Abstract

In this study, a spectral-domain optical coherence tomography (SD-OCT) system was used for noninvasive imaging of the adult zebrafish brain. Based on a 1325 nm light source and two high-speed galvo mirrors, our SD-OCT system can offer a large field of view of brain morphology with high resolution (12 μm axial and 13 μm lateral) at video rate (27 frame/s). In vivo imaging of both the control and injured brain was performed using adult zebrafish model. The recovered results revealed that olfactory bulb, optic commissure, telencephalon, tectum opticum, cerebellum, medulla, preglomerular complex and posterior tuberculum could be clearly identified in the cross-sectional SD-OCT images of the adult zebrafish brain. The reconstructed results also suggested that SD-OCT can be used for diagnosis and monitoring of traumatic brain injury. In particular, we found the reconstructed volumetric SD-OCT images enable a comprehensive three-dimensional characterization of the control or injured brain in the intact zebrafish.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

2 October 2015: A correction was made to the supplementary material files.


OSA Recommended Articles
In vivo monitoring and high-resolution characterizing of the prednisolone-induced osteoporotic process on adult zebrafish by optical coherence tomography

Yanping Lin, Xiang Xiang, Tingru Chen, Chudan Gao, Hongbo Fu, Limei Wang, Lijun Deng, Lvming Zeng, and Jian Zhang
Biomed. Opt. Express 10(3) 1184-1195 (2019)

Developmental and morphological studies in Japanese medaka with ultra-high resolution optical coherence tomography

Fanny Moses Gladys, Masaru Matsuda, Yiheng Lim, Boaz Jessie Jackin, Takuto Imai, Yukitoshi Otani, Toyohiko Yatagai, and Barry Cense
Biomed. Opt. Express 6(2) 297-308 (2015)

In vivo three dimensional dual wavelength photoacoustic tomography imaging of the far red fluorescent protein E2-Crimson expressed in adult zebrafish

Mengyang Liu, Nicole Schmitner, Michelle G. Sandrian, Behrooz Zabihian, Boris Hermann, Willi Salvenmoser, Dirk Meyer, and Wolfgang Drexler
Biomed. Opt. Express 4(10) 1846-1855 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. C. Lie, H. Song, S. A. Colamarino, G. L. Ming, and F. H. Gage, “Neurogenesis in the adult brain: new strategies for central nervous system diseases,” Annu. Rev. Pharmacol. Toxicol. 44(1), 399–421 (2004).
    [Crossref] [PubMed]
  2. A. M. Siebel, A. L. Piato, K. M. Capiotti, K. J. Seibt, M. R. Bogo, and C. D. Bonan, “PTZ-induced seizures inhibit adenosine deamination in adult zebrafish brain membranes,” Brain Res. Bull. 86(5-6), 385–389 (2011).
    [Crossref] [PubMed]
  3. N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin, D. Freudenreich, A. Iltzsche, and M. Brand, “Acute inflammation initiates the regenerative response in the adult zebrafish brain,” Science 338(6112), 1353–1356 (2012).
    [Crossref] [PubMed]
  4. O. Ronneberger, K. Liu, M. Rath, D. Rueß, T. Mueller, H. Skibbe, B. Drayer, T. Schmidt, A. Filippi, and R. Nitschke, “ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains,” Nat. Methods 9(7), 735–742 (2012).
    [Crossref] [PubMed]
  5. F. Mahmood, S. Fu, J. Cooke, S. W. Wilson, J. D. Cooper, and C. Russell, “A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation,” Brain 136(5), 1488–1507 (2013).
    [Crossref] [PubMed]
  6. Z. Yuan, “Combining independent component analysis and Granger causality to investigate brain network dynamics with fNIRS measurements,” Biomed. Opt. Express 4(11), 2629–2643 (2013).
    [Crossref] [PubMed]
  7. Z. Yuan, J. Zhang, X. Wang, and C. Li, “A systematic investigation of reflectance diffuse optical tomography using nonlinear reconstruction methods and continuous wave measurements,” Biomed. Opt. Express 5(9), 3011–3022 (2014).
    [Crossref] [PubMed]
  8. E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
    [Crossref] [PubMed]
  9. G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52(7), 679–693 (2002).
    [Crossref] [PubMed]
  10. M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
    [Crossref] [PubMed]
  11. A. J. Giraldez, R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson, S. Baskerville, S. M. Hammond, D. P. Bartel, and A. F. Schier, “MicroRNAs regulate brain morphogenesis in zebrafish,” Science 308(5723), 833–838 (2005).
    [Crossref] [PubMed]
  12. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 322(5904), 1065–1069 (2008).
    [Crossref] [PubMed]
  13. M. B. Ahrens, J. M. Li, M. B. Orger, D. N. Robson, A. F. Schier, F. Engert, and R. Portugues, “Brain-wide neuronal dynamics during motor adaptation in zebrafish,” Nature 485(7399), 471–477 (2012).
    [PubMed]
  14. T. Mueller, M. F. Wullimann, and S. Guo, “Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression,” J. Comp. Neurol. 507(2), 1245–1257 (2008).
    [Crossref] [PubMed]
  15. M. F. Wullimann and T. Mueller, “Teleostean and mammalian forebrains contrasted: evidence from genes to behavior,” J. Comp. Neurol. 475(2), 143–162 (2004).
    [Crossref] [PubMed]
  16. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express 11(26), 3598–3604 (2003).
    [Crossref] [PubMed]
  17. S. Hariri, M. Johnstone, Y. Jiang, S. Padilla, Z. Zhou, R. Reif, and R. K. Wang, “Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography,” J. Biomed. Opt. 19(10), 106013 (2014).
    [Crossref] [PubMed]
  18. Q. Zhang, M. Neitz, J. Neitz, and R. K. Wang, “Geographic mapping of choroidal thickness in myopic eyes using 1050-nm spectral domain optical coherence tomography,” J. Innov. Opt. Heal. Sci. 8, 1550012 (2014).
  19. L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
    [Crossref] [PubMed]
  20. Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express 1(3), 798–811 (2010).
    [Crossref] [PubMed]
  21. L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
    [PubMed]
  22. K. D. Rao, A. Alex, Y. Verma, S. Thampi, and P. K. Gupta, “Real-time in vivo imaging of adult zebrafish brain using optical coherence tomography,” J. Biophotonics 2(5), 288–291 (2009).
    [Crossref] [PubMed]
  23. Y. S. Lin, C. C. Chu, P. H. Tsui, and C. C. Chang, “Evaluation of zebrafish brain development using optical coherence tomography,” J. Biophotonics 6(9), 668–678 (2013).
    [Crossref] [PubMed]
  24. See supplementary material about the imaging-depth of our SD-OCT system.
  25. Z. Zhang, B. Zhu, and W. Ge, “Genetic Analysis of Zebrafish Gonadotropin (FSH and LH) Functions by TALEN-Mediated Gene Disruption,” Mol. Endocrinol. 29(1), 76–98 (2015).
    [Crossref] [PubMed]
  26. H. Grandel, J. Kaslin, J. Ganz, I. Wenzel, and M. Brand, “Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate,” Dev. Biol. 295(1), 263–277 (2006).
    [Crossref] [PubMed]
  27. T. Mueller, “What is the thalamus in zebrafish?” Front. Neurosci. 6, 64 (2012).
    [Crossref] [PubMed]
  28. See supplementary material about the location of the imaging profile.

2015 (1)

Z. Zhang, B. Zhu, and W. Ge, “Genetic Analysis of Zebrafish Gonadotropin (FSH and LH) Functions by TALEN-Mediated Gene Disruption,” Mol. Endocrinol. 29(1), 76–98 (2015).
[Crossref] [PubMed]

2014 (3)

S. Hariri, M. Johnstone, Y. Jiang, S. Padilla, Z. Zhou, R. Reif, and R. K. Wang, “Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography,” J. Biomed. Opt. 19(10), 106013 (2014).
[Crossref] [PubMed]

Q. Zhang, M. Neitz, J. Neitz, and R. K. Wang, “Geographic mapping of choroidal thickness in myopic eyes using 1050-nm spectral domain optical coherence tomography,” J. Innov. Opt. Heal. Sci. 8, 1550012 (2014).

Z. Yuan, J. Zhang, X. Wang, and C. Li, “A systematic investigation of reflectance diffuse optical tomography using nonlinear reconstruction methods and continuous wave measurements,” Biomed. Opt. Express 5(9), 3011–3022 (2014).
[Crossref] [PubMed]

2013 (4)

Z. Yuan, “Combining independent component analysis and Granger causality to investigate brain network dynamics with fNIRS measurements,” Biomed. Opt. Express 4(11), 2629–2643 (2013).
[Crossref] [PubMed]

M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
[Crossref] [PubMed]

F. Mahmood, S. Fu, J. Cooke, S. W. Wilson, J. D. Cooper, and C. Russell, “A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation,” Brain 136(5), 1488–1507 (2013).
[Crossref] [PubMed]

Y. S. Lin, C. C. Chu, P. H. Tsui, and C. C. Chang, “Evaluation of zebrafish brain development using optical coherence tomography,” J. Biophotonics 6(9), 668–678 (2013).
[Crossref] [PubMed]

2012 (4)

N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin, D. Freudenreich, A. Iltzsche, and M. Brand, “Acute inflammation initiates the regenerative response in the adult zebrafish brain,” Science 338(6112), 1353–1356 (2012).
[Crossref] [PubMed]

O. Ronneberger, K. Liu, M. Rath, D. Rueß, T. Mueller, H. Skibbe, B. Drayer, T. Schmidt, A. Filippi, and R. Nitschke, “ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains,” Nat. Methods 9(7), 735–742 (2012).
[Crossref] [PubMed]

M. B. Ahrens, J. M. Li, M. B. Orger, D. N. Robson, A. F. Schier, F. Engert, and R. Portugues, “Brain-wide neuronal dynamics during motor adaptation in zebrafish,” Nature 485(7399), 471–477 (2012).
[PubMed]

T. Mueller, “What is the thalamus in zebrafish?” Front. Neurosci. 6, 64 (2012).
[Crossref] [PubMed]

2011 (2)

L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
[Crossref] [PubMed]

A. M. Siebel, A. L. Piato, K. M. Capiotti, K. J. Seibt, M. R. Bogo, and C. D. Bonan, “PTZ-induced seizures inhibit adenosine deamination in adult zebrafish brain membranes,” Brain Res. Bull. 86(5-6), 385–389 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

K. D. Rao, A. Alex, Y. Verma, S. Thampi, and P. K. Gupta, “Real-time in vivo imaging of adult zebrafish brain using optical coherence tomography,” J. Biophotonics 2(5), 288–291 (2009).
[Crossref] [PubMed]

2008 (3)

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

T. Mueller, M. F. Wullimann, and S. Guo, “Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression,” J. Comp. Neurol. 507(2), 1245–1257 (2008).
[Crossref] [PubMed]

2007 (1)

E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[Crossref] [PubMed]

2006 (1)

H. Grandel, J. Kaslin, J. Ganz, I. Wenzel, and M. Brand, “Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate,” Dev. Biol. 295(1), 263–277 (2006).
[Crossref] [PubMed]

2005 (1)

A. J. Giraldez, R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson, S. Baskerville, S. M. Hammond, D. P. Bartel, and A. F. Schier, “MicroRNAs regulate brain morphogenesis in zebrafish,” Science 308(5723), 833–838 (2005).
[Crossref] [PubMed]

2004 (2)

M. F. Wullimann and T. Mueller, “Teleostean and mammalian forebrains contrasted: evidence from genes to behavior,” J. Comp. Neurol. 475(2), 143–162 (2004).
[Crossref] [PubMed]

D. C. Lie, H. Song, S. A. Colamarino, G. L. Ming, and F. H. Gage, “Neurogenesis in the adult brain: new strategies for central nervous system diseases,” Annu. Rev. Pharmacol. Toxicol. 44(1), 399–421 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52(7), 679–693 (2002).
[Crossref] [PubMed]

Ahrens, M. B.

M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
[Crossref] [PubMed]

M. B. Ahrens, J. M. Li, M. B. Orger, D. N. Robson, A. F. Schier, F. Engert, and R. Portugues, “Brain-wide neuronal dynamics during motor adaptation in zebrafish,” Nature 485(7399), 471–477 (2012).
[PubMed]

Alex, A.

K. D. Rao, A. Alex, Y. Verma, S. Thampi, and P. K. Gupta, “Real-time in vivo imaging of adult zebrafish brain using optical coherence tomography,” J. Biophotonics 2(5), 288–291 (2009).
[Crossref] [PubMed]

An, L.

Bahary, N.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Bartel, D. P.

A. J. Giraldez, R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson, S. Baskerville, S. M. Hammond, D. P. Bartel, and A. F. Schier, “MicroRNAs regulate brain morphogenesis in zebrafish,” Science 308(5723), 833–838 (2005).
[Crossref] [PubMed]

Baskerville, S.

A. J. Giraldez, R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson, S. Baskerville, S. M. Hammond, D. P. Bartel, and A. F. Schier, “MicroRNAs regulate brain morphogenesis in zebrafish,” Science 308(5723), 833–838 (2005).
[Crossref] [PubMed]

Boas, D. A.

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52(7), 679–693 (2002).
[Crossref] [PubMed]

Bogo, M. R.

A. M. Siebel, A. L. Piato, K. M. Capiotti, K. J. Seibt, M. R. Bogo, and C. D. Bonan, “PTZ-induced seizures inhibit adenosine deamination in adult zebrafish brain membranes,” Brain Res. Bull. 86(5-6), 385–389 (2011).
[Crossref] [PubMed]

Bonan, C. D.

A. M. Siebel, A. L. Piato, K. M. Capiotti, K. J. Seibt, M. R. Bogo, and C. D. Bonan, “PTZ-induced seizures inhibit adenosine deamination in adult zebrafish brain membranes,” Brain Res. Bull. 86(5-6), 385–389 (2011).
[Crossref] [PubMed]

Bouma, B.

Brand, M.

N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin, D. Freudenreich, A. Iltzsche, and M. Brand, “Acute inflammation initiates the regenerative response in the adult zebrafish brain,” Science 338(6112), 1353–1356 (2012).
[Crossref] [PubMed]

H. Grandel, J. Kaslin, J. Ganz, I. Wenzel, and M. Brand, “Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate,” Dev. Biol. 295(1), 263–277 (2006).
[Crossref] [PubMed]

Capiotti, K. M.

A. M. Siebel, A. L. Piato, K. M. Capiotti, K. J. Seibt, M. R. Bogo, and C. D. Bonan, “PTZ-induced seizures inhibit adenosine deamination in adult zebrafish brain membranes,” Brain Res. Bull. 86(5-6), 385–389 (2011).
[Crossref] [PubMed]

Chang, C. C.

Y. S. Lin, C. C. Chu, P. H. Tsui, and C. C. Chang, “Evaluation of zebrafish brain development using optical coherence tomography,” J. Biophotonics 6(9), 668–678 (2013).
[Crossref] [PubMed]

Charukamnoetkanok, P.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Chu, C. C.

Y. S. Lin, C. C. Chu, P. H. Tsui, and C. C. Chang, “Evaluation of zebrafish brain development using optical coherence tomography,” J. Biophotonics 6(9), 668–678 (2013).
[Crossref] [PubMed]

Cinalli, R. M.

A. J. Giraldez, R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson, S. Baskerville, S. M. Hammond, D. P. Bartel, and A. F. Schier, “MicroRNAs regulate brain morphogenesis in zebrafish,” Science 308(5723), 833–838 (2005).
[Crossref] [PubMed]

Colamarino, S. A.

D. C. Lie, H. Song, S. A. Colamarino, G. L. Ming, and F. H. Gage, “Neurogenesis in the adult brain: new strategies for central nervous system diseases,” Annu. Rev. Pharmacol. Toxicol. 44(1), 399–421 (2004).
[Crossref] [PubMed]

Cooke, J.

F. Mahmood, S. Fu, J. Cooke, S. W. Wilson, J. D. Cooper, and C. Russell, “A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation,” Brain 136(5), 1488–1507 (2013).
[Crossref] [PubMed]

Cooper, J. D.

F. Mahmood, S. Fu, J. Cooke, S. W. Wilson, J. D. Cooper, and C. Russell, “A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation,” Brain 136(5), 1488–1507 (2013).
[Crossref] [PubMed]

de Boer, J.

Drayer, B.

O. Ronneberger, K. Liu, M. Rath, D. Rueß, T. Mueller, H. Skibbe, B. Drayer, T. Schmidt, A. Filippi, and R. Nitschke, “ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains,” Nat. Methods 9(7), 735–742 (2012).
[Crossref] [PubMed]

Engert, F.

M. B. Ahrens, J. M. Li, M. B. Orger, D. N. Robson, A. F. Schier, F. Engert, and R. Portugues, “Brain-wide neuronal dynamics during motor adaptation in zebrafish,” Nature 485(7399), 471–477 (2012).
[PubMed]

Enright, A. J.

A. J. Giraldez, R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson, S. Baskerville, S. M. Hammond, D. P. Bartel, and A. F. Schier, “MicroRNAs regulate brain morphogenesis in zebrafish,” Science 308(5723), 833–838 (2005).
[Crossref] [PubMed]

Filippi, A.

O. Ronneberger, K. Liu, M. Rath, D. Rueß, T. Mueller, H. Skibbe, B. Drayer, T. Schmidt, A. Filippi, and R. Nitschke, “ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains,” Nat. Methods 9(7), 735–742 (2012).
[Crossref] [PubMed]

Freudenreich, D.

N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin, D. Freudenreich, A. Iltzsche, and M. Brand, “Acute inflammation initiates the regenerative response in the adult zebrafish brain,” Science 338(6112), 1353–1356 (2012).
[Crossref] [PubMed]

Fu, S.

F. Mahmood, S. Fu, J. Cooke, S. W. Wilson, J. D. Cooper, and C. Russell, “A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation,” Brain 136(5), 1488–1507 (2013).
[Crossref] [PubMed]

Fujimoto, J. G.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Gabriele, M. L.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Gage, F. H.

D. C. Lie, H. Song, S. A. Colamarino, G. L. Ming, and F. H. Gage, “Neurogenesis in the adult brain: new strategies for central nervous system diseases,” Annu. Rev. Pharmacol. Toxicol. 44(1), 399–421 (2004).
[Crossref] [PubMed]

Ganz, J.

H. Grandel, J. Kaslin, J. Ganz, I. Wenzel, and M. Brand, “Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate,” Dev. Biol. 295(1), 263–277 (2006).
[Crossref] [PubMed]

Ge, W.

Z. Zhang, B. Zhu, and W. Ge, “Genetic Analysis of Zebrafish Gonadotropin (FSH and LH) Functions by TALEN-Mediated Gene Disruption,” Mol. Endocrinol. 29(1), 76–98 (2015).
[Crossref] [PubMed]

Giraldez, A. J.

A. J. Giraldez, R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson, S. Baskerville, S. M. Hammond, D. P. Bartel, and A. F. Schier, “MicroRNAs regulate brain morphogenesis in zebrafish,” Science 308(5723), 833–838 (2005).
[Crossref] [PubMed]

Glasner, M. E.

A. J. Giraldez, R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson, S. Baskerville, S. M. Hammond, D. P. Bartel, and A. F. Schier, “MicroRNAs regulate brain morphogenesis in zebrafish,” Science 308(5723), 833–838 (2005).
[Crossref] [PubMed]

Grandel, H.

H. Grandel, J. Kaslin, J. Ganz, I. Wenzel, and M. Brand, “Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate,” Dev. Biol. 295(1), 263–277 (2006).
[Crossref] [PubMed]

Guo, S.

T. Mueller, M. F. Wullimann, and S. Guo, “Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression,” J. Comp. Neurol. 507(2), 1245–1257 (2008).
[Crossref] [PubMed]

Gupta, P. K.

K. D. Rao, A. Alex, Y. Verma, S. Thampi, and P. K. Gupta, “Real-time in vivo imaging of adult zebrafish brain using optical coherence tomography,” J. Biophotonics 2(5), 288–291 (2009).
[Crossref] [PubMed]

Hammond, S. M.

A. J. Giraldez, R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson, S. Baskerville, S. M. Hammond, D. P. Bartel, and A. F. Schier, “MicroRNAs regulate brain morphogenesis in zebrafish,” Science 308(5723), 833–838 (2005).
[Crossref] [PubMed]

Hariri, S.

S. Hariri, M. Johnstone, Y. Jiang, S. Padilla, Z. Zhou, R. Reif, and R. K. Wang, “Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography,” J. Biomed. Opt. 19(10), 106013 (2014).
[Crossref] [PubMed]

Hillman, E. M. C.

E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[Crossref] [PubMed]

Iltzsche, A.

N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin, D. Freudenreich, A. Iltzsche, and M. Brand, “Acute inflammation initiates the regenerative response in the adult zebrafish brain,” Science 338(6112), 1353–1356 (2012).
[Crossref] [PubMed]

Ishikawa, H.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Jiang, Y.

S. Hariri, M. Johnstone, Y. Jiang, S. Padilla, Z. Zhou, R. Reif, and R. K. Wang, “Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography,” J. Biomed. Opt. 19(10), 106013 (2014).
[Crossref] [PubMed]

Johnstone, M.

S. Hariri, M. Johnstone, Y. Jiang, S. Padilla, Z. Zhou, R. Reif, and R. K. Wang, “Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography,” J. Biomed. Opt. 19(10), 106013 (2014).
[Crossref] [PubMed]

Kagemann, L.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Kaslin, J.

N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin, D. Freudenreich, A. Iltzsche, and M. Brand, “Acute inflammation initiates the regenerative response in the adult zebrafish brain,” Science 338(6112), 1353–1356 (2012).
[Crossref] [PubMed]

H. Grandel, J. Kaslin, J. Ganz, I. Wenzel, and M. Brand, “Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate,” Dev. Biol. 295(1), 263–277 (2006).
[Crossref] [PubMed]

Keller, P. J.

M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Kizil, C.

N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin, D. Freudenreich, A. Iltzsche, and M. Brand, “Acute inflammation initiates the regenerative response in the adult zebrafish brain,” Science 338(6112), 1353–1356 (2012).
[Crossref] [PubMed]

Kroehne, V.

N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin, D. Freudenreich, A. Iltzsche, and M. Brand, “Acute inflammation initiates the regenerative response in the adult zebrafish brain,” Science 338(6112), 1353–1356 (2012).
[Crossref] [PubMed]

Kyritsis, N.

N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin, D. Freudenreich, A. Iltzsche, and M. Brand, “Acute inflammation initiates the regenerative response in the adult zebrafish brain,” Science 338(6112), 1353–1356 (2012).
[Crossref] [PubMed]

Li, C.

Li, J. M.

M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
[Crossref] [PubMed]

M. B. Ahrens, J. M. Li, M. B. Orger, D. N. Robson, A. F. Schier, F. Engert, and R. Portugues, “Brain-wide neuronal dynamics during motor adaptation in zebrafish,” Nature 485(7399), 471–477 (2012).
[PubMed]

Li, P.

Lie, D. C.

D. C. Lie, H. Song, S. A. Colamarino, G. L. Ming, and F. H. Gage, “Neurogenesis in the adult brain: new strategies for central nervous system diseases,” Annu. Rev. Pharmacol. Toxicol. 44(1), 399–421 (2004).
[Crossref] [PubMed]

Lin, Y. S.

Y. S. Lin, C. C. Chu, P. H. Tsui, and C. C. Chang, “Evaluation of zebrafish brain development using optical coherence tomography,” J. Biophotonics 6(9), 668–678 (2013).
[Crossref] [PubMed]

Liu, A.

Liu, K.

O. Ronneberger, K. Liu, M. Rath, D. Rueß, T. Mueller, H. Skibbe, B. Drayer, T. Schmidt, A. Filippi, and R. Nitschke, “ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains,” Nat. Methods 9(7), 735–742 (2012).
[Crossref] [PubMed]

Ma, Z.

Mahmood, F.

F. Mahmood, S. Fu, J. Cooke, S. W. Wilson, J. D. Cooper, and C. Russell, “A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation,” Brain 136(5), 1488–1507 (2013).
[Crossref] [PubMed]

Ming, G. L.

D. C. Lie, H. Song, S. A. Colamarino, G. L. Ming, and F. H. Gage, “Neurogenesis in the adult brain: new strategies for central nervous system diseases,” Annu. Rev. Pharmacol. Toxicol. 44(1), 399–421 (2004).
[Crossref] [PubMed]

Mueller, T.

O. Ronneberger, K. Liu, M. Rath, D. Rueß, T. Mueller, H. Skibbe, B. Drayer, T. Schmidt, A. Filippi, and R. Nitschke, “ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains,” Nat. Methods 9(7), 735–742 (2012).
[Crossref] [PubMed]

T. Mueller, “What is the thalamus in zebrafish?” Front. Neurosci. 6, 64 (2012).
[Crossref] [PubMed]

T. Mueller, M. F. Wullimann, and S. Guo, “Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression,” J. Comp. Neurol. 507(2), 1245–1257 (2008).
[Crossref] [PubMed]

M. F. Wullimann and T. Mueller, “Teleostean and mammalian forebrains contrasted: evidence from genes to behavior,” J. Comp. Neurol. 475(2), 143–162 (2004).
[Crossref] [PubMed]

Neitz, J.

Q. Zhang, M. Neitz, J. Neitz, and R. K. Wang, “Geographic mapping of choroidal thickness in myopic eyes using 1050-nm spectral domain optical coherence tomography,” J. Innov. Opt. Heal. Sci. 8, 1550012 (2014).

Neitz, M.

Q. Zhang, M. Neitz, J. Neitz, and R. K. Wang, “Geographic mapping of choroidal thickness in myopic eyes using 1050-nm spectral domain optical coherence tomography,” J. Innov. Opt. Heal. Sci. 8, 1550012 (2014).

Nitschke, R.

O. Ronneberger, K. Liu, M. Rath, D. Rueß, T. Mueller, H. Skibbe, B. Drayer, T. Schmidt, A. Filippi, and R. Nitschke, “ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains,” Nat. Methods 9(7), 735–742 (2012).
[Crossref] [PubMed]

Orger, M. B.

M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
[Crossref] [PubMed]

M. B. Ahrens, J. M. Li, M. B. Orger, D. N. Robson, A. F. Schier, F. Engert, and R. Portugues, “Brain-wide neuronal dynamics during motor adaptation in zebrafish,” Nature 485(7399), 471–477 (2012).
[PubMed]

Padilla, S.

S. Hariri, M. Johnstone, Y. Jiang, S. Padilla, Z. Zhou, R. Reif, and R. K. Wang, “Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography,” J. Biomed. Opt. 19(10), 106013 (2014).
[Crossref] [PubMed]

Park, B.

Piato, A. L.

A. M. Siebel, A. L. Piato, K. M. Capiotti, K. J. Seibt, M. R. Bogo, and C. D. Bonan, “PTZ-induced seizures inhibit adenosine deamination in adult zebrafish brain membranes,” Brain Res. Bull. 86(5-6), 385–389 (2011).
[Crossref] [PubMed]

Portugues, R.

M. B. Ahrens, J. M. Li, M. B. Orger, D. N. Robson, A. F. Schier, F. Engert, and R. Portugues, “Brain-wide neuronal dynamics during motor adaptation in zebrafish,” Nature 485(7399), 471–477 (2012).
[PubMed]

Rao, K. D.

K. D. Rao, A. Alex, Y. Verma, S. Thampi, and P. K. Gupta, “Real-time in vivo imaging of adult zebrafish brain using optical coherence tomography,” J. Biophotonics 2(5), 288–291 (2009).
[Crossref] [PubMed]

Rath, M.

O. Ronneberger, K. Liu, M. Rath, D. Rueß, T. Mueller, H. Skibbe, B. Drayer, T. Schmidt, A. Filippi, and R. Nitschke, “ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains,” Nat. Methods 9(7), 735–742 (2012).
[Crossref] [PubMed]

Reif, R.

S. Hariri, M. Johnstone, Y. Jiang, S. Padilla, Z. Zhou, R. Reif, and R. K. Wang, “Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography,” J. Biomed. Opt. 19(10), 106013 (2014).
[Crossref] [PubMed]

Robson, D. N.

M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
[Crossref] [PubMed]

M. B. Ahrens, J. M. Li, M. B. Orger, D. N. Robson, A. F. Schier, F. Engert, and R. Portugues, “Brain-wide neuronal dynamics during motor adaptation in zebrafish,” Nature 485(7399), 471–477 (2012).
[PubMed]

Ronneberger, O.

O. Ronneberger, K. Liu, M. Rath, D. Rueß, T. Mueller, H. Skibbe, B. Drayer, T. Schmidt, A. Filippi, and R. Nitschke, “ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains,” Nat. Methods 9(7), 735–742 (2012).
[Crossref] [PubMed]

Rueß, D.

O. Ronneberger, K. Liu, M. Rath, D. Rueß, T. Mueller, H. Skibbe, B. Drayer, T. Schmidt, A. Filippi, and R. Nitschke, “ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains,” Nat. Methods 9(7), 735–742 (2012).
[Crossref] [PubMed]

Rugonyi, S.

Russell, C.

F. Mahmood, S. Fu, J. Cooke, S. W. Wilson, J. D. Cooper, and C. Russell, “A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation,” Brain 136(5), 1488–1507 (2013).
[Crossref] [PubMed]

Schier, A. F.

M. B. Ahrens, J. M. Li, M. B. Orger, D. N. Robson, A. F. Schier, F. Engert, and R. Portugues, “Brain-wide neuronal dynamics during motor adaptation in zebrafish,” Nature 485(7399), 471–477 (2012).
[PubMed]

A. J. Giraldez, R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson, S. Baskerville, S. M. Hammond, D. P. Bartel, and A. F. Schier, “MicroRNAs regulate brain morphogenesis in zebrafish,” Science 308(5723), 833–838 (2005).
[Crossref] [PubMed]

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Schmidt, T.

O. Ronneberger, K. Liu, M. Rath, D. Rueß, T. Mueller, H. Skibbe, B. Drayer, T. Schmidt, A. Filippi, and R. Nitschke, “ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains,” Nat. Methods 9(7), 735–742 (2012).
[Crossref] [PubMed]

Schuman, J. S.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Seibt, K. J.

A. M. Siebel, A. L. Piato, K. M. Capiotti, K. J. Seibt, M. R. Bogo, and C. D. Bonan, “PTZ-induced seizures inhibit adenosine deamination in adult zebrafish brain membranes,” Brain Res. Bull. 86(5-6), 385–389 (2011).
[Crossref] [PubMed]

Shen, T. T.

Siebel, A. M.

A. M. Siebel, A. L. Piato, K. M. Capiotti, K. J. Seibt, M. R. Bogo, and C. D. Bonan, “PTZ-induced seizures inhibit adenosine deamination in adult zebrafish brain membranes,” Brain Res. Bull. 86(5-6), 385–389 (2011).
[Crossref] [PubMed]

Skibbe, H.

O. Ronneberger, K. Liu, M. Rath, D. Rueß, T. Mueller, H. Skibbe, B. Drayer, T. Schmidt, A. Filippi, and R. Nitschke, “ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains,” Nat. Methods 9(7), 735–742 (2012).
[Crossref] [PubMed]

Song, H.

D. C. Lie, H. Song, S. A. Colamarino, G. L. Ming, and F. H. Gage, “Neurogenesis in the adult brain: new strategies for central nervous system diseases,” Annu. Rev. Pharmacol. Toxicol. 44(1), 399–421 (2004).
[Crossref] [PubMed]

Stelzer, E. H. K.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Strangman, G.

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52(7), 679–693 (2002).
[Crossref] [PubMed]

Sutton, J. P.

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52(7), 679–693 (2002).
[Crossref] [PubMed]

Tearney, G.

Thampi, S.

K. D. Rao, A. Alex, Y. Verma, S. Thampi, and P. K. Gupta, “Real-time in vivo imaging of adult zebrafish brain using optical coherence tomography,” J. Biophotonics 2(5), 288–291 (2009).
[Crossref] [PubMed]

Thomson, J. M.

A. J. Giraldez, R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson, S. Baskerville, S. M. Hammond, D. P. Bartel, and A. F. Schier, “MicroRNAs regulate brain morphogenesis in zebrafish,” Science 308(5723), 833–838 (2005).
[Crossref] [PubMed]

Thornburg, K.

Townsend, K. A.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Troyer, A.

Tsui, P. H.

Y. S. Lin, C. C. Chu, P. H. Tsui, and C. C. Chang, “Evaluation of zebrafish brain development using optical coherence tomography,” J. Biophotonics 6(9), 668–678 (2013).
[Crossref] [PubMed]

Verma, Y.

K. D. Rao, A. Alex, Y. Verma, S. Thampi, and P. K. Gupta, “Real-time in vivo imaging of adult zebrafish brain using optical coherence tomography,” J. Biophotonics 2(5), 288–291 (2009).
[Crossref] [PubMed]

Wang, R.

Wang, R. K.

S. Hariri, M. Johnstone, Y. Jiang, S. Padilla, Z. Zhou, R. Reif, and R. K. Wang, “Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography,” J. Biomed. Opt. 19(10), 106013 (2014).
[Crossref] [PubMed]

Q. Zhang, M. Neitz, J. Neitz, and R. K. Wang, “Geographic mapping of choroidal thickness in myopic eyes using 1050-nm spectral domain optical coherence tomography,” J. Innov. Opt. Heal. Sci. 8, 1550012 (2014).

Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express 1(3), 798–811 (2010).
[Crossref] [PubMed]

Wang, X.

Wei, X.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Wenzel, I.

H. Grandel, J. Kaslin, J. Ganz, I. Wenzel, and M. Brand, “Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate,” Dev. Biol. 295(1), 263–277 (2006).
[Crossref] [PubMed]

Wilson, S. W.

F. Mahmood, S. Fu, J. Cooke, S. W. Wilson, J. D. Cooper, and C. Russell, “A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation,” Brain 136(5), 1488–1507 (2013).
[Crossref] [PubMed]

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Wollstein, G.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Wullimann, M. F.

T. Mueller, M. F. Wullimann, and S. Guo, “Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression,” J. Comp. Neurol. 507(2), 1245–1257 (2008).
[Crossref] [PubMed]

M. F. Wullimann and T. Mueller, “Teleostean and mammalian forebrains contrasted: evidence from genes to behavior,” J. Comp. Neurol. 475(2), 143–162 (2004).
[Crossref] [PubMed]

Yin, X.

Yuan, Z.

Yun, S.

Zhang, J.

Zhang, Q.

Q. Zhang, M. Neitz, J. Neitz, and R. K. Wang, “Geographic mapping of choroidal thickness in myopic eyes using 1050-nm spectral domain optical coherence tomography,” J. Innov. Opt. Heal. Sci. 8, 1550012 (2014).

Zhang, Z.

Z. Zhang, B. Zhu, and W. Ge, “Genetic Analysis of Zebrafish Gonadotropin (FSH and LH) Functions by TALEN-Mediated Gene Disruption,” Mol. Endocrinol. 29(1), 76–98 (2015).
[Crossref] [PubMed]

Zhou, Z.

S. Hariri, M. Johnstone, Y. Jiang, S. Padilla, Z. Zhou, R. Reif, and R. K. Wang, “Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography,” J. Biomed. Opt. 19(10), 106013 (2014).
[Crossref] [PubMed]

Zhu, B.

Z. Zhang, B. Zhu, and W. Ge, “Genetic Analysis of Zebrafish Gonadotropin (FSH and LH) Functions by TALEN-Mediated Gene Disruption,” Mol. Endocrinol. 29(1), 76–98 (2015).
[Crossref] [PubMed]

Zocher, S.

N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin, D. Freudenreich, A. Iltzsche, and M. Brand, “Acute inflammation initiates the regenerative response in the adult zebrafish brain,” Science 338(6112), 1353–1356 (2012).
[Crossref] [PubMed]

Zou, J.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Annu. Rev. Pharmacol. Toxicol. (1)

D. C. Lie, H. Song, S. A. Colamarino, G. L. Ming, and F. H. Gage, “Neurogenesis in the adult brain: new strategies for central nervous system diseases,” Annu. Rev. Pharmacol. Toxicol. 44(1), 399–421 (2004).
[Crossref] [PubMed]

Biol. Psychiatry (1)

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52(7), 679–693 (2002).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Brain (1)

F. Mahmood, S. Fu, J. Cooke, S. W. Wilson, J. D. Cooper, and C. Russell, “A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation,” Brain 136(5), 1488–1507 (2013).
[Crossref] [PubMed]

Brain Res. Bull. (1)

A. M. Siebel, A. L. Piato, K. M. Capiotti, K. J. Seibt, M. R. Bogo, and C. D. Bonan, “PTZ-induced seizures inhibit adenosine deamination in adult zebrafish brain membranes,” Brain Res. Bull. 86(5-6), 385–389 (2011).
[Crossref] [PubMed]

Dev. Biol. (1)

H. Grandel, J. Kaslin, J. Ganz, I. Wenzel, and M. Brand, “Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate,” Dev. Biol. 295(1), 263–277 (2006).
[Crossref] [PubMed]

Front. Neurosci. (1)

T. Mueller, “What is the thalamus in zebrafish?” Front. Neurosci. 6, 64 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[Crossref] [PubMed]

S. Hariri, M. Johnstone, Y. Jiang, S. Padilla, Z. Zhou, R. Reif, and R. K. Wang, “Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography,” J. Biomed. Opt. 19(10), 106013 (2014).
[Crossref] [PubMed]

J. Biophotonics (2)

K. D. Rao, A. Alex, Y. Verma, S. Thampi, and P. K. Gupta, “Real-time in vivo imaging of adult zebrafish brain using optical coherence tomography,” J. Biophotonics 2(5), 288–291 (2009).
[Crossref] [PubMed]

Y. S. Lin, C. C. Chu, P. H. Tsui, and C. C. Chang, “Evaluation of zebrafish brain development using optical coherence tomography,” J. Biophotonics 6(9), 668–678 (2013).
[Crossref] [PubMed]

J. Comp. Neurol. (2)

T. Mueller, M. F. Wullimann, and S. Guo, “Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression,” J. Comp. Neurol. 507(2), 1245–1257 (2008).
[Crossref] [PubMed]

M. F. Wullimann and T. Mueller, “Teleostean and mammalian forebrains contrasted: evidence from genes to behavior,” J. Comp. Neurol. 475(2), 143–162 (2004).
[Crossref] [PubMed]

J. Innov. Opt. Heal. Sci. (1)

Q. Zhang, M. Neitz, J. Neitz, and R. K. Wang, “Geographic mapping of choroidal thickness in myopic eyes using 1050-nm spectral domain optical coherence tomography,” J. Innov. Opt. Heal. Sci. 8, 1550012 (2014).

Mol. Endocrinol. (1)

Z. Zhang, B. Zhu, and W. Ge, “Genetic Analysis of Zebrafish Gonadotropin (FSH and LH) Functions by TALEN-Mediated Gene Disruption,” Mol. Endocrinol. 29(1), 76–98 (2015).
[Crossref] [PubMed]

Mol. Vis. (1)

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).
[PubMed]

Nat. Methods (2)

M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
[Crossref] [PubMed]

O. Ronneberger, K. Liu, M. Rath, D. Rueß, T. Mueller, H. Skibbe, B. Drayer, T. Schmidt, A. Filippi, and R. Nitschke, “ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains,” Nat. Methods 9(7), 735–742 (2012).
[Crossref] [PubMed]

Nature (1)

M. B. Ahrens, J. M. Li, M. B. Orger, D. N. Robson, A. F. Schier, F. Engert, and R. Portugues, “Brain-wide neuronal dynamics during motor adaptation in zebrafish,” Nature 485(7399), 471–477 (2012).
[PubMed]

Opt. Express (1)

Science (3)

A. J. Giraldez, R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson, S. Baskerville, S. M. Hammond, D. P. Bartel, and A. F. Schier, “MicroRNAs regulate brain morphogenesis in zebrafish,” Science 308(5723), 833–838 (2005).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin, D. Freudenreich, A. Iltzsche, and M. Brand, “Acute inflammation initiates the regenerative response in the adult zebrafish brain,” Science 338(6112), 1353–1356 (2012).
[Crossref] [PubMed]

Other (2)

See supplementary material about the imaging-depth of our SD-OCT system.

See supplementary material about the location of the imaging profile.

Supplementary Material (2)

NameDescription
» Visualization 1: MOV (1383 KB)      Media 1
» Visualization 2: MOV (3888 KB)      Media 2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of our SD-OCT system for imaging the adult zebrafish brain.
Fig. 2
Fig. 2 (a) Schematic of the lateral view of adult zebrafish brain (the top row) [27]. (b) A representative sagittal SD-OCT image of the adult zebrafish brain (bottom left) along the red profile as shown in the photograph (bottom right): OB, olfactory bulb; OC, optic commissure; Te, telencephalon; TeO, tectum opticum; Ce, cerebellum; Me, medulla; PG, preglomerular complex; PT, posterior tuberculum; Sk, skull. The scale bar is 500 μm.
Fig. 3
Fig. 3 Four different coronal SD-OCT images [(a) to (d)] at four different labeled positions on the head of the same adult zebrafish (see arrow locations and direction): OC, optic commissure; Te, telencephalon; TeO, tectum opticum; Ce, cerebellum; Me, medulla; PG, preglomerular complex; PT, posterior tuberculum. The scale bar is 500 μm.
Fig. 4
Fig. 4 (a) Region of interest (ROI) was labeled with a red rectangle in the photograph that could cover the whole brain. (b) Sequence of sagittal SD-OCT images of the adult zebrafish brain. The scale bar is 250 μm and is same for all the images.
Fig. 5
Fig. 5 3D view of the reconstructed adult zebrafish brain in the cross-sectional form (a, Visualization 1) and volumetric form (b, Visualization 2).
Fig. 6
Fig. 6 Characterization of the adult zebrafish brain from the horizontal view based on the reconstructed 3D SD-OCT image of the same region of interest (ROI) as shown in Fig. 4 (a) with different imaging depths along Z axis with z = 0.8 mm, 1.2 mm, 1.4 mm, 1.8 mm, 2.0 mm, 2.4 mm and 2.6 mm, respectively.
Fig. 7
Fig. 7 Characterization of the adult zebrafish brain before (the first row) and after (the second row) brain injury. Columns one to three separately showed the coronal, sagittal and horizontal section of the 3D SD-OCT images.

Metrics