Abstract

This full-field transmission-type three-dimensional (3D) optical microscope is constructed based on the angle deviation method (ADM) and the algorithm of reflectivity-height transformation (RHT). The surface height is proportional to the deviation angle of light passing through the object. The angle deviation and surface height can be measured based on the reflectivity closed to the critical angle using a parallelogram prism and two CCDs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
System analysis of full-field reflection-type three-dimensional angle-deviation microscope

Ming-Hung Chiu, Chen-Tai Tan, and Ji-Yuan Li
Appl. Opt. 54(13) D1-D7 (2015)

Transmission-type angle deviation microscopy

Ming-Hung Chiu, Chih-Wen Lai, Chen-Tai Tan, and Chin-Fa Lai
Appl. Opt. 47(29) 5442-5445 (2008)

Full-field X-ray fluorescence microscope based on total-reflection advanced Kirkpatrick–Baez mirror optics

Satoshi Matsuyama, Jumpei Yamada, Yoshiki Kohmura, Makina Yabashi, Tetsuya Ishikawa, and Kazuto Yamauchi
Opt. Express 27(13) 18318-18328 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. H. Chiu, C. T. Tan, T. S. Lee, and J. C. Lee, “Nonscanning three-dimensional optical microscope based on the reflectivity-height transformation for biological measurements,” Microsc. Microanal. 19(2), 425–432 (2013).
    [Crossref] [PubMed]
  2. C. T. Tan, Y. S. Chan, Z. C. Lin, and M. H. Chiu, “Angle-deviation optical profilometer,” Chin. Opt. Lett. 9(1), 011201 (2011).
  3. C. T. Tan, Y. S. Chan, J. A. Chen, T. C. Liao, and M. H. Chiu, “Non-scanning, non-interferometric, three-dimensional optical profilometer with nanometer resolution,” Chin. Opt. Lett. 9(10), 101202 (2011).
  4. P. S. Huang, S. Kiyono, and O. Kamada, “Angle measurement based on the internal-reflection effect: a new method,” Appl. Opt. 31(28), 6047–6055 (1992).
    [Crossref] [PubMed]
  5. H. J. Caulfield, “White light interferometric microscopes,” Opt. Commun. 26(3), 322–324 (1978).
    [Crossref]
  6. G. S. Kino and S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29(26), 3775–3783 (1990).
    [Crossref] [PubMed]
  7. B. S. Lee and T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29(26), 3784–3788 (1990).
    [Crossref] [PubMed]
  8. K. Carlsson, P. E. Danielsson, R. Lenz, A. Liljeborg, L. Majlöf, and N. Åslund, “Three-dimensional microscopy using a confocal laser scanning microscope,” Opt. Lett. 10(2), 53–55 (1985), doi:.
    [Crossref] [PubMed]
  9. J. Pawley, Handbook of Biological Confocal Microscopy (Plenum Press, New York 1995) chap. 16.
  10. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
    [Crossref] [PubMed]
  11. M. H. Chiu, B. Y. Shih, and C. W. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett. 90(2), 021111 (2007).
    [Crossref]
  12. M. H. Chiu, C. W. Lai, C. T. Tan, and C. F. Lai, “Transmission-type angle deviation microscopy,” Appl. Opt. 47(29), 5442–5445 (2008).
    [PubMed]
  13. C. C. Chen, H. H. Chen, M. H. Chiu, K. H. Lee, and D. C. Su, Heterodyne interferometry method for measuring physical parameters of medium,” US patent No: 5946096 (1999).
  14. P. D. Groot, Optical Measurement of Surface Topography, R. Leach,ed. (Springer, 2011), chap.8, pp. 175–178.
  15. G. Delaunay, “Microscope interférentiel A. Mirau pour la mesure du fini des surfaces,” Rev. Opt. Theor. Instrum. 32, 610–614 (1953).
  16. D. Meschede, Optics, Light and Lasers, 2nd ed. (Wiley-VCH, 2007) chap. 2.3, pp.45–56
  17. M. H. Chiu, C. T. Tan, and J. Y. Li, “System analysis of full-field reflection-type three-dimensional angle-deviation microscope,” Appl. Opt. 54(13), D1–D7 (2015).
    [Crossref]

2015 (1)

2013 (1)

M. H. Chiu, C. T. Tan, T. S. Lee, and J. C. Lee, “Nonscanning three-dimensional optical microscope based on the reflectivity-height transformation for biological measurements,” Microsc. Microanal. 19(2), 425–432 (2013).
[Crossref] [PubMed]

2011 (2)

2008 (1)

2007 (1)

M. H. Chiu, B. Y. Shih, and C. W. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett. 90(2), 021111 (2007).
[Crossref]

1992 (1)

1990 (2)

1986 (1)

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
[Crossref] [PubMed]

1985 (1)

1978 (1)

H. J. Caulfield, “White light interferometric microscopes,” Opt. Commun. 26(3), 322–324 (1978).
[Crossref]

1953 (1)

G. Delaunay, “Microscope interférentiel A. Mirau pour la mesure du fini des surfaces,” Rev. Opt. Theor. Instrum. 32, 610–614 (1953).

Åslund, N.

Betzig, E.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
[Crossref] [PubMed]

Carlsson, K.

Caulfield, H. J.

H. J. Caulfield, “White light interferometric microscopes,” Opt. Commun. 26(3), 322–324 (1978).
[Crossref]

Chan, Y. S.

Chen, J. A.

Chim, S. S. C.

Chiu, M. H.

Danielsson, P. E.

Delaunay, G.

G. Delaunay, “Microscope interférentiel A. Mirau pour la mesure du fini des surfaces,” Rev. Opt. Theor. Instrum. 32, 610–614 (1953).

Harootunian, A.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
[Crossref] [PubMed]

Huang, P. S.

Isaacson, M.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
[Crossref] [PubMed]

Kamada, O.

Kino, G. S.

Kiyono, S.

Kratschmer, E.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
[Crossref] [PubMed]

Lai, C. F.

Lai, C. W.

M. H. Chiu, C. W. Lai, C. T. Tan, and C. F. Lai, “Transmission-type angle deviation microscopy,” Appl. Opt. 47(29), 5442–5445 (2008).
[PubMed]

M. H. Chiu, B. Y. Shih, and C. W. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett. 90(2), 021111 (2007).
[Crossref]

Lee, B. S.

Lee, J. C.

M. H. Chiu, C. T. Tan, T. S. Lee, and J. C. Lee, “Nonscanning three-dimensional optical microscope based on the reflectivity-height transformation for biological measurements,” Microsc. Microanal. 19(2), 425–432 (2013).
[Crossref] [PubMed]

Lee, T. S.

M. H. Chiu, C. T. Tan, T. S. Lee, and J. C. Lee, “Nonscanning three-dimensional optical microscope based on the reflectivity-height transformation for biological measurements,” Microsc. Microanal. 19(2), 425–432 (2013).
[Crossref] [PubMed]

Lenz, R.

Lewis, A.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
[Crossref] [PubMed]

Li, J. Y.

Liao, T. C.

Liljeborg, A.

Lin, Z. C.

Majlöf, L.

Shih, B. Y.

M. H. Chiu, B. Y. Shih, and C. W. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett. 90(2), 021111 (2007).
[Crossref]

Strand, T. C.

Tan, C. T.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

M. H. Chiu, B. Y. Shih, and C. W. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett. 90(2), 021111 (2007).
[Crossref]

Biophys. J. (1)

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
[Crossref] [PubMed]

Chin. Opt. Lett. (2)

Microsc. Microanal. (1)

M. H. Chiu, C. T. Tan, T. S. Lee, and J. C. Lee, “Nonscanning three-dimensional optical microscope based on the reflectivity-height transformation for biological measurements,” Microsc. Microanal. 19(2), 425–432 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

H. J. Caulfield, “White light interferometric microscopes,” Opt. Commun. 26(3), 322–324 (1978).
[Crossref]

Opt. Lett. (1)

Rev. Opt. Theor. Instrum. (1)

G. Delaunay, “Microscope interférentiel A. Mirau pour la mesure du fini des surfaces,” Rev. Opt. Theor. Instrum. 32, 610–614 (1953).

Other (4)

D. Meschede, Optics, Light and Lasers, 2nd ed. (Wiley-VCH, 2007) chap. 2.3, pp.45–56

J. Pawley, Handbook of Biological Confocal Microscopy (Plenum Press, New York 1995) chap. 16.

C. C. Chen, H. H. Chen, M. H. Chiu, K. H. Lee, and D. C. Su, Heterodyne interferometry method for measuring physical parameters of medium,” US patent No: 5946096 (1999).

P. D. Groot, Optical Measurement of Surface Topography, R. Leach,ed. (Springer, 2011), chap.8, pp. 175–178.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Light propagation with a small angle deviation in a parallelogram prism.
Fig. 2
Fig. 2 (a) The measuring curve of reflectivity R s2 of a parallelogram prism versus external angle θ; (b) Coordinate transformation of (a) curve chart and mathematical function of θon R s2 .
Fig. 3
Fig. 3 Light deflects small angleβ from its original direction after passing through a transparent sample with a small apexα.
Fig. 4
Fig. 4 The microscope system structure of transmission-type 3D ADM.
Fig. 5
Fig. 5 3D profiles of a grating (a) before and (b) after rotation; (c) 2D profiles of the grating; (d) AFM profile of a grating.
Fig. 6
Fig. 6 3D profiles of Euglena before (a) and after (b) the 90° rotation.
Fig. 7
Fig. 7 The effect of image blur on height calculation.
Fig. 8
Fig. 8 The height sensitivities at different incident angles for different sample of Δn = 0.1, 0.3 and 0.5.
Fig. 9
Fig. 9 The System’s axial resolution curve chart.

Tables (1)

Tables Icon

Table 1 Average percentage errors of image blur effect

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

R s2 = R s 2 = ( | n 1 cos θ 1 n 2 cos θ 2 n 1 cos θ 1 + n 2 cos θ 2 | 2 ) 2 ,
θ( R s2 )=17 R s2 7 +21 R s2 6 2.3× 10 2 R s2 5 +4.2× 10 2 R s2 4 3.7× 10 2 R s2 3 +1.7× 10 2 R s2 2 45 R s2 +12
α= β n 3 n 2 .
ΔhαΔx= β Δn Δx.
Δh= MΔθ Δn Δx.
Δh= ΔX Δn Δθ=AΔθ,
h( x i , y j )= m=1 i Δ h m,j + h 0
S=| R s2 h |
Δ h min = Δ R s2 (min) S
y m = 0.61×λ NA .

Metrics