Abstract

Based on a binocular adaptive optics visual simulator, we investigated the effect of higher-order aberration correction on the temporal integration property of stereopsis. Stereo threshold for line stimuli, viewed in 550nm monochromatic light, was measured as a function of exposure duration, with higher-order aberrations uncorrected, binocularly corrected or monocularly corrected. Under all optical conditions, stereo threshold decreased with increasing exposure duration until a steady-state threshold was reached. The critical duration was determined by a quadratic summation model and the high goodness of fit suggested this model was reasonable. For normal subjects, the slope for stereo threshold versus exposure duration was about −0.5 on logarithmic coordinates, and the critical duration was about 200 ms. Both the slope and the critical duration were independent of the optical condition of the eye, showing no significant effect of higher-order aberration correction on the temporal integration property of stereopsis.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Binocular visual performance and summation after correcting higher order aberrations

Ramkumar Sabesan, Len Zheleznyak, and Geunyoung Yoon
Biomed. Opt. Express 3(12) 3176-3189 (2012)

Size–disparity correlation in stereopsis at contrast threshold

Harvey S. Smallman and Donald I. A. MacLeod
J. Opt. Soc. Am. A 11(8) 2169-2183 (1994)

Upper disparity limit after LASIK

José R. Jiménez, José J. Castro, Enrique Hita, and Rosario G. Anera
J. Opt. Soc. Am. A 25(6) 1227-1231 (2008)

References

  • View by:
  • |
  • |
  • |

  1. G. Westheimer, “The spatial sense of the eye. Proctor lecture,” Invest. Ophthalmol. Vis. Sci. 18(9), 893–912 (1979).
    [PubMed]
  2. L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res. 157(3), 383–390 (2004).
    [Crossref] [PubMed]
  3. L. A. Mrotek, C. C. Gielen, and M. Flanders, “Manual tracking in three dimensions,” Exp. Brain Res. 171(1), 99–115 (2006).
    [Crossref] [PubMed]
  4. K. N. Ogle and M. P. Weil, “Stereoscopic vision and the duration of the stimulus,” AMA Arch. Opthalmol. 59(1), 4–17 (1958).
    [Crossref] [PubMed]
  5. M. J. Pianta and B. J. Gillam, “Paired and unpaired features can be equally effective in human depth perception,” Vision Res. 43(1), 1–6 (2003).
    [Crossref] [PubMed]
  6. R. S. Harwerth and S. C. Rawlings, “Viewing time and stereoscopic threshold with random-dot stereograms,” Am. J. Optom. Physiol. Opt. 54(7), 452–457 (1977).
    [Crossref] [PubMed]
  7. R. S. Harwerth and R. L. Boltz, “Stereopsis in monkeys using random dot stereograms: the effect of viewing duration,” Vision Res. 19(9), 985–991 (1979).
    [Crossref] [PubMed]
  8. P. M. Fredenburg, R. S. Harwerth, and E. L. Smith, “Bloch’s law for stereopsis,” Optom. Vis. Sci. 78(12), 34 (2011).
  9. R. S. Harwerth, P. M. Fredenburg, and E. L. Smith, “Temporal integration for stereoscopic vision,” Vision Res. 43(5), 505–517 (2003).
    [Crossref] [PubMed]
  10. S. Lee, S. Shioiri, and H. Yaguchi, “The effect of exposure duration on stereopsis and its dependence on spatial frequency,” Opt. Rev. 11(4), 258–264 (2004).
    [Crossref]
  11. R. J. Watt, “Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus,” J. Opt. Soc. Am. A 4(10), 2006–2021 (1987).
    [Crossref] [PubMed]
  12. G. Westheimer and M. W. Pettet, “Contrast and duration of exposure differentially affect vernier and stereoscopic acuity,” Proc. Biol. Sci. 241(1300), 42–46 (1990).
    [Crossref] [PubMed]
  13. G. K. Shortess and J. Krauskopf, “Role of involuntary eye movements in stereoscopic acuity,” J. Opt. Soc. Am. 51(5), 555–559 (1961).
    [Crossref]
  14. R. F. Hess and L. M. Wilcox, “Stereo dynamics are not scale-dependent,” Vision Res. 46(12), 1911–1923 (2006).
    [Crossref] [PubMed]
  15. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref] [PubMed]
  16. J. Kang, F. Xiao, J. Zhao, H. Zhao, Y. Hu, G. Tang, Y. Dai, and Y. Zhang, “Effects of higher-order aberration correction on stereopsis at different viewing durations,” J. Biomed. Opt. 20(7), 075005 (2015).
    [Crossref] [PubMed]
  17. H. Levitt, “Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am. 49(2), 467–477 (1971).
    [PubMed]
  18. G. E. Legge and Y. C. Gu, “Stereopsis and contrast,” Vision Res. 29(8), 989–1004 (1989).
    [Crossref] [PubMed]
  19. J. Tabernero, C. Schwarz, E. J. Fernández, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Vis. Sci. 52(8), 5273–5277 (2011).
    [Crossref] [PubMed]
  20. C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5(10), 3355–3366 (2014).
    [Crossref] [PubMed]
  21. E. J. Fernández, C. Schwarz, P. M. Prieto, S. Manzanera, and P. Artal, “Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay,” Biomed. Opt. Express 4(6), 822–830 (2013).
    [Crossref] [PubMed]
  22. R. Sabesan, L. Zheleznyak, and G. Yoon, “Binocular visual performance and summation after correcting higher order aberrations,” Biomed. Opt. Express 3(12), 3176–3189 (2012).
    [Crossref] [PubMed]
  23. C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
    [Crossref] [PubMed]
  24. E. J. Fernández, P. M. Prieto, and P. Artal, “Adaptive optics binocular visual simulator to study stereopsis in the presence of aberrations,” J. Opt. Soc. Am. A 27(11), A48–A55 (2010).
    [Crossref] [PubMed]
  25. L. Zheleznyak, R. Sabesan, J. S. Oh, S. MacRae, and G. Yoon, “Modified monovision with spherical aberration to improve presbyopic through-focus visual performance,” Invest. Ophthalmol. Vis. Sci. 54(5), 3157–3165 (2013).
    [Crossref] [PubMed]

2015 (1)

J. Kang, F. Xiao, J. Zhao, H. Zhao, Y. Hu, G. Tang, Y. Dai, and Y. Zhang, “Effects of higher-order aberration correction on stereopsis at different viewing durations,” J. Biomed. Opt. 20(7), 075005 (2015).
[Crossref] [PubMed]

2014 (2)

C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5(10), 3355–3366 (2014).
[Crossref] [PubMed]

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

2013 (2)

L. Zheleznyak, R. Sabesan, J. S. Oh, S. MacRae, and G. Yoon, “Modified monovision with spherical aberration to improve presbyopic through-focus visual performance,” Invest. Ophthalmol. Vis. Sci. 54(5), 3157–3165 (2013).
[Crossref] [PubMed]

E. J. Fernández, C. Schwarz, P. M. Prieto, S. Manzanera, and P. Artal, “Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay,” Biomed. Opt. Express 4(6), 822–830 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

J. Tabernero, C. Schwarz, E. J. Fernández, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Vis. Sci. 52(8), 5273–5277 (2011).
[Crossref] [PubMed]

P. M. Fredenburg, R. S. Harwerth, and E. L. Smith, “Bloch’s law for stereopsis,” Optom. Vis. Sci. 78(12), 34 (2011).

2010 (1)

2006 (2)

L. A. Mrotek, C. C. Gielen, and M. Flanders, “Manual tracking in three dimensions,” Exp. Brain Res. 171(1), 99–115 (2006).
[Crossref] [PubMed]

R. F. Hess and L. M. Wilcox, “Stereo dynamics are not scale-dependent,” Vision Res. 46(12), 1911–1923 (2006).
[Crossref] [PubMed]

2004 (2)

S. Lee, S. Shioiri, and H. Yaguchi, “The effect of exposure duration on stereopsis and its dependence on spatial frequency,” Opt. Rev. 11(4), 258–264 (2004).
[Crossref]

L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res. 157(3), 383–390 (2004).
[Crossref] [PubMed]

2003 (2)

R. S. Harwerth, P. M. Fredenburg, and E. L. Smith, “Temporal integration for stereoscopic vision,” Vision Res. 43(5), 505–517 (2003).
[Crossref] [PubMed]

M. J. Pianta and B. J. Gillam, “Paired and unpaired features can be equally effective in human depth perception,” Vision Res. 43(1), 1–6 (2003).
[Crossref] [PubMed]

1997 (1)

1990 (1)

G. Westheimer and M. W. Pettet, “Contrast and duration of exposure differentially affect vernier and stereoscopic acuity,” Proc. Biol. Sci. 241(1300), 42–46 (1990).
[Crossref] [PubMed]

1989 (1)

G. E. Legge and Y. C. Gu, “Stereopsis and contrast,” Vision Res. 29(8), 989–1004 (1989).
[Crossref] [PubMed]

1987 (1)

1979 (2)

G. Westheimer, “The spatial sense of the eye. Proctor lecture,” Invest. Ophthalmol. Vis. Sci. 18(9), 893–912 (1979).
[PubMed]

R. S. Harwerth and R. L. Boltz, “Stereopsis in monkeys using random dot stereograms: the effect of viewing duration,” Vision Res. 19(9), 985–991 (1979).
[Crossref] [PubMed]

1977 (1)

R. S. Harwerth and S. C. Rawlings, “Viewing time and stereoscopic threshold with random-dot stereograms,” Am. J. Optom. Physiol. Opt. 54(7), 452–457 (1977).
[Crossref] [PubMed]

1971 (1)

H. Levitt, “Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am. 49(2), 467–477 (1971).
[PubMed]

1961 (1)

1958 (1)

K. N. Ogle and M. P. Weil, “Stereoscopic vision and the duration of the stimulus,” AMA Arch. Opthalmol. 59(1), 4–17 (1958).
[Crossref] [PubMed]

Artal, P.

Boltz, R. L.

R. S. Harwerth and R. L. Boltz, “Stereopsis in monkeys using random dot stereograms: the effect of viewing duration,” Vision Res. 19(9), 985–991 (1979).
[Crossref] [PubMed]

Cánovas, C.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

Dai, Y.

J. Kang, F. Xiao, J. Zhao, H. Zhao, Y. Hu, G. Tang, Y. Dai, and Y. Zhang, “Effects of higher-order aberration correction on stereopsis at different viewing durations,” J. Biomed. Opt. 20(7), 075005 (2015).
[Crossref] [PubMed]

Fernández, E. J.

Flanders, M.

L. A. Mrotek, C. C. Gielen, and M. Flanders, “Manual tracking in three dimensions,” Exp. Brain Res. 171(1), 99–115 (2006).
[Crossref] [PubMed]

Fredenburg, P. M.

P. M. Fredenburg, R. S. Harwerth, and E. L. Smith, “Bloch’s law for stereopsis,” Optom. Vis. Sci. 78(12), 34 (2011).

R. S. Harwerth, P. M. Fredenburg, and E. L. Smith, “Temporal integration for stereoscopic vision,” Vision Res. 43(5), 505–517 (2003).
[Crossref] [PubMed]

Gielen, C. C.

L. A. Mrotek, C. C. Gielen, and M. Flanders, “Manual tracking in three dimensions,” Exp. Brain Res. 171(1), 99–115 (2006).
[Crossref] [PubMed]

Gillam, B. J.

M. J. Pianta and B. J. Gillam, “Paired and unpaired features can be equally effective in human depth perception,” Vision Res. 43(1), 1–6 (2003).
[Crossref] [PubMed]

Gu, Y. C.

G. E. Legge and Y. C. Gu, “Stereopsis and contrast,” Vision Res. 29(8), 989–1004 (1989).
[Crossref] [PubMed]

Harwerth, R. S.

P. M. Fredenburg, R. S. Harwerth, and E. L. Smith, “Bloch’s law for stereopsis,” Optom. Vis. Sci. 78(12), 34 (2011).

R. S. Harwerth, P. M. Fredenburg, and E. L. Smith, “Temporal integration for stereoscopic vision,” Vision Res. 43(5), 505–517 (2003).
[Crossref] [PubMed]

R. S. Harwerth and R. L. Boltz, “Stereopsis in monkeys using random dot stereograms: the effect of viewing duration,” Vision Res. 19(9), 985–991 (1979).
[Crossref] [PubMed]

R. S. Harwerth and S. C. Rawlings, “Viewing time and stereoscopic threshold with random-dot stereograms,” Am. J. Optom. Physiol. Opt. 54(7), 452–457 (1977).
[Crossref] [PubMed]

Hess, R. F.

R. F. Hess and L. M. Wilcox, “Stereo dynamics are not scale-dependent,” Vision Res. 46(12), 1911–1923 (2006).
[Crossref] [PubMed]

Hu, Y.

J. Kang, F. Xiao, J. Zhao, H. Zhao, Y. Hu, G. Tang, Y. Dai, and Y. Zhang, “Effects of higher-order aberration correction on stereopsis at different viewing durations,” J. Biomed. Opt. 20(7), 075005 (2015).
[Crossref] [PubMed]

Kang, J.

J. Kang, F. Xiao, J. Zhao, H. Zhao, Y. Hu, G. Tang, Y. Dai, and Y. Zhang, “Effects of higher-order aberration correction on stereopsis at different viewing durations,” J. Biomed. Opt. 20(7), 075005 (2015).
[Crossref] [PubMed]

Krauskopf, J.

Lee, S.

S. Lee, S. Shioiri, and H. Yaguchi, “The effect of exposure duration on stereopsis and its dependence on spatial frequency,” Opt. Rev. 11(4), 258–264 (2004).
[Crossref]

Legge, G. E.

G. E. Legge and Y. C. Gu, “Stereopsis and contrast,” Vision Res. 29(8), 989–1004 (1989).
[Crossref] [PubMed]

Lenoir, M.

L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res. 157(3), 383–390 (2004).
[Crossref] [PubMed]

Levitt, H.

H. Levitt, “Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am. 49(2), 467–477 (1971).
[PubMed]

Liang, J.

MacRae, S.

L. Zheleznyak, R. Sabesan, J. S. Oh, S. MacRae, and G. Yoon, “Modified monovision with spherical aberration to improve presbyopic through-focus visual performance,” Invest. Ophthalmol. Vis. Sci. 54(5), 3157–3165 (2013).
[Crossref] [PubMed]

Manzanera, S.

Mazyn, L. I. N.

L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res. 157(3), 383–390 (2004).
[Crossref] [PubMed]

Miller, D. T.

Montagne, G.

L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res. 157(3), 383–390 (2004).
[Crossref] [PubMed]

Mrotek, L. A.

L. A. Mrotek, C. C. Gielen, and M. Flanders, “Manual tracking in three dimensions,” Exp. Brain Res. 171(1), 99–115 (2006).
[Crossref] [PubMed]

Ogle, K. N.

K. N. Ogle and M. P. Weil, “Stereoscopic vision and the duration of the stimulus,” AMA Arch. Opthalmol. 59(1), 4–17 (1958).
[Crossref] [PubMed]

Oh, J. S.

L. Zheleznyak, R. Sabesan, J. S. Oh, S. MacRae, and G. Yoon, “Modified monovision with spherical aberration to improve presbyopic through-focus visual performance,” Invest. Ophthalmol. Vis. Sci. 54(5), 3157–3165 (2013).
[Crossref] [PubMed]

Pettet, M. W.

G. Westheimer and M. W. Pettet, “Contrast and duration of exposure differentially affect vernier and stereoscopic acuity,” Proc. Biol. Sci. 241(1300), 42–46 (1990).
[Crossref] [PubMed]

Pianta, M. J.

M. J. Pianta and B. J. Gillam, “Paired and unpaired features can be equally effective in human depth perception,” Vision Res. 43(1), 1–6 (2003).
[Crossref] [PubMed]

Piers, P.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

Prieto, P. M.

Rawlings, S. C.

R. S. Harwerth and S. C. Rawlings, “Viewing time and stereoscopic threshold with random-dot stereograms,” Am. J. Optom. Physiol. Opt. 54(7), 452–457 (1977).
[Crossref] [PubMed]

Sabesan, R.

L. Zheleznyak, R. Sabesan, J. S. Oh, S. MacRae, and G. Yoon, “Modified monovision with spherical aberration to improve presbyopic through-focus visual performance,” Invest. Ophthalmol. Vis. Sci. 54(5), 3157–3165 (2013).
[Crossref] [PubMed]

R. Sabesan, L. Zheleznyak, and G. Yoon, “Binocular visual performance and summation after correcting higher order aberrations,” Biomed. Opt. Express 3(12), 3176–3189 (2012).
[Crossref] [PubMed]

Savelsbergh, G. J. P.

L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res. 157(3), 383–390 (2004).
[Crossref] [PubMed]

Schwarz, C.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5(10), 3355–3366 (2014).
[Crossref] [PubMed]

E. J. Fernández, C. Schwarz, P. M. Prieto, S. Manzanera, and P. Artal, “Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay,” Biomed. Opt. Express 4(6), 822–830 (2013).
[Crossref] [PubMed]

J. Tabernero, C. Schwarz, E. J. Fernández, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Vis. Sci. 52(8), 5273–5277 (2011).
[Crossref] [PubMed]

Shioiri, S.

S. Lee, S. Shioiri, and H. Yaguchi, “The effect of exposure duration on stereopsis and its dependence on spatial frequency,” Opt. Rev. 11(4), 258–264 (2004).
[Crossref]

Shortess, G. K.

Smith, E. L.

P. M. Fredenburg, R. S. Harwerth, and E. L. Smith, “Bloch’s law for stereopsis,” Optom. Vis. Sci. 78(12), 34 (2011).

R. S. Harwerth, P. M. Fredenburg, and E. L. Smith, “Temporal integration for stereoscopic vision,” Vision Res. 43(5), 505–517 (2003).
[Crossref] [PubMed]

Tabernero, J.

J. Tabernero, C. Schwarz, E. J. Fernández, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Vis. Sci. 52(8), 5273–5277 (2011).
[Crossref] [PubMed]

Tang, G.

J. Kang, F. Xiao, J. Zhao, H. Zhao, Y. Hu, G. Tang, Y. Dai, and Y. Zhang, “Effects of higher-order aberration correction on stereopsis at different viewing durations,” J. Biomed. Opt. 20(7), 075005 (2015).
[Crossref] [PubMed]

Watt, R. J.

Weeber, H.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

Weil, M. P.

K. N. Ogle and M. P. Weil, “Stereoscopic vision and the duration of the stimulus,” AMA Arch. Opthalmol. 59(1), 4–17 (1958).
[Crossref] [PubMed]

Westheimer, G.

G. Westheimer and M. W. Pettet, “Contrast and duration of exposure differentially affect vernier and stereoscopic acuity,” Proc. Biol. Sci. 241(1300), 42–46 (1990).
[Crossref] [PubMed]

G. Westheimer, “The spatial sense of the eye. Proctor lecture,” Invest. Ophthalmol. Vis. Sci. 18(9), 893–912 (1979).
[PubMed]

Wilcox, L. M.

R. F. Hess and L. M. Wilcox, “Stereo dynamics are not scale-dependent,” Vision Res. 46(12), 1911–1923 (2006).
[Crossref] [PubMed]

Williams, D. R.

Xiao, F.

J. Kang, F. Xiao, J. Zhao, H. Zhao, Y. Hu, G. Tang, Y. Dai, and Y. Zhang, “Effects of higher-order aberration correction on stereopsis at different viewing durations,” J. Biomed. Opt. 20(7), 075005 (2015).
[Crossref] [PubMed]

Yaguchi, H.

S. Lee, S. Shioiri, and H. Yaguchi, “The effect of exposure duration on stereopsis and its dependence on spatial frequency,” Opt. Rev. 11(4), 258–264 (2004).
[Crossref]

Yoon, G.

L. Zheleznyak, R. Sabesan, J. S. Oh, S. MacRae, and G. Yoon, “Modified monovision with spherical aberration to improve presbyopic through-focus visual performance,” Invest. Ophthalmol. Vis. Sci. 54(5), 3157–3165 (2013).
[Crossref] [PubMed]

R. Sabesan, L. Zheleznyak, and G. Yoon, “Binocular visual performance and summation after correcting higher order aberrations,” Biomed. Opt. Express 3(12), 3176–3189 (2012).
[Crossref] [PubMed]

Zhang, Y.

J. Kang, F. Xiao, J. Zhao, H. Zhao, Y. Hu, G. Tang, Y. Dai, and Y. Zhang, “Effects of higher-order aberration correction on stereopsis at different viewing durations,” J. Biomed. Opt. 20(7), 075005 (2015).
[Crossref] [PubMed]

Zhao, H.

J. Kang, F. Xiao, J. Zhao, H. Zhao, Y. Hu, G. Tang, Y. Dai, and Y. Zhang, “Effects of higher-order aberration correction on stereopsis at different viewing durations,” J. Biomed. Opt. 20(7), 075005 (2015).
[Crossref] [PubMed]

Zhao, J.

J. Kang, F. Xiao, J. Zhao, H. Zhao, Y. Hu, G. Tang, Y. Dai, and Y. Zhang, “Effects of higher-order aberration correction on stereopsis at different viewing durations,” J. Biomed. Opt. 20(7), 075005 (2015).
[Crossref] [PubMed]

Zheleznyak, L.

L. Zheleznyak, R. Sabesan, J. S. Oh, S. MacRae, and G. Yoon, “Modified monovision with spherical aberration to improve presbyopic through-focus visual performance,” Invest. Ophthalmol. Vis. Sci. 54(5), 3157–3165 (2013).
[Crossref] [PubMed]

R. Sabesan, L. Zheleznyak, and G. Yoon, “Binocular visual performance and summation after correcting higher order aberrations,” Biomed. Opt. Express 3(12), 3176–3189 (2012).
[Crossref] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

R. S. Harwerth and S. C. Rawlings, “Viewing time and stereoscopic threshold with random-dot stereograms,” Am. J. Optom. Physiol. Opt. 54(7), 452–457 (1977).
[Crossref] [PubMed]

AMA Arch. Opthalmol. (1)

K. N. Ogle and M. P. Weil, “Stereoscopic vision and the duration of the stimulus,” AMA Arch. Opthalmol. 59(1), 4–17 (1958).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Exp. Brain Res. (2)

L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res. 157(3), 383–390 (2004).
[Crossref] [PubMed]

L. A. Mrotek, C. C. Gielen, and M. Flanders, “Manual tracking in three dimensions,” Exp. Brain Res. 171(1), 99–115 (2006).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

G. Westheimer, “The spatial sense of the eye. Proctor lecture,” Invest. Ophthalmol. Vis. Sci. 18(9), 893–912 (1979).
[PubMed]

J. Tabernero, C. Schwarz, E. J. Fernández, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Vis. Sci. 52(8), 5273–5277 (2011).
[Crossref] [PubMed]

L. Zheleznyak, R. Sabesan, J. S. Oh, S. MacRae, and G. Yoon, “Modified monovision with spherical aberration to improve presbyopic through-focus visual performance,” Invest. Ophthalmol. Vis. Sci. 54(5), 3157–3165 (2013).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

H. Levitt, “Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am. 49(2), 467–477 (1971).
[PubMed]

J. Biomed. Opt. (1)

J. Kang, F. Xiao, J. Zhao, H. Zhao, Y. Hu, G. Tang, Y. Dai, and Y. Zhang, “Effects of higher-order aberration correction on stereopsis at different viewing durations,” J. Biomed. Opt. 20(7), 075005 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Vis. (1)

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

Opt. Rev. (1)

S. Lee, S. Shioiri, and H. Yaguchi, “The effect of exposure duration on stereopsis and its dependence on spatial frequency,” Opt. Rev. 11(4), 258–264 (2004).
[Crossref]

Optom. Vis. Sci. (1)

P. M. Fredenburg, R. S. Harwerth, and E. L. Smith, “Bloch’s law for stereopsis,” Optom. Vis. Sci. 78(12), 34 (2011).

Proc. Biol. Sci. (1)

G. Westheimer and M. W. Pettet, “Contrast and duration of exposure differentially affect vernier and stereoscopic acuity,” Proc. Biol. Sci. 241(1300), 42–46 (1990).
[Crossref] [PubMed]

Vision Res. (5)

R. F. Hess and L. M. Wilcox, “Stereo dynamics are not scale-dependent,” Vision Res. 46(12), 1911–1923 (2006).
[Crossref] [PubMed]

R. S. Harwerth, P. M. Fredenburg, and E. L. Smith, “Temporal integration for stereoscopic vision,” Vision Res. 43(5), 505–517 (2003).
[Crossref] [PubMed]

R. S. Harwerth and R. L. Boltz, “Stereopsis in monkeys using random dot stereograms: the effect of viewing duration,” Vision Res. 19(9), 985–991 (1979).
[Crossref] [PubMed]

M. J. Pianta and B. J. Gillam, “Paired and unpaired features can be equally effective in human depth perception,” Vision Res. 43(1), 1–6 (2003).
[Crossref] [PubMed]

G. E. Legge and Y. C. Gu, “Stereopsis and contrast,” Vision Res. 29(8), 989–1004 (1989).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the BAOVS used in this study. LD, laser diode; BS, beam splitter; HS, Hartmann-Shack wavefront sensor; DM, deformable mirror; LG, lens group; TL, trial lens; IF, interference filter; L, lens; M, mirror; P, prism; O, OLED; LE, left eye; RE, right eye.
Fig. 2
Fig. 2 Line stereograms used in this study. The comparison line and the test line had identical dimensions. Disparity was generated by horizontal displacement of the test line in opposite directions by the same distance D between eyes.
Fig. 3
Fig. 3 Monocular contrast sensitivity function averaged across the four subjects. The blue squares represent contrast sensitivity measured with baseline correction of defocus and astigmatism (AO off). The green circles represent contrast sensitivity measured with AO correction of HOAs (AO on). Error bars indicate standard deviations.
Fig. 4
Fig. 4 Linear fit of stereo threshold versus exposure duration data on a log-log scale. The blue squares represent stereoacuity with baseline correction of defocus and astigmatism (No AO). The green circles and red triangles represent stereoacuity with binocular HOA correction (Bino-AO) and monocular HOA correction (Mono-AO), respectively.
Fig. 5
Fig. 5 Stereo threshold versus exposure duration under different optical conditions for the 4 subjects on linear scales. The blue squares represent stereoacuity with basic correction of defocus and astigmatism. The green circles and red triangles represent stereoacuity with binocular and better eye correction, respectively.

Tables (3)

Tables Icon

Table 1 Optical quality of both eyes in the four subjects

Tables Icon

Table 2 The slope of the fitted line for stereo threshold versus exposure duration

Tables Icon

Table 3 Best-fit parameters of the quadratic summation model

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L ( x , y ) = L 0 ( 1 + c sin ( 2 π f ( y sin θ + x cos θ ) + φ ) )
t h = h 0 ( d 2 + d 0 2 ) 0.5

Metrics