Abstract

In this work we demonstrate optical trapping and manipulation of microparticles suspended in water due to laser-induced convection currents. Convection currents are generated due to laser light absorption in an hydrogenated amorphous silicon (a:Si-H) thin film. The particles are dragged towards the beam's center by the convection currents (Stokes drag force) allowing trapping with powers as low as 0.8 mW. However, for powers >3 mW trapped particles form a ring around the beam due to two competing forces: Stokes drag and thermo-photophoretic forces. Additionally, we show that dynamic beam shaping can be used to trap and manipulate multiple particles by photophotophoresis without the need of lithographically created resistive heaters.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light-induced thermal convection for size-based microparticle sorting

Zhihai Liu, Jiaojie Lei, Yu Zhang, Xiaoyun Tang, Yaxun Zhang, Enming Zhao, Jun Yang, and Libo Yuan
J. Opt. Soc. Am. B 33(9) 1881-1887 (2016)

Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection

Oleg A. Louchev, Saulius Juodkazis, Naoki Murazawa, Satoshi Wada, and Hiroaki Misawa
Opt. Express 16(8) 5673-5680 (2008)

Flow-assisted Single-beam Optothermal Manipulation of Microparticles

Yangyang Liu and Andrew W. Poon
Opt. Express 18(17) 18483-18491 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
    [Crossref] [PubMed]
  2. R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
    [Crossref] [PubMed]
  3. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [Crossref] [PubMed]
  4. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
    [Crossref]
  5. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  6. K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(5), 051407 (2010).
    [Crossref] [PubMed]
  7. H. Melville, G. Milne, G. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express 11(26), 3562–3567 (2003).
    [Crossref] [PubMed]
  8. A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
    [PubMed]
  9. W. H. Tan and S. Takeuchi, “A trap-and-release integrated microfluidic system for dynamic microarray applications,” Proc. Natl. Acad. Sci. USA 104(4), 1146–1151 (2007).
    [Crossref] [PubMed]
  10. A. S. Basu and Y. B. Gianchandani, “High speed microfluidic doublet flow in open pools driven by non-contact micromachined thermal sources,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 666–669.
    [Crossref]
  11. D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89(18), 188103 (2002).
    [Crossref] [PubMed]
  12. S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97(3), 038103 (2006).
    [Crossref] [PubMed]
  13. C. Farcau, H. Moreira, B. Viallet, J. Grisolia, and L. Ressier, “Tunable conductive nanoparticle wire arrays fabricated by convective self-assembly on nonpatterned substrates,” ACS Nano 4(12), 7275–7282 (2010).
    [Crossref] [PubMed]
  14. C. V. Sternling and L. E. Scriven, “Interfacial turbulence: Hydrodynamic instability and the marangoni effect,” AIChE J. 5(4), 514–523 (1959).
    [Crossref]
  15. Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
    [Crossref] [PubMed]
  16. A. S. Basu and Y. B. Gianchandani, “Trapping and manipulation of particles and droplets using micro-toroidal convection currents,” in Proceedings of IEEE Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2005), pp. 85–88.
    [Crossref]
  17. A. Alexeev, T. Gambaryan-Roisman, and P. Stephan, “Marangoni convection and heat transfer in thin liquid films on heated walls with topography: Experiments and numerical study,” Phys. Fluids 17(6), 062106 (2005).
    [Crossref]
  18. E. Bodenschatz, W. Pesch, and G. Ahlers, “Recent development in Rayleigh-Bénard convection,” Annu. Rev. Fluid Mech. 32(1), 709–778 (2000).
    [Crossref]
  19. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
    [Crossref]
  20. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-mm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  21. S. Moon, “A novel double laser crystallization technique for producing location-controlled ultra-large polysilicon grain growth,” J. Kor. Phys. Soc. 47(1), 133–141 (2005).
  22. COMSOL documentation.
  23. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
    [Crossref]
  24. N. A. Bakr, A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, S. W. Gosavi, and S. R. Jadkar, “Determination of the optical parameters of a-Si:H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only,” J. Phys. 76(3), 519–531 (2011).
  25. A. M. Bakry, “Influence of Film Thickness on Optical Properties of Hydrogenated Amorphous silicon Thin Films,” Egypt. J. Solids 31(1), 11566 (2008).
  26. A. V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics (World Scientific Publishing, 1998).
  27. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press; 90th edition, 2009), chap 6.
  28. V. Arrizón, U. Ruiz, D. Sánchez-de-la-Llave, G. Mellado-Villaseñor, and A. S. Ostrovsky, “Optimum generation of annular vortices using phase diffractive optical elements,” Opt. Lett. 40(7), 1173–1176 (2015).
    [Crossref] [PubMed]
  29. R. Piazza and A. Parola, “Thermophoresis in colloidal suspensions,” J. Phys. Condens. Matter 20(15), 153102 (2008).
    [Crossref]

2015 (1)

2011 (2)

N. A. Bakr, A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, S. W. Gosavi, and S. R. Jadkar, “Determination of the optical parameters of a-Si:H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only,” J. Phys. 76(3), 519–531 (2011).

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

2010 (3)

C. Farcau, H. Moreira, B. Viallet, J. Grisolia, and L. Ressier, “Tunable conductive nanoparticle wire arrays fabricated by convective self-assembly on nonpatterned substrates,” ACS Nano 4(12), 7275–7282 (2010).
[Crossref] [PubMed]

R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
[Crossref] [PubMed]

K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(5), 051407 (2010).
[Crossref] [PubMed]

2008 (2)

A. M. Bakry, “Influence of Film Thickness on Optical Properties of Hydrogenated Amorphous silicon Thin Films,” Egypt. J. Solids 31(1), 11566 (2008).

R. Piazza and A. Parola, “Thermophoresis in colloidal suspensions,” J. Phys. Condens. Matter 20(15), 153102 (2008).
[Crossref]

2007 (3)

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
[PubMed]

W. H. Tan and S. Takeuchi, “A trap-and-release integrated microfluidic system for dynamic microarray applications,” Proc. Natl. Acad. Sci. USA 104(4), 1146–1151 (2007).
[Crossref] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

2006 (3)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97(3), 038103 (2006).
[Crossref] [PubMed]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[Crossref]

2005 (3)

A. Alexeev, T. Gambaryan-Roisman, and P. Stephan, “Marangoni convection and heat transfer in thin liquid films on heated walls with topography: Experiments and numerical study,” Phys. Fluids 17(6), 062106 (2005).
[Crossref]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

S. Moon, “A novel double laser crystallization technique for producing location-controlled ultra-large polysilicon grain growth,” J. Kor. Phys. Soc. 47(1), 133–141 (2005).

2003 (1)

2002 (1)

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89(18), 188103 (2002).
[Crossref] [PubMed]

2000 (1)

E. Bodenschatz, W. Pesch, and G. Ahlers, “Recent development in Rayleigh-Bénard convection,” Annu. Rev. Fluid Mech. 32(1), 709–778 (2000).
[Crossref]

1997 (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref] [PubMed]

1983 (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

1973 (1)

1959 (1)

C. V. Sternling and L. E. Scriven, “Interfacial turbulence: Hydrodynamic instability and the marangoni effect,” AIChE J. 5(4), 514–523 (1959).
[Crossref]

Ahlers, G.

E. Bodenschatz, W. Pesch, and G. Ahlers, “Recent development in Rayleigh-Bénard convection,” Annu. Rev. Fluid Mech. 32(1), 709–778 (2000).
[Crossref]

Alexeev, A.

A. Alexeev, T. Gambaryan-Roisman, and P. Stephan, “Marangoni convection and heat transfer in thin liquid films on heated walls with topography: Experiments and numerical study,” Phys. Fluids 17(6), 062106 (2005).
[Crossref]

Amalnerkar, D. P.

N. A. Bakr, A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, S. W. Gosavi, and S. R. Jadkar, “Determination of the optical parameters of a-Si:H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only,” J. Phys. 76(3), 519–531 (2011).

Arrizón, V.

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref] [PubMed]

Badenes, G.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[Crossref]

Bakr, N. A.

N. A. Bakr, A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, S. W. Gosavi, and S. R. Jadkar, “Determination of the optical parameters of a-Si:H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only,” J. Phys. 76(3), 519–531 (2011).

Bakry, A. M.

A. M. Bakry, “Influence of Film Thickness on Optical Properties of Hydrogenated Amorphous silicon Thin Films,” Egypt. J. Solids 31(1), 11566 (2008).

Basu, A. S.

A. S. Basu and Y. B. Gianchandani, “Trapping and manipulation of particles and droplets using micro-toroidal convection currents,” in Proceedings of IEEE Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2005), pp. 85–88.
[Crossref]

A. S. Basu and Y. B. Gianchandani, “High speed microfluidic doublet flow in open pools driven by non-contact micromachined thermal sources,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 666–669.
[Crossref]

Bodenschatz, E.

E. Bodenschatz, W. Pesch, and G. Ahlers, “Recent development in Rayleigh-Bénard convection,” Annu. Rev. Fluid Mech. 32(1), 709–778 (2000).
[Crossref]

Braun, D.

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97(3), 038103 (2006).
[Crossref] [PubMed]

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89(18), 188103 (2002).
[Crossref] [PubMed]

Cao, J.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Dholakia, K.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[Crossref]

H. Melville, G. Milne, G. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express 11(26), 3562–3567 (2003).
[Crossref] [PubMed]

Duhr, S.

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97(3), 038103 (2006).
[Crossref] [PubMed]

Farcau, C.

C. Farcau, H. Moreira, B. Viallet, J. Grisolia, and L. Ressier, “Tunable conductive nanoparticle wire arrays fabricated by convective self-assembly on nonpatterned substrates,” ACS Nano 4(12), 7275–7282 (2010).
[Crossref] [PubMed]

Funde, A. M.

N. A. Bakr, A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, S. W. Gosavi, and S. R. Jadkar, “Determination of the optical parameters of a-Si:H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only,” J. Phys. 76(3), 519–531 (2011).

Gambaryan-Roisman, T.

A. Alexeev, T. Gambaryan-Roisman, and P. Stephan, “Marangoni convection and heat transfer in thin liquid films on heated walls with topography: Experiments and numerical study,” Phys. Fluids 17(6), 062106 (2005).
[Crossref]

Garcés-Chávez, V.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[Crossref]

Gianchandani, Y. B.

A. S. Basu and Y. B. Gianchandani, “Trapping and manipulation of particles and droplets using micro-toroidal convection currents,” in Proceedings of IEEE Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2005), pp. 85–88.
[Crossref]

A. S. Basu and Y. B. Gianchandani, “High speed microfluidic doublet flow in open pools driven by non-contact micromachined thermal sources,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 666–669.
[Crossref]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Gosavi, S. W.

N. A. Bakr, A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, S. W. Gosavi, and S. R. Jadkar, “Determination of the optical parameters of a-Si:H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only,” J. Phys. 76(3), 519–531 (2011).

Grier, D. G.

K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(5), 051407 (2010).
[Crossref] [PubMed]

Grisolia, J.

C. Farcau, H. Moreira, B. Viallet, J. Grisolia, and L. Ressier, “Tunable conductive nanoparticle wire arrays fabricated by convective self-assembly on nonpatterned substrates,” ACS Nano 4(12), 7275–7282 (2010).
[Crossref] [PubMed]

Hale, G. M.

Hawaldar, R. R.

N. A. Bakr, A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, S. W. Gosavi, and S. R. Jadkar, “Determination of the optical parameters of a-Si:H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only,” J. Phys. 76(3), 519–531 (2011).

Hsu, H.-Y.

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
[PubMed]

Jadkar, S. R.

N. A. Bakr, A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, S. W. Gosavi, and S. R. Jadkar, “Determination of the optical parameters of a-Si:H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only,” J. Phys. 76(3), 519–531 (2011).

Jamshidi, A.

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
[PubMed]

Kamble, M. M.

N. A. Bakr, A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, S. W. Gosavi, and S. R. Jadkar, “Determination of the optical parameters of a-Si:H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only,” J. Phys. 76(3), 519–531 (2011).

Libchaber, A.

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89(18), 188103 (2002).
[Crossref] [PubMed]

Liu, H.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

McGloin, D.

Mellado-Villaseñor, G.

Melville, H.

Milne, G.

Moon, S.

S. Moon, “A novel double laser crystallization technique for producing location-controlled ultra-large polysilicon grain growth,” J. Kor. Phys. Soc. 47(1), 133–141 (2005).

Moreira, H.

C. Farcau, H. Moreira, B. Viallet, J. Grisolia, and L. Ressier, “Tunable conductive nanoparticle wire arrays fabricated by convective self-assembly on nonpatterned substrates,” ACS Nano 4(12), 7275–7282 (2010).
[Crossref] [PubMed]

Ohta, A. T.

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
[PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Ostrovsky, A. S.

Parola, A.

R. Piazza and A. Parola, “Thermophoresis in colloidal suspensions,” J. Phys. Condens. Matter 20(15), 153102 (2008).
[Crossref]

Pesch, W.

E. Bodenschatz, W. Pesch, and G. Ahlers, “Recent development in Rayleigh-Bénard convection,” Annu. Rev. Fluid Mech. 32(1), 709–778 (2000).
[Crossref]

Pethig, R.

R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
[Crossref] [PubMed]

Piazza, R.

R. Piazza and A. Parola, “Thermophoresis in colloidal suspensions,” J. Phys. Condens. Matter 20(15), 153102 (2008).
[Crossref]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Querry, M. R.

Quidant, R.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[Crossref]

Reece, P. J.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[Crossref]

Ressier, L.

C. Farcau, H. Moreira, B. Viallet, J. Grisolia, and L. Ressier, “Tunable conductive nanoparticle wire arrays fabricated by convective self-assembly on nonpatterned substrates,” ACS Nano 4(12), 7275–7282 (2010).
[Crossref] [PubMed]

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Ruiz, U.

Sánchez-de-la-Llave, D.

Scriven, L. E.

C. V. Sternling and L. E. Scriven, “Interfacial turbulence: Hydrodynamic instability and the marangoni effect,” AIChE J. 5(4), 514–523 (1959).
[Crossref]

Sibbett, W.

Spalding, G.

Stephan, P.

A. Alexeev, T. Gambaryan-Roisman, and P. Stephan, “Marangoni convection and heat transfer in thin liquid films on heated walls with topography: Experiments and numerical study,” Phys. Fluids 17(6), 062106 (2005).
[Crossref]

Sternling, C. V.

C. V. Sternling and L. E. Scriven, “Interfacial turbulence: Hydrodynamic instability and the marangoni effect,” AIChE J. 5(4), 514–523 (1959).
[Crossref]

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

Takeuchi, S.

W. H. Tan and S. Takeuchi, “A trap-and-release integrated microfluidic system for dynamic microarray applications,” Proc. Natl. Acad. Sci. USA 104(4), 1146–1151 (2007).
[Crossref] [PubMed]

Tan, W. H.

W. H. Tan and S. Takeuchi, “A trap-and-release integrated microfluidic system for dynamic microarray applications,” Proc. Natl. Acad. Sci. USA 104(4), 1146–1151 (2007).
[Crossref] [PubMed]

Torner, L.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[Crossref]

Valley, J. K.

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
[PubMed]

Viallet, B.

C. Farcau, H. Moreira, B. Viallet, J. Grisolia, and L. Ressier, “Tunable conductive nanoparticle wire arrays fabricated by convective self-assembly on nonpatterned substrates,” ACS Nano 4(12), 7275–7282 (2010).
[Crossref] [PubMed]

Waman, V. S.

N. A. Bakr, A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, S. W. Gosavi, and S. R. Jadkar, “Determination of the optical parameters of a-Si:H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only,” J. Phys. 76(3), 519–531 (2011).

Wang, S.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Wang, Y.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Wu, M. C.

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
[PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Xiao, K.

K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(5), 051407 (2010).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Zheng, Y.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Zhu, C.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Zhu, S.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

ACS Nano (1)

C. Farcau, H. Moreira, B. Viallet, J. Grisolia, and L. Ressier, “Tunable conductive nanoparticle wire arrays fabricated by convective self-assembly on nonpatterned substrates,” ACS Nano 4(12), 7275–7282 (2010).
[Crossref] [PubMed]

AIChE J. (1)

C. V. Sternling and L. E. Scriven, “Interfacial turbulence: Hydrodynamic instability and the marangoni effect,” AIChE J. 5(4), 514–523 (1959).
[Crossref]

Annu. Rev. Fluid Mech. (1)

E. Bodenschatz, W. Pesch, and G. Ahlers, “Recent development in Rayleigh-Bénard convection,” Annu. Rev. Fluid Mech. 32(1), 709–778 (2000).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
[PubMed]

Biomicrofluidics (1)

R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
[Crossref] [PubMed]

Egypt. J. Solids (1)

A. M. Bakry, “Influence of Film Thickness on Optical Properties of Hydrogenated Amorphous silicon Thin Films,” Egypt. J. Solids 31(1), 11566 (2008).

J. Kor. Phys. Soc. (1)

S. Moon, “A novel double laser crystallization technique for producing location-controlled ultra-large polysilicon grain growth,” J. Kor. Phys. Soc. 47(1), 133–141 (2005).

J. Phys. (1)

N. A. Bakr, A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, S. W. Gosavi, and S. R. Jadkar, “Determination of the optical parameters of a-Si:H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only,” J. Phys. 76(3), 519–531 (2011).

J. Phys. Condens. Matter (1)

R. Piazza and A. Parola, “Thermophoresis in colloidal suspensions,” J. Phys. Condens. Matter 20(15), 153102 (2008).
[Crossref]

J. Phys. E Sci. Instrum. (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

Lab Chip (1)

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Nat. Phys. (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Nature (2)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Fluids (1)

A. Alexeev, T. Gambaryan-Roisman, and P. Stephan, “Marangoni convection and heat transfer in thin liquid films on heated walls with topography: Experiments and numerical study,” Phys. Fluids 17(6), 062106 (2005).
[Crossref]

Phys. Rev. B (1)

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73(8), 085417 (2006).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(5), 051407 (2010).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89(18), 188103 (2002).
[Crossref] [PubMed]

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97(3), 038103 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

W. H. Tan and S. Takeuchi, “A trap-and-release integrated microfluidic system for dynamic microarray applications,” Proc. Natl. Acad. Sci. USA 104(4), 1146–1151 (2007).
[Crossref] [PubMed]

Other (5)

A. S. Basu and Y. B. Gianchandani, “High speed microfluidic doublet flow in open pools driven by non-contact micromachined thermal sources,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 666–669.
[Crossref]

A. S. Basu and Y. B. Gianchandani, “Trapping and manipulation of particles and droplets using micro-toroidal convection currents,” in Proceedings of IEEE Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2005), pp. 85–88.
[Crossref]

COMSOL documentation.

A. V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics (World Scientific Publishing, 1998).

D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press; 90th edition, 2009), chap 6.

Supplementary Material (5)

NameDescription
» Visualization 1: MP4 (2064 KB)      Multiple trapping for power of 6 mW
» Visualization 2: MP4 (515 KB)      Trapping by means of a vapor bubble
» Visualization 3: MP4 (570 KB)      Trapping with a ring-shapped light source
» Visualization 4: MP4 (716 KB)      Trapping with a dynamic ring-shaped light source
» Visualization 5: MP4 (776 KB)      Trapping with a dynamic ring-shaped light source

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 a) Schematic of the model. The z = 0 plane is placed at the glass-water interface and the beam waist is placed at a distance z0 = −95 μm. The dashed line represents the thermal gradient produced by heating of the amorphous silicon film. b) Temperature obtained from Eq. (1) when a laser beam is focused on a thin absorbing film. See text for details; c) Typical velocity profile of the flow inside the water cell for the first 40 μm. The total length cell is 200 μm. The laser is focused at the center of the lower interface. The liquid moves upwards and then moves along the upper surface and the moves downwards at the edges and back towards the centre along the lower surface. Around ± 10 μm a loop is created as indicated by the arrows.
Fig. 2
Fig. 2 a) Optical set up. A 1W, 532 nm laser is focused onto a 1μm a-Si:H film. The laser beam power is controlled with a half-wave plate (HWP) and a polarizing beam splitter (PBS), then the beam is spatial filtered (SP) and collimated with lens L1. After reflection on the SLM, the hologram is recovered by Fourier transform by lens L2. DM is a dichroic mirror, MO is 60x microscope objective. A white light source is used to illuminate the sample. The same objective is used to image the microparticles on the CCD camera. F is a filter that blocks the reflected green light to avoid CCD saturation, b) experimental image of the ring projected on the sample
Fig. 3
Fig. 3 Multiple trapping. Power of 0.8 mW, particles accumulated around the laser beam spot.
Fig. 4
Fig. 4 Multiple trapping for power of 6 mW, the particles are trapped around of the area of the spot (Visualization 1).
Fig. 5
Fig. 5 Trapping by means of a vapor bubble. The particles are trapped to high velocity using 12 mW of laser power (Visualization 2).
Fig. 6
Fig. 6 Trapping with a ring-shapped light source generated with SPH. Particles are repelled by photophoresis towards the ring’s center (Visualization 3).
Fig. 7
Fig. 7 Trapping with a dynamic ring-shaped light source generated with SPH: a) Optical clearing (Visualization 4) and b) Collecting and trapping particles (Visualization 5).

Tables (1)

Tables Icon

Table 1 Material properties of water and amorphous silicon [20–22]

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρ c p uT=( kT )+Q.
I aSi ( r,z )= T net 2P π w 2 (z+ z 0 ) exp( α aSi ( z+ l water ) )exp( 2 r 2 w 2 ) T net = T airglass T glasswater T wateraSi 0.63
ρ( u )u=[ pI+μ( u+ ( u ) T ) ]+F,
ρu=0,

Metrics