma Sci. 19(6), 1209–1219 (1991).
    [Crossref]
  20. M. C. van Gemert and A. J. Welch, “Clinical use of laser-tissue interactions,” IEEE Eng. Med. Biol. Mag. 8(4), 10–13 (1989).
    [Crossref] [PubMed]
  21. V. Venugopalan, N. S. Nishioka, and B. B. Mikić, “The thermodynamic response of soft biological tissues to pulsed ultraviolet laser irradiation,” Biophys. J. 69(4), 1259–1271 (1995).
    [Crossref] [PubMed]
  22. A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
    [Crossref] [PubMed]
  23. A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
    [Crossref] [PubMed]

2013 (2)

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci. 28(3), 935–940 (2013).
[Crossref] [PubMed]

B. Varghese, S. Turco, V. Bonito, and R. Verhagen, “Effects of polarization and apodization on laser induced optical breakdown threshold,” Opt. Express 21(15), 18304–18310 (2013).
[Crossref] [PubMed]

2012 (1)

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J. Biophotonics 5(2), 194–199 (2012).
[Crossref] [PubMed]

2003 (1)

E. Papadavid and A. Katsambas, “Lasers for facial rejuvenation: a review,” Int. J. Dermatol. 42(6), 480–487 (2003).
[Crossref] [PubMed]

1999 (3)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref] [PubMed]

1997 (3)

A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
[Crossref] [PubMed]

A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
[Crossref] [PubMed]

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
[Crossref]

1996 (3)

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[Crossref]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

1995 (3)

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,” IEEE J. Quantum Electron. 31(12), 2241–2249 (1995).
[Crossref]

V. Venugopalan, N. S. Nishioka, and B. B. Mikić, “The thermodynamic response of soft biological tissues to pulsed ultraviolet laser irradiation,” Biophys. J. 69(4), 1259–1271 (1995).
[Crossref] [PubMed]

1994 (1)

A. Vogel, S. Busch, K. Jungnickel, and R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15(1), 32–43 (1994).
[Crossref] [PubMed]

1991 (1)

S. J. Gitomer and R. D. Jones, “Laser-produced plasmas in medicine,” IEEE Trans. Plasma Sci. 19(6), 1209–1219 (1991).
[Crossref]

1989 (2)

M. C. van Gemert and A. J. Welch, “Clinical use of laser-tissue interactions,” IEEE Eng. Med. Biol. Mag. 8(4), 10–13 (1989).
[Crossref] [PubMed]

J. B. Zysset, J. G. Fujimoto, and T. F. Deutsch, “Time-resolved measurementsof picosecond optical breakdown,” Appl. Phys. B 48(2), 139–147 (1989).
[Crossref]

1976 (1)

F. Williams, S. P. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chern. Phys. 64(4), 1549–1554 (1976).
[Crossref]

Birngruber, R.

Bonito, V.

Boppart, S. A.

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

Busch, S.

A. Vogel, S. Busch, K. Jungnickel, and R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15(1), 32–43 (1994).
[Crossref] [PubMed]

Da Silva, L. B.

A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[Crossref]

Deutsch, T. F.

J. B. Zysset, J. G. Fujimoto, and T. F. Deutsch, “Time-resolved measurementsof picosecond optical breakdown,” Appl. Phys. B 48(2), 139–147 (1989).
[Crossref]

Feit, M. D.

A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[Crossref]

Fujimoto, J. G.

J. B. Zysset, J. G. Fujimoto, and T. F. Deutsch, “Time-resolved measurementsof picosecond optical breakdown,” Appl. Phys. B 48(2), 139–147 (1989).
[Crossref]

Gitomer, S. J.

S. J. Gitomer and R. D. Jones, “Laser-produced plasmas in medicine,” IEEE Trans. Plasma Sci. 19(6), 1209–1219 (1991).
[Crossref]

Glinsky, M. E.

A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[Crossref]

Habbema, L.

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci. 28(3), 935–940 (2013).
[Crossref] [PubMed]

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J. Biophotonics 5(2), 194–199 (2012).
[Crossref] [PubMed]

Hammer, D. X.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
[Crossref]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

Hillenius, S.

F. Williams, S. P. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chern. Phys. 64(4), 1549–1554 (1976).
[Crossref]

Jones, R. D.

S. J. Gitomer and R. D. Jones, “Laser-produced plasmas in medicine,” IEEE Trans. Plasma Sci. 19(6), 1209–1219 (1991).
[Crossref]

Jungnickel, K.

A. Vogel, S. Busch, K. Jungnickel, and R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15(1), 32–43 (1994).
[Crossref] [PubMed]

Katsambas, A.

E. Papadavid and A. Katsambas, “Lasers for facial rejuvenation: a review,” Int. J. Dermatol. 42(6), 480–487 (2003).
[Crossref] [PubMed]

Kennedy, P. K.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
[Crossref]

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,” IEEE J. Quantum Electron. 31(12), 2241–2249 (1995).
[Crossref]

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

Kennedy, P. P.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

Liu, Y.

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci. 28(3), 935–940 (2013).
[Crossref] [PubMed]

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J. Biophotonics 5(2), 194–199 (2012).
[Crossref] [PubMed]

Mammini, B. M.

A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[Crossref]

Mikic, B. B.

V. Venugopalan, N. S. Nishioka, and B. B. Mikić, “The thermodynamic response of soft biological tissues to pulsed ultraviolet laser irradiation,” Biophys. J. 69(4), 1259–1271 (1995).
[Crossref] [PubMed]

Nahen, K.

Nishioka, N. S.

V. Venugopalan, N. S. Nishioka, and B. B. Mikić, “The thermodynamic response of soft biological tissues to pulsed ultraviolet laser irradiation,” Biophys. J. 69(4), 1259–1271 (1995).
[Crossref] [PubMed]

Noack, J.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

Noojin, G. D.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

Oraevsky, A.

A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[Crossref]

Papadavid, E.

E. Papadavid and A. Katsambas, “Lasers for facial rejuvenation: a review,” Int. J. Dermatol. 42(6), 480–487 (2003).
[Crossref] [PubMed]

Perry, M. D.

A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[Crossref]

Roach, W. P.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

Rockwell, B. A.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref] [PubMed]

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
[Crossref]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

Rubenchik, A. M.

A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[Crossref]

Small, W.

A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[Crossref]

Stuart, B. C.

A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[Crossref]

Theisen, D.

Thomas, R. J.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref] [PubMed]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

Turco, S.

van Gemert, M. C.

M. C. van Gemert and A. J. Welch, “Clinical use of laser-tissue interactions,” IEEE Eng. Med. Biol. Mag. 8(4), 10–13 (1989).
[Crossref] [PubMed]

Van Hal, R.

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci. 28(3), 935–940 (2013).
[Crossref] [PubMed]

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J. Biophotonics 5(2), 194–199 (2012).
[Crossref] [PubMed]

Varghese, B.

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci. 28(3), 935–940 (2013).
[Crossref] [PubMed]

B. Varghese, S. Turco, V. Bonito, and R. Verhagen, “Effects of polarization and apodization on laser induced optical breakdown threshold,” Opt. Express 21(15), 18304–18310 (2013).
[Crossref] [PubMed]

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J. Biophotonics 5(2), 194–199 (2012).
[Crossref] [PubMed]

Varma, S. P.

F. Williams, S. P. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chern. Phys. 64(4), 1549–1554 (1976).
[Crossref]

Venugopalan, V.

V. Venugopalan, N. S. Nishioka, and B. B. Mikić, “The thermodynamic response of soft biological tissues to pulsed ultraviolet laser irradiation,” Biophys. J. 69(4), 1259–1271 (1995).
[Crossref] [PubMed]

Verhagen, R.

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci. 28(3), 935–940 (2013).
[Crossref] [PubMed]

B. Varghese, S. Turco, V. Bonito, and R. Verhagen, “Effects of polarization and apodization on laser induced optical breakdown threshold,” Opt. Express 21(15), 18304–18310 (2013).
[Crossref] [PubMed]

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J. Biophotonics 5(2), 194–199 (2012).
[Crossref] [PubMed]

Vogel, A.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref] [PubMed]

A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
[Crossref] [PubMed]

A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
[Crossref] [PubMed]

A. Vogel, S. Busch, K. Jungnickel, and R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15(1), 32–43 (1994).
[Crossref] [PubMed]

Welch, A. J.

M. C. van Gemert and A. J. Welch, “Clinical use of laser-tissue interactions,” IEEE Eng. Med. Biol. Mag. 8(4), 10–13 (1989).
[Crossref] [PubMed]

Williams, F.

F. Williams, S. P. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chern. Phys. 64(4), 1549–1554 (1976).
[Crossref]

Zysset, J. B.

J. B. Zysset, J. G. Fujimoto, and T. F. Deutsch, “Time-resolved measurementsof picosecond optical breakdown,” Appl. Phys. B 48(2), 139–147 (1989).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

J. B. Zysset, J. G. Fujimoto, and T. F. Deutsch, “Time-resolved measurementsof picosecond optical breakdown,” Appl. Phys. B 48(2), 139–147 (1989).
[Crossref]

Biophys. J. (1)

V. Venugopalan, N. S. Nishioka, and B. B. Mikić, “The thermodynamic response of soft biological tissues to pulsed ultraviolet laser irradiation,” Biophys. J. 69(4), 1259–1271 (1995).
[Crossref] [PubMed]

IEEE Eng. Med. Biol. Mag. (1)

M. C. van Gemert and A. J. Welch, “Clinical use of laser-tissue interactions,” IEEE Eng. Med. Biol. Mag. 8(4), 10–13 (1989).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (6)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,” IEEE J. Quantum Electron. 31(12), 2241–2249 (1995).
[Crossref]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment,” IEEE J. Quantum Electron. 31(12), 2250–2257 (1995).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[Crossref]

IEEE Trans. Plasma Sci. (1)

S. J. Gitomer and R. D. Jones, “Laser-produced plasmas in medicine,” IEEE Trans. Plasma Sci. 19(6), 1209–1219 (1991).
[Crossref]

Int. J. Dermatol. (1)

E. Papadavid and A. Katsambas, “Lasers for facial rejuvenation: a review,” Int. J. Dermatol. 42(6), 480–487 (2003).
[Crossref] [PubMed]

J. Biophotonics (1)

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J. Biophotonics 5(2), 194–199 (2012).
[Crossref] [PubMed]

J. Chern. Phys. (1)

F. Williams, S. P. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chern. Phys. 64(4), 1549–1554 (1976).
[Crossref]

Lasers Med. Sci. (1)

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci. 28(3), 935–940 (2013).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

A. Vogel, S. Busch, K. Jungnickel, and R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15(1), 32–43 (1994).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (2)

A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
[Crossref] [PubMed]

A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
[Crossref]

Other (2)

M. H. Niemz, Laser Iissue Interactions: Fundamentals and Applications (Springer 1996) Chap. 3.

Y. R. Shen, The Principles of Nonlinear Optics (John-Wiley & Sons, Canada 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Irradiance threshold for laser induced breakdown as a function of the absorption coefficient for the nanosecond laser pulses.
Fig. 2
Fig. 2 Irradiance threshold for laser induced breakdown as a function of the absorption coefficient for the picosecond laser pulses.
Fig. 3
Fig. 3 Fluence required for reaching the breakdown threshold temperature and the temperature in the focus calculated as a function of the absorption coefficient of the medium.
Fig. 4
Fig. 4 Irradiance for the picosecond laser pulses calculated at the focus (130 µm) and at the interface for different absorption properties of the medium.

Metrics