Abstract

The optical characterization of malignant and benign breast lesions is presented. Time-resolved transmittance measurements were performed in the 630-1060 nm range by means of a 7-wavelength optical mammograph, providing both imaging and spectroscopy information. A total of 62 lesions were analyzed, including 33 malignant and 29 benign lesions. The characterization of breast lesions was performed applying a perturbation model based on the high-order calculation of the pathlength of photons inside the lesion, which led to the assessment of oxy- and deoxy-hemoglobin, lipids, water and collagen concentrations. Significant variations between tumor and healthy tissue were observed in terms of both absorption properties and constituents concentration. In particular, benign lesions and tumors show a statistically significant discrimination in terms of absorption at several wavelengths and also in terms of oxy-hemoglobin and collagen content.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification

Paola Taroni, Antonio Pifferi, Elena Salvagnini, Lorenzo Spinelli, Alessandro Torricelli, and Rinaldo Cubeddu
Opt. Express 17(18) 15932-15946 (2009)

Three-dimensional time-resolved optical mammography of the uncompressed breast

Louise C. Enfield, Adam P. Gibson, Nicholas L. Everdell, David T. Delpy, Martin Schweiger, Simon R. Arridge, Caroline Richardson, Mohammad Keshtgar, Michael Douek, and Jeremy C. Hebden
Appl. Opt. 46(17) 3628-3638 (2007)

Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors

Dirk Grosenick, K. Thomas Moesta, Heidrun Wabnitz, Jörg Mucke, Christian Stroszczynski, Rainer Macdonald, Peter M. Schlag, and Herbert Rinneberg
Appl. Opt. 42(16) 3170-3186 (2003)

References

  • View by:
  • |
  • |
  • |

  1. F. Bray, P. McCarron, and D. M. Parkin, “The changing global patterns of female breast cancer incidence and mortality,” Breast Cancer Res. 6(6), 229–239 (2004).
    [Crossref] [PubMed]
  2. http://www.cancer.gov/
  3. L. Tabar, M. F. Yen, B. Vitak, H. H. Chen, R. A. Smith, and S. W. Duffy, “Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening,” Lancet 361(9367), 1405–1410 (2003).
    [Crossref] [PubMed]
  4. E. Marshall, “Public health. Brawling over mammography,” Science 327(5968), 936–938 (2010).
    [Crossref] [PubMed]
  5. D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET Clin. 8(3), 345–365 (2013).
    [Crossref] [PubMed]
  6. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
    [Crossref] [PubMed]
  7. P. Taroni, “Diffuse optical imaging and spectroscopy of the breast: a brief outline of history and perspectives,” Photochem. Photobiol. Sci. 11(2), 241–250 (2012).
    [Crossref] [PubMed]
  8. P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
    [Crossref] [PubMed]
  9. T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
    [Crossref] [PubMed]
  10. V. Venugopal and X. Intes, “Recent advances in optical mammography,” Current Medical Imaging Reviews 8(3), 244–259 (2012).
    [Crossref]
  11. K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, and P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3(2), 129–136 (1998).
    [Crossref] [PubMed]
  12. L. Götz, S. H. Heywang-Köbrunner, O. Schütz, and H. Siebold, “Optical mammography in preoperative patients,” Aktuelle Radiol. 8(1), 31–33 (1998).
    [PubMed]
  13. S. Colak, M. Van der Mark, G. T. Hooft, J. Hoogenraad, E. Van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
  14. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20(12), 1334–1340 (2001).
    [Crossref] [PubMed]
  15. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
    [Crossref] [PubMed]
  16. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).
    [Crossref] [PubMed]
  17. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003).
    [Crossref] [PubMed]
  18. X. Cheng, J. M. Mao, R. Bush, D. B. Kopans, R. H. Moore, and M. Chorlton, “Breast cancer detection by mapping hemoglobin concentration and oxygen saturation,” Appl. Opt. 42(31), 6412–6421 (2003).
    [Crossref] [PubMed]
  19. J. Wang, S. Jiang, Z. Li, R. M. di Florio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
    [Crossref] [PubMed]
  20. S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
    [Crossref] [PubMed]
  21. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37(10), 1982–1989 (1998).
    [Crossref] [PubMed]
  22. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
    [Crossref] [PubMed]
  23. V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7(1), 80–87 (2002).
    [Crossref] [PubMed]
  24. T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7(1), 72–79 (2002).
    [Crossref] [PubMed]
  25. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100(21), 12349–12354 (2003).
    [Crossref] [PubMed]
  26. Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237(1), 57–66 (2005).
    [Crossref] [PubMed]
  27. Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
    [Crossref] [PubMed]
  28. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Möller, C. Stroszczynski, J. Stössel, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys. Med. Biol. 49(7), 1165–1181 (2004).
    [Crossref] [PubMed]
  29. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50(11), 2489–2502 (2005).
    [Crossref] [PubMed]
  30. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
    [Crossref] [PubMed]
  31. S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol. Imaging Biol. 11(2), 64–70 (2009).
    [Crossref] [PubMed]
  32. S. A. Carp, A. Y. Sajjadi, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. J. Isakoff, “Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system,” Biomed. Opt. Express 4(12), 2911–2924 (2013).
    [Crossref] [PubMed]
  33. M. L. Flexman, H. K. Kim, J. E. Gunther, E. A. Lim, M. C. Alvarez, E. Desperito, K. Kalinsky, D. L. Hershman, and A. H. Hielscher, “Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography,” J. Biomed. Opt. 18(9), 096012 (2013).
    [Crossref] [PubMed]
  34. A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
    [Crossref] [PubMed]
  35. A. Lochter and M. J. Bissell, “Involvement of extracellular matrix constituents in breast cancer,” Semin. Cancer Biol. 6(3), 165–173 (1995).
    [Crossref] [PubMed]
  36. P. P. Provenzano, D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely, “Collagen density promotes mammary tumor initiation and progression,” BMC Med. 6(1), 11 (2008).
    [Crossref] [PubMed]
  37. A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. I. Theory,” J. Opt. Soc. Am. A 23(9), 2105–2118 (2006).
    [Crossref] [PubMed]
  38. P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express 17(18), 15932–15946 (2009).
    [Crossref] [PubMed]
  39. C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006).
    [Crossref] [PubMed]
  40. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [Crossref] [PubMed]
  41. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
    [Crossref] [PubMed]
  42. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36(4), 949–957 (1997).
    [Crossref] [PubMed]
  43. A. M. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37(7), 1256–1267 (1998).
    [Crossref] [PubMed]
  44. S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
    [Crossref] [PubMed]
  45. L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).
    [Crossref] [PubMed]
  46. A. Sassaroli, A. Pifferi, D. Contini, A. Torricelli, L. Spinelli, H. Wabnitz, P. Di Ninni, G. Zaccanti, and F. Martelli, “Forward solvers for photon migration in the presence of highly and totally absorbing objects embedded inside diffusive media,” J. Opt. Soc. Am. A 31(3), 460–469 (2014).
    [Crossref] [PubMed]
  47. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38(13), 2927–2943 (1999).
    [Crossref] [PubMed]
  48. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
    [Crossref] [PubMed]
  49. P. Taroni, G. Quarto, A. Pifferi, F. Ieva, A. M. Paganoni, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Optical identification of subjects at high risk for developing breast cancer,” J. Biomed. Opt. 18(6), 060507 (2013).
    [Crossref] [PubMed]
  50. F. C. Koerner, Diagnostic Problems in Breast Pathology: Expert Consult: Online and Print (Elsevier Health Sciences, 2008).
  51. P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007).
    [Crossref] [PubMed]
  52. H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
    [Crossref]

2014 (1)

2013 (8)

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).
[Crossref] [PubMed]

P. Taroni, G. Quarto, A. Pifferi, F. Ieva, A. M. Paganoni, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Optical identification of subjects at high risk for developing breast cancer,” J. Biomed. Opt. 18(6), 060507 (2013).
[Crossref] [PubMed]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET Clin. 8(3), 345–365 (2013).
[Crossref] [PubMed]

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

S. A. Carp, A. Y. Sajjadi, C. M. Wanyo, Q. Fang, M. C. Specht, L. Schapira, B. Moy, A. Bardia, D. A. Boas, and S. J. Isakoff, “Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system,” Biomed. Opt. Express 4(12), 2911–2924 (2013).
[Crossref] [PubMed]

M. L. Flexman, H. K. Kim, J. E. Gunther, E. A. Lim, M. C. Alvarez, E. Desperito, K. Kalinsky, D. L. Hershman, and A. H. Hielscher, “Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography,” J. Biomed. Opt. 18(9), 096012 (2013).
[Crossref] [PubMed]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

2012 (2)

V. Venugopal and X. Intes, “Recent advances in optical mammography,” Current Medical Imaging Reviews 8(3), 244–259 (2012).
[Crossref]

P. Taroni, “Diffuse optical imaging and spectroscopy of the breast: a brief outline of history and perspectives,” Photochem. Photobiol. Sci. 11(2), 241–250 (2012).
[Crossref] [PubMed]

2010 (5)

E. Marshall, “Public health. Brawling over mammography,” Science 327(5968), 936–938 (2010).
[Crossref] [PubMed]

J. Wang, S. Jiang, Z. Li, R. M. di Florio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

2009 (2)

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express 17(18), 15932–15946 (2009).
[Crossref] [PubMed]

S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol. Imaging Biol. 11(2), 64–70 (2009).
[Crossref] [PubMed]

2008 (2)

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

P. P. Provenzano, D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely, “Collagen density promotes mammary tumor initiation and progression,” BMC Med. 6(1), 11 (2008).
[Crossref] [PubMed]

2007 (1)

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (3)

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237(1), 57–66 (2005).
[Crossref] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50(11), 2489–2502 (2005).
[Crossref] [PubMed]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref] [PubMed]

2004 (2)

F. Bray, P. McCarron, and D. M. Parkin, “The changing global patterns of female breast cancer incidence and mortality,” Breast Cancer Res. 6(6), 229–239 (2004).
[Crossref] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Möller, C. Stroszczynski, J. Stössel, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys. Med. Biol. 49(7), 1165–1181 (2004).
[Crossref] [PubMed]

2003 (5)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

L. Tabar, M. F. Yen, B. Vitak, H. H. Chen, R. A. Smith, and S. W. Duffy, “Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening,” Lancet 361(9367), 1405–1410 (2003).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).
[Crossref] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003).
[Crossref] [PubMed]

X. Cheng, J. M. Mao, R. Bush, D. B. Kopans, R. H. Moore, and M. Chorlton, “Breast cancer detection by mapping hemoglobin concentration and oxygen saturation,” Appl. Opt. 42(31), 6412–6421 (2003).
[Crossref] [PubMed]

2002 (4)

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref] [PubMed]

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7(1), 80–87 (2002).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7(1), 72–79 (2002).
[Crossref] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref] [PubMed]

2001 (2)

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20(12), 1334–1340 (2001).
[Crossref] [PubMed]

1999 (2)

S. Colak, M. Van der Mark, G. T. Hooft, J. Hoogenraad, E. Van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38(13), 2927–2943 (1999).
[Crossref] [PubMed]

1998 (4)

A. M. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37(7), 1256–1267 (1998).
[Crossref] [PubMed]

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, and P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3(2), 129–136 (1998).
[Crossref] [PubMed]

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, and H. Siebold, “Optical mammography in preoperative patients,” Aktuelle Radiol. 8(1), 31–33 (1998).
[PubMed]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37(10), 1982–1989 (1998).
[Crossref] [PubMed]

1997 (1)

1995 (1)

A. Lochter and M. J. Bissell, “Involvement of extracellular matrix constituents in breast cancer,” Semin. Cancer Biol. 6(3), 165–173 (1995).
[Crossref] [PubMed]

1994 (1)

1989 (1)

Abbate, F.

P. Taroni, G. Quarto, A. Pifferi, F. Ieva, A. M. Paganoni, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Optical identification of subjects at high risk for developing breast cancer,” J. Biomed. Opt. 18(6), 060507 (2013).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Aguirre, A.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref] [PubMed]

Alvarez, M. C.

M. L. Flexman, H. K. Kim, J. E. Gunther, E. A. Lim, M. C. Alvarez, E. Desperito, K. Kalinsky, D. L. Hershman, and A. H. Hielscher, “Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography,” J. Biomed. Opt. 18(9), 096012 (2013).
[Crossref] [PubMed]

Andersson-Engels, S.

Ardeshirpour, Y.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref] [PubMed]

Arpaia, F.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref] [PubMed]

Athanasiou, T.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Bahri, S.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Bakker, L.

S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol. Imaging Biol. 11(2), 64–70 (2009).
[Crossref] [PubMed]

Balestreri, N.

P. Taroni, G. Quarto, A. Pifferi, F. Ieva, A. M. Paganoni, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Optical identification of subjects at high risk for developing breast cancer,” J. Biomed. Opt. 18(6), 060507 (2013).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Bardia, A.

Baron, L.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20(12), 1334–1340 (2001).
[Crossref] [PubMed]

Barth, R. J.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

J. Wang, S. Jiang, Z. Li, R. M. di Florio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

Bassi, A.

Berger, A. J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Bevilacqua, F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Bigio, I. J.

Bissell, M. J.

A. Lochter and M. J. Bissell, “Involvement of extracellular matrix constituents in breast cancer,” Semin. Cancer Biol. 6(3), 165–173 (1995).
[Crossref] [PubMed]

Boas, D. A.

Boyer, J.

Bray, F.

F. Bray, P. McCarron, and D. M. Parkin, “The changing global patterns of female breast cancer incidence and mortality,” Breast Cancer Res. 6(6), 229–239 (2004).
[Crossref] [PubMed]

Brendel, B.

S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol. Imaging Biol. 11(2), 64–70 (2009).
[Crossref] [PubMed]

Busch, D. R.

D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET Clin. 8(3), 345–365 (2013).
[Crossref] [PubMed]

Bush, R.

Butler, J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Carp, S. A.

Cassano, E.

P. Taroni, G. Quarto, A. Pifferi, F. Ieva, A. M. Paganoni, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Optical identification of subjects at high risk for developing breast cancer,” J. Biomed. Opt. 18(6), 060507 (2013).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Cerussi, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Cerussi, A. E.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Chance, B.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[Crossref] [PubMed]

Chen, H. H.

L. Tabar, M. F. Yen, B. Vitak, H. H. Chen, R. A. Smith, and S. W. Duffy, “Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening,” Lancet 361(9367), 1405–1410 (2003).
[Crossref] [PubMed]

Chen, J. H.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Chen, N.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237(1), 57–66 (2005).
[Crossref] [PubMed]

Chen, W. P.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Cheng, X.

Chernomordik, V.

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7(1), 80–87 (2002).
[Crossref] [PubMed]

Choe, R.

D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET Clin. 8(3), 345–365 (2013).
[Crossref] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref] [PubMed]

Chorlton, M.

Colak, S.

S. Colak, M. Van der Mark, G. T. Hooft, J. Hoogenraad, E. Van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).

Comelli, D.

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007).
[Crossref] [PubMed]

Contini, D.

Cronin, E. B.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref] [PubMed]

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237(1), 57–66 (2005).
[Crossref] [PubMed]

Cubeddu, R.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

P. Taroni, G. Quarto, A. Pifferi, F. Ieva, A. M. Paganoni, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Optical identification of subjects at high risk for developing breast cancer,” J. Biomed. Opt. 18(6), 060507 (2013).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express 17(18), 15932–15946 (2009).
[Crossref] [PubMed]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007).
[Crossref] [PubMed]

C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006).
[Crossref] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50(11), 2489–2502 (2005).
[Crossref] [PubMed]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref] [PubMed]

Cuccia, D. J.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Culver, J. P.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref] [PubMed]

Currier, A. A.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237(1), 57–66 (2005).
[Crossref] [PubMed]

D’Andrea, C.

Danesini, G.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50(11), 2489–2502 (2005).
[Crossref] [PubMed]

Darzi, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Deckers, P. J.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref] [PubMed]

Dehghani, H.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).
[Crossref] [PubMed]

Del Bianco, S.

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref] [PubMed]

Desperito, E.

M. L. Flexman, H. K. Kim, J. E. Gunther, E. A. Lim, M. C. Alvarez, E. Desperito, K. Kalinsky, D. L. Hershman, and A. H. Hielscher, “Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography,” J. Biomed. Opt. 18(9), 096012 (2013).
[Crossref] [PubMed]

di Florio-Alexander, R. M.

J. Wang, S. Jiang, Z. Li, R. M. di Florio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

Di Ninni, P.

A. Sassaroli, A. Pifferi, D. Contini, A. Torricelli, L. Spinelli, H. Wabnitz, P. Di Ninni, G. Zaccanti, and F. Martelli, “Forward solvers for photon migration in the presence of highly and totally absorbing objects embedded inside diffusive media,” J. Opt. Soc. Am. A 31(3), 460–469 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

Duffy, S. W.

L. Tabar, M. F. Yen, B. Vitak, H. H. Chen, R. A. Smith, and S. W. Duffy, “Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening,” Lancet 361(9367), 1405–1410 (2003).
[Crossref] [PubMed]

Durduran, T.

D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET Clin. 8(3), 345–365 (2013).
[Crossref] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref] [PubMed]

Durkin, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Eggert, J.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20(12), 1334–1340 (2001).
[Crossref] [PubMed]

Elias, S.

S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol. Imaging Biol. 11(2), 64–70 (2009).
[Crossref] [PubMed]

Eliceiri, K. W.

P. P. Provenzano, D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely, “Collagen density promotes mammary tumor initiation and progression,” BMC Med. 6(1), 11 (2008).
[Crossref] [PubMed]

Enfield, L. C.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Fajardo, L.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20(12), 1334–1340 (2001).
[Crossref] [PubMed]

Fang, Q.

Fantini, S.

Feng, T. C.

Flexman, M. L.

M. L. Flexman, H. K. Kim, J. E. Gunther, E. A. Lim, M. C. Alvarez, E. Desperito, K. Kalinsky, D. L. Hershman, and A. H. Hielscher, “Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography,” J. Biomed. Opt. 18(9), 096012 (2013).
[Crossref] [PubMed]

Franceschini, M. A.

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37(10), 1982–1989 (1998).
[Crossref] [PubMed]

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, and P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3(2), 129–136 (1998).
[Crossref] [PubMed]

Fuselier, T.

Gandjbakhche, A.

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7(1), 80–87 (2002).
[Crossref] [PubMed]

Giammarco, J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref] [PubMed]

Gibson, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Gibson, J. J.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Giusto, A.

Götz, L.

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, and H. Siebold, “Optical mammography in preoperative patients,” Aktuelle Radiol. 8(1), 31–33 (1998).
[PubMed]

Gratton, E.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

Grosenick, D.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Möller, C. Stroszczynski, J. Stössel, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys. Med. Biol. 49(7), 1165–1181 (2004).
[Crossref] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003).
[Crossref] [PubMed]

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7(1), 80–87 (2002).
[Crossref] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38(13), 2927–2943 (1999).
[Crossref] [PubMed]

Gunther, J. E.

M. L. Flexman, H. K. Kim, J. E. Gunther, E. A. Lim, M. C. Alvarez, E. Desperito, K. Kalinsky, D. L. Hershman, and A. H. Hielscher, “Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography,” J. Biomed. Opt. 18(9), 096012 (2013).
[Crossref] [PubMed]

Haskell, R. C.

Hattery, D. W.

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7(1), 80–87 (2002).
[Crossref] [PubMed]

Hebden, J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Hebden, J. C.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

Hegde, P. U.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref] [PubMed]

Hershman, D. L.

M. L. Flexman, H. K. Kim, J. E. Gunther, E. A. Lim, M. C. Alvarez, E. Desperito, K. Kalinsky, D. L. Hershman, and A. H. Hielscher, “Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography,” J. Biomed. Opt. 18(9), 096012 (2013).
[Crossref] [PubMed]

Heywang-Köbrunner, S. H.

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, and H. Siebold, “Optical mammography in preoperative patients,” Aktuelle Radiol. 8(1), 31–33 (1998).
[PubMed]

Hielscher, A. H.

M. L. Flexman, H. K. Kim, J. E. Gunther, E. A. Lim, M. C. Alvarez, E. Desperito, K. Kalinsky, D. L. Hershman, and A. H. Hielscher, “Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography,” J. Biomed. Opt. 18(9), 096012 (2013).
[Crossref] [PubMed]

Holboke, M. J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref] [PubMed]

Holcombe, R. F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Hooft, G. T.

S. Colak, M. Van der Mark, G. T. Hooft, J. Hoogenraad, E. Van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).

Hoogenraad, J.

S. Colak, M. Van der Mark, G. T. Hooft, J. Hoogenraad, E. Van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).

Hsiang, D.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Huang, M.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237(1), 57–66 (2005).
[Crossref] [PubMed]

Ieva, F.

P. Taroni, G. Quarto, A. Pifferi, F. Ieva, A. M. Paganoni, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Optical identification of subjects at high risk for developing breast cancer,” J. Biomed. Opt. 18(6), 060507 (2013).
[Crossref] [PubMed]

Iftimia, N.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20(12), 1334–1340 (2001).
[Crossref] [PubMed]

Inman, D. R.

P. P. Provenzano, D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely, “Collagen density promotes mammary tumor initiation and progression,” BMC Med. 6(1), 11 (2008).
[Crossref] [PubMed]

Intes, X.

V. Venugopal and X. Intes, “Recent advances in optical mammography,” Current Medical Imaging Reviews 8(3), 244–259 (2012).
[Crossref]

Isakoff, S. J.

Jakubowski, D.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Jelzow, A.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

Jess, H.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, and P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3(2), 129–136 (1998).
[Crossref] [PubMed]

Jiang, H.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20(12), 1334–1340 (2001).
[Crossref] [PubMed]

Jiang, S.

J. Wang, S. Jiang, Z. Li, R. M. di Florio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7(1), 72–79 (2002).
[Crossref] [PubMed]

Johnson, T. M.

Kacprzak, M.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

Kalinsky, K.

M. L. Flexman, H. K. Kim, J. E. Gunther, E. A. Lim, M. C. Alvarez, E. Desperito, K. Kalinsky, D. L. Hershman, and A. H. Hielscher, “Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography,” J. Biomed. Opt. 18(9), 096012 (2013).
[Crossref] [PubMed]

Kane, M.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref] [PubMed]

Kaschke, M.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, and P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3(2), 129–136 (1998).
[Crossref] [PubMed]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37(10), 1982–1989 (1998).
[Crossref] [PubMed]

Kaufman, P. A.

J. Wang, S. Jiang, Z. Li, R. M. di Florio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

Keely, P. J.

P. P. Provenzano, D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely, “Collagen density promotes mammary tumor initiation and progression,” BMC Med. 6(1), 11 (2008).
[Crossref] [PubMed]

Kim, H. K.

M. L. Flexman, H. K. Kim, J. E. Gunther, E. A. Lim, M. C. Alvarez, E. Desperito, K. Kalinsky, D. L. Hershman, and A. H. Hielscher, “Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography,” J. Biomed. Opt. 18(9), 096012 (2013).
[Crossref] [PubMed]

Klove, K.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20(12), 1334–1340 (2001).
[Crossref] [PubMed]

Knittel, J. G.

P. P. Provenzano, D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely, “Collagen density promotes mammary tumor initiation and progression,” BMC Med. 6(1), 11 (2008).
[Crossref] [PubMed]

Kogel, C.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Kopans, D. B.

Krishnaswamy, V.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Kuijpers, F.

S. Colak, M. Van der Mark, G. T. Hooft, J. Hoogenraad, E. Van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).

Kukreti, S.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

Kurtzman, S. H.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref] [PubMed]

Laughney, A. M.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Leff, D. R.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Leproux, A.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol. Imaging Biol. 11(2), 64–70 (2009).
[Crossref] [PubMed]

Li, Z.

J. Wang, S. Jiang, Z. Li, R. M. di Florio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

Liebert, A.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

Lim, E. A.

M. L. Flexman, H. K. Kim, J. E. Gunther, E. A. Lim, M. C. Alvarez, E. Desperito, K. Kalinsky, D. L. Hershman, and A. H. Hielscher, “Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography,” J. Biomed. Opt. 18(9), 096012 (2013).
[Crossref] [PubMed]

Liu, D. L.

Lochter, A.

A. Lochter and M. J. Bissell, “Involvement of extracellular matrix constituents in breast cancer,” Semin. Cancer Biol. 6(3), 165–173 (1995).
[Crossref] [PubMed]

Luijten, P.

S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol. Imaging Biol. 11(2), 64–70 (2009).
[Crossref] [PubMed]

Macdonald, R.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003).
[Crossref] [PubMed]

Magazov, S.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

Mali, W.

S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol. Imaging Biol. 11(2), 64–70 (2009).
[Crossref] [PubMed]

Mao, J. M.

Marshall, E.

E. Marshall, “Public health. Brawling over mammography,” Science 327(5968), 936–938 (2010).
[Crossref] [PubMed]

Martelli, F.

A. Sassaroli, A. Pifferi, D. Contini, A. Torricelli, L. Spinelli, H. Wabnitz, P. Di Ninni, G. Zaccanti, and F. Martelli, “Forward solvers for photon migration in the presence of highly and totally absorbing objects embedded inside diffusive media,” J. Opt. Soc. Am. A 31(3), 460–469 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. I. Theory,” J. Opt. Soc. Am. A 23(9), 2105–2118 (2006).
[Crossref] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref] [PubMed]

Matlock, A.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Mazurenka, M.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

McAdams, M. S.

McBride, T. O.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7(1), 72–79 (2002).
[Crossref] [PubMed]

McCarron, P.

F. Bray, P. McCarron, and D. M. Parkin, “The changing global patterns of female breast cancer incidence and mortality,” Breast Cancer Res. 6(6), 229–239 (2004).
[Crossref] [PubMed]

McLaren, C. E.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Menna, S.

P. Taroni, G. Quarto, A. Pifferi, F. Ieva, A. M. Paganoni, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Optical identification of subjects at high risk for developing breast cancer,” J. Biomed. Opt. 18(6), 060507 (2013).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Milej, D.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

Moesta, K. T.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Möller, C. Stroszczynski, J. Stössel, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys. Med. Biol. 49(7), 1165–1181 (2004).
[Crossref] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003).
[Crossref] [PubMed]

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7(1), 80–87 (2002).
[Crossref] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38(13), 2927–2943 (1999).
[Crossref] [PubMed]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37(10), 1982–1989 (1998).
[Crossref] [PubMed]

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, and P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3(2), 129–136 (1998).
[Crossref] [PubMed]

Möller, M.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Möller, C. Stroszczynski, J. Stössel, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys. Med. Biol. 49(7), 1165–1181 (2004).
[Crossref] [PubMed]

Moore, R. H.

Mourant, J. R.

Moy, B.

Mucke, J.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Möller, C. Stroszczynski, J. Stössel, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys. Med. Biol. 49(7), 1165–1181 (2004).
[Crossref] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003).
[Crossref] [PubMed]

Nielsen, T.

S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol. Imaging Biol. 11(2), 64–70 (2009).
[Crossref] [PubMed]

Nilsson, A. M.

O’Sullivan, T. D.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Osterberg, U. L.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7(1), 72–79 (2002).
[Crossref] [PubMed]

Paganoni, A. M.

P. Taroni, G. Quarto, A. Pifferi, F. Ieva, A. M. Paganoni, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Optical identification of subjects at high risk for developing breast cancer,” J. Biomed. Opt. 18(6), 060507 (2013).
[Crossref] [PubMed]

Parkin, D. M.

F. Bray, P. McCarron, and D. M. Parkin, “The changing global patterns of female breast cancer incidence and mortality,” Breast Cancer Res. 6(6), 229–239 (2004).
[Crossref] [PubMed]

Patten, D. K.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Patterson, M. S.

Paulsen, K. D.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

J. Wang, S. Jiang, Z. Li, R. M. di Florio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7(1), 72–79 (2002).
[Crossref] [PubMed]

Pifferi, A.

A. Sassaroli, A. Pifferi, D. Contini, A. Torricelli, L. Spinelli, H. Wabnitz, P. Di Ninni, G. Zaccanti, and F. Martelli, “Forward solvers for photon migration in the presence of highly and totally absorbing objects embedded inside diffusive media,” J. Opt. Soc. Am. A 31(3), 460–469 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

P. Taroni, G. Quarto, A. Pifferi, F. Ieva, A. M. Paganoni, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Optical identification of subjects at high risk for developing breast cancer,” J. Biomed. Opt. 18(6), 060507 (2013).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express 17(18), 15932–15946 (2009).
[Crossref] [PubMed]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007).
[Crossref] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50(11), 2489–2502 (2005).
[Crossref] [PubMed]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref] [PubMed]

Pogue, B. W.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

J. Wang, S. Jiang, Z. Li, R. M. di Florio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7(1), 72–79 (2002).
[Crossref] [PubMed]

Poplack, S.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7(1), 72–79 (2002).
[Crossref] [PubMed]

Poplack, S. P.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).
[Crossref] [PubMed]

Provenzano, P. P.

P. P. Provenzano, D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely, “Collagen density promotes mammary tumor initiation and progression,” BMC Med. 6(1), 11 (2008).
[Crossref] [PubMed]

Quarto, G.

P. Taroni, G. Quarto, A. Pifferi, F. Ieva, A. M. Paganoni, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Optical identification of subjects at high risk for developing breast cancer,” J. Biomed. Opt. 18(6), 060507 (2013).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Re, R.

Ricci, A.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref] [PubMed]

Rinneberg, H.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Möller, C. Stroszczynski, J. Stössel, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys. Med. Biol. 49(7), 1165–1181 (2004).
[Crossref] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003).
[Crossref] [PubMed]

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7(1), 80–87 (2002).
[Crossref] [PubMed]

Rinneberg, H. H.

Rizzo, E. J.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Roblyer, D.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Rueden, C. T.

P. P. Provenzano, D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely, “Collagen density promotes mammary tumor initiation and progression,” BMC Med. 6(1), 11 (2008).
[Crossref] [PubMed]

Sajjadi, A. Y.

Salvagnini, E.

Sassaroli, A.

Sawosz, P.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

Schapira, L.

Schlag, P. M.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Möller, C. Stroszczynski, J. Stössel, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys. Med. Biol. 49(7), 1165–1181 (2004).
[Crossref] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003).
[Crossref] [PubMed]

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7(1), 80–87 (2002).
[Crossref] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38(13), 2927–2943 (1999).
[Crossref] [PubMed]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37(10), 1982–1989 (1998).
[Crossref] [PubMed]

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, and P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3(2), 129–136 (1998).
[Crossref] [PubMed]

Schütz, O.

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, and H. Siebold, “Optical mammography in preoperative patients,” Aktuelle Radiol. 8(1), 31–33 (1998).
[PubMed]

Schwab, M. C.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Shah, N.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Siebold, H.

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, and H. Siebold, “Optical mammography in preoperative patients,” Aktuelle Radiol. 8(1), 31–33 (1998).
[PubMed]

Smith, R. A.

L. Tabar, M. F. Yen, B. Vitak, H. H. Chen, R. A. Smith, and S. W. Duffy, “Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening,” Lancet 361(9367), 1405–1410 (2003).
[Crossref] [PubMed]

Soho, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7(1), 72–79 (2002).
[Crossref] [PubMed]

Specht, M. C.

Spinelli, L.

A. Sassaroli, A. Pifferi, D. Contini, A. Torricelli, L. Spinelli, H. Wabnitz, P. Di Ninni, G. Zaccanti, and F. Martelli, “Forward solvers for photon migration in the presence of highly and totally absorbing objects embedded inside diffusive media,” J. Opt. Soc. Am. A 31(3), 460–469 (2014).
[Crossref] [PubMed]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).
[Crossref] [PubMed]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express 17(18), 15932–15946 (2009).
[Crossref] [PubMed]

C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006).
[Crossref] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50(11), 2489–2502 (2005).
[Crossref] [PubMed]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref] [PubMed]

Srinivasan, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Steinkellner, O.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

Stössel, J.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Möller, C. Stroszczynski, J. Stössel, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys. Med. Biol. 49(7), 1165–1181 (2004).
[Crossref] [PubMed]

Stroszczynski, C.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Möller, C. Stroszczynski, J. Stössel, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys. Med. Biol. 49(7), 1165–1181 (2004).
[Crossref] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003).
[Crossref] [PubMed]

Sturesson, C.

Su, M. Y.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Svaasand, L. O.

Swartling, J.

Tabar, L.

L. Tabar, M. F. Yen, B. Vitak, H. H. Chen, R. A. Smith, and S. W. Duffy, “Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening,” Lancet 361(9367), 1405–1410 (2003).
[Crossref] [PubMed]

Tanamai, W.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

Tannenbaum, S. H.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref] [PubMed]

Taroni, P.

P. Taroni, G. Quarto, A. Pifferi, F. Ieva, A. M. Paganoni, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Optical identification of subjects at high risk for developing breast cancer,” J. Biomed. Opt. 18(6), 060507 (2013).
[Crossref] [PubMed]

P. Taroni, “Diffuse optical imaging and spectroscopy of the breast: a brief outline of history and perspectives,” Photochem. Photobiol. Sci. 11(2), 241–250 (2012).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express 17(18), 15932–15946 (2009).
[Crossref] [PubMed]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007).
[Crossref] [PubMed]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50(11), 2489–2502 (2005).
[Crossref] [PubMed]

Torricelli, A.

A. Sassaroli, A. Pifferi, D. Contini, A. Torricelli, L. Spinelli, H. Wabnitz, P. Di Ninni, G. Zaccanti, and F. Martelli, “Forward solvers for photon migration in the presence of highly and totally absorbing objects embedded inside diffusive media,” J. Opt. Soc. Am. A 31(3), 460–469 (2014).
[Crossref] [PubMed]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).
[Crossref] [PubMed]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express 17(18), 15932–15946 (2009).
[Crossref] [PubMed]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007).
[Crossref] [PubMed]

C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006).
[Crossref] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50(11), 2489–2502 (2005).
[Crossref] [PubMed]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref] [PubMed]

Tosteson, T. D.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Totkas, S.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, and P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3(2), 129–136 (1998).
[Crossref] [PubMed]

Tromberg, B. J.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
[Crossref] [PubMed]

Tsay, T. T.

van de Ven, S.

S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol. Imaging Biol. 11(2), 64–70 (2009).
[Crossref] [PubMed]

Van der Linden, E.

S. Colak, M. Van der Mark, G. T. Hooft, J. Hoogenraad, E. Van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).

van der Mark, M.

S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol. Imaging Biol. 11(2), 64–70 (2009).
[Crossref] [PubMed]

S. Colak, M. Van der Mark, G. T. Hooft, J. Hoogenraad, E. Van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).

van der Voort, M.

S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol. Imaging Biol. 11(2), 64–70 (2009).
[Crossref] [PubMed]

Venugopal, V.

V. Venugopal and X. Intes, “Recent advances in optical mammography,” Current Medical Imaging Reviews 8(3), 244–259 (2012).
[Crossref]

Villa, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

Vine, H. S.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237(1), 57–66 (2005).
[Crossref] [PubMed]

Vitak, B.

L. Tabar, M. F. Yen, B. Vitak, H. H. Chen, R. A. Smith, and S. W. Duffy, “Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening,” Lancet 361(9367), 1405–1410 (2003).
[Crossref] [PubMed]

Wabnitz, H.

A. Sassaroli, A. Pifferi, D. Contini, A. Torricelli, L. Spinelli, H. Wabnitz, P. Di Ninni, G. Zaccanti, and F. Martelli, “Forward solvers for photon migration in the presence of highly and totally absorbing objects embedded inside diffusive media,” J. Opt. Soc. Am. A 31(3), 460–469 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Möller, C. Stroszczynski, J. Stössel, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys. Med. Biol. 49(7), 1165–1181 (2004).
[Crossref] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003).
[Crossref] [PubMed]

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7(1), 80–87 (2002).
[Crossref] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38(13), 2927–2943 (1999).
[Crossref] [PubMed]

Walker, S. A.

Wang, J.

J. Wang, S. Jiang, Z. Li, R. M. di Florio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

Wanyo, C. M.

Warren, O. J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Wassermann, B.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Möller, C. Stroszczynski, J. Stössel, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys. Med. Biol. 49(7), 1165–1181 (2004).
[Crossref] [PubMed]

Wells, W. A.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7(1), 72–79 (2002).
[Crossref] [PubMed]

White, J. G.

P. P. Provenzano, D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely, “Collagen density promotes mammary tumor initiation and progression,” BMC Med. 6(1), 11 (2008).
[Crossref] [PubMed]

Wiethoff, A.

S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol. Imaging Biol. 11(2), 64–70 (2009).
[Crossref] [PubMed]

Wilson, B. C.

Xu, C.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref] [PubMed]

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237(1), 57–66 (2005).
[Crossref] [PubMed]

Xu, Y.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20(12), 1334–1340 (2001).
[Crossref] [PubMed]

Yan, L.

P. P. Provenzano, D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely, “Collagen density promotes mammary tumor initiation and progression,” BMC Med. 6(1), 11 (2008).
[Crossref] [PubMed]

Yang, G. Z.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Yen, M. F.

L. Tabar, M. F. Yen, B. Vitak, H. H. Chen, R. A. Smith, and S. W. Duffy, “Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening,” Lancet 361(9367), 1405–1410 (2003).
[Crossref] [PubMed]

Yodh, A. G.

D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET Clin. 8(3), 345–365 (2013).
[Crossref] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref] [PubMed]

Zaccanti, G.

A. Sassaroli, A. Pifferi, D. Contini, A. Torricelli, L. Spinelli, H. Wabnitz, P. Di Ninni, G. Zaccanti, and F. Martelli, “Forward solvers for photon migration in the presence of highly and totally absorbing objects embedded inside diffusive media,” J. Opt. Soc. Am. A 31(3), 460–469 (2014).
[Crossref] [PubMed]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref] [PubMed]

Zhu, Q.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref] [PubMed]

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237(1), 57–66 (2005).
[Crossref] [PubMed]

Zolek, N.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

Zubkov, L.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref] [PubMed]

Zucchelli, L.

Zucchelli, L. M. G.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

Acad. Radiol. (1)

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Aktuelle Radiol. (1)

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, and H. Siebold, “Optical mammography in preoperative patients,” Aktuelle Radiol. 8(1), 31–33 (1998).
[PubMed]

Appl. Opt. (8)

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).
[Crossref] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003).
[Crossref] [PubMed]

X. Cheng, J. M. Mao, R. Bush, D. B. Kopans, R. H. Moore, and M. Chorlton, “Breast cancer detection by mapping hemoglobin concentration and oxygen saturation,” Appl. Opt. 42(31), 6412–6421 (2003).
[Crossref] [PubMed]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37(10), 1982–1989 (1998).
[Crossref] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[Crossref] [PubMed]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36(4), 949–957 (1997).
[Crossref] [PubMed]

A. M. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37(7), 1256–1267 (1998).
[Crossref] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38(13), 2927–2943 (1999).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

BMC Med. (1)

P. P. Provenzano, D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely, “Collagen density promotes mammary tumor initiation and progression,” BMC Med. 6(1), 11 (2008).
[Crossref] [PubMed]

Breast Cancer Res. (3)

F. Bray, P. McCarron, and D. M. Parkin, “The changing global patterns of female breast cancer incidence and mortality,” Breast Cancer Res. 6(6), 229–239 (2004).
[Crossref] [PubMed]

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Breast Cancer Res. Treat. (1)

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008).
[Crossref] [PubMed]

Current Medical Imaging Reviews (1)

V. Venugopal and X. Intes, “Recent advances in optical mammography,” Current Medical Imaging Reviews 8(3), 244–259 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Colak, M. Van der Mark, G. T. Hooft, J. Hoogenraad, E. Van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).

IEEE Trans. Med. Imaging (1)

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20(12), 1334–1340 (2001).
[Crossref] [PubMed]

J. Biomed. Opt. (8)

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, and P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3(2), 129–136 (1998).
[Crossref] [PubMed]

M. L. Flexman, H. K. Kim, J. E. Gunther, E. A. Lim, M. C. Alvarez, E. Desperito, K. Kalinsky, D. L. Hershman, and A. H. Hielscher, “Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography,” J. Biomed. Opt. 18(9), 096012 (2013).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7(1), 80–87 (2002).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7(1), 72–79 (2002).
[Crossref] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[Crossref] [PubMed]

P. Taroni, G. Quarto, A. Pifferi, F. Ieva, A. M. Paganoni, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Optical identification of subjects at high risk for developing breast cancer,” J. Biomed. Opt. 18(6), 060507 (2013).
[Crossref] [PubMed]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (3)

Lancet (1)

L. Tabar, M. F. Yen, B. Vitak, H. H. Chen, R. A. Smith, and S. W. Duffy, “Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening,” Lancet 361(9367), 1405–1410 (2003).
[Crossref] [PubMed]

Med. Phys. (1)

J. Wang, S. Jiang, Z. Li, R. M. di Florio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37(7), 3715–3724 (2010).
[Crossref] [PubMed]

Mol. Imaging Biol. (1)

S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol. Imaging Biol. 11(2), 64–70 (2009).
[Crossref] [PubMed]

Opt. Express (2)

PET Clin. (1)

D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET Clin. 8(3), 345–365 (2013).
[Crossref] [PubMed]

Photochem. Photobiol. Sci. (1)

P. Taroni, “Diffuse optical imaging and spectroscopy of the breast: a brief outline of history and perspectives,” Photochem. Photobiol. Sci. 11(2), 241–250 (2012).
[Crossref] [PubMed]

Phys. Med. Biol. (5)

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Möller, C. Stroszczynski, J. Stössel, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys. Med. Biol. 49(7), 1165–1181 (2004).
[Crossref] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50(11), 2489–2502 (2005).
[Crossref] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Proc. SPIE (1)

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE 8583, 85830L (2013).
[Crossref]

Radiology (3)

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237(1), 57–66 (2005).
[Crossref] [PubMed]

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref] [PubMed]

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254(1), 277–284 (2010).
[Crossref] [PubMed]

Science (1)

E. Marshall, “Public health. Brawling over mammography,” Science 327(5968), 936–938 (2010).
[Crossref] [PubMed]

Semin. Cancer Biol. (1)

A. Lochter and M. J. Bissell, “Involvement of extracellular matrix constituents in breast cancer,” Semin. Cancer Biol. 6(3), 165–173 (1995).
[Crossref] [PubMed]

Other (2)

F. C. Koerner, Diagnostic Problems in Breast Pathology: Expert Consult: Online and Print (Elsevier Health Sciences, 2008).

http://www.cancer.gov/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) X-ray image (top left) and Δµa maps at the 7 wavelengths of the left CC view of the patient #13 with a phylloides tumor of 45 mm in the upper-outer quadrant. A reference image showing the selected lesion area is also reported (bottom left). The color-bar range (cm−1) for Δµa maps is −0.06 to 0.25 (635 nm), −0.04 to 0.23 (685 nm), −0.02 to 0.12 (785 nm), −0.02 to 0.04 (905 nm), −0.02 to 0.02 (930 nm), −0.02 to 0.08 (975 nm), −0.02 to 0.04 (1060 nm). (b) Corresponding MTOF reference background area at the 7 wavelengths. A red arrow points to the lesion location. Compressed breast thickness 55 mm.
Fig. 2
Fig. 2 X-ray image (top left) and ΔCi maps of the main breast constituents (Hb, HbO2, tHb, lipid, water and collagen) of the left CC view of the patient #13 with a phylloides tumor of 45 mm in the upper-outer quadrant. A reference image showing the selected lesion area is also reported (bottom left). A red arrow points to the lesion location. The color-bar range for ΔCi maps is −2.9 to 8.4 (ΔHb (μM)), −12.6 to 6.6 (ΔHbO2 (μM)), −6.2 to 6.0 (ΔtHb (μM)), - 240.4 to 77.3 (ΔLipid (mg/cm3)), −35.6 to 87.1 (ΔWater (mg/cm3)), −74.7 to 187.2 (ΔCollagen (mg/cm3)).
Fig. 3
Fig. 3 X-ray image (top left) and Δµa maps at the 7 wavelengths of the left CC view of patient #99 with a 25 mm invasive ductal carcinoma in the retroareolar area. A reference image showing the selected lesion area is also reported (bottom left). A red arrow points to the lesion location. The color-bar range (cm−1) for Δµa maps is −0.06 to 0.09 (635 nm), −0.04 to 0.06 (685 nm), −0.03 to 0.05 (785 nm), −0.06 to 0.06 (905 nm), −0.13 to 0.09 (930 nm), −0.11 to 0.22 (975 nm), −0.06 to 0.08 (1060 nm). Compressed breast thickness 46 mm.
Fig. 4
Fig. 4 X-ray image (top left) and ΔCi maps of the main breast constituents (Hb, HbO2, tHb, lipid, water and collagen) of the left CC view of the patient #99 with an invasive ductal carcinoma of 25 mm in the retroareolar area. A reference image showing the selected lesion area is also reported (bottom left). A red arrow points to the lesion location. The-color bar range for ΔCi maps is −5.2 to 7.0 (ΔHb (μM)), −12.0 to 10.1 (ΔHbO2 (μM)), −10.5 to 12.7 (ΔtHb (μM)), −905.9 to 181.5 (ΔLipid (mg/cm3)), −164.5 to 44.8 (ΔWater (mg/cm3)), −101.2 to 261.8 (ΔCollagen (mg/cm3)).
Fig. 5
Fig. 5 Comparison of the absorption variation Δµa for both malignant and benign lesions at the 7 wavelengths. For a better data visualization, the lower limit of the y-axis was rescaled to −0.5, excluding one outlier.
Fig. 6
Fig. 6 Constituent concentration variation ∆Ci of blood parameters (a) and lipid, water and collagen (b) for malignant (red) and benign (blue) lesions.

Tables (5)

Tables Icon

Table 1 Type, number and diameter (Ø) of the lesions included in the study; when the lesion number is greater than 3, mean value and standard deviation of the lesion diameter are reported.

Tables Icon

Table 2 p-value of the Wilcoxon test for ∆µa of either benign or malignant lesions vs corresponding surrounding healthy tissue.

Tables Icon

Table 3 p-value obtained by Mann-Whitney test for Δµa between benign and malignant lesions

Tables Icon

Table 4 p-value obtained using the Wilcoxon test for ∆Ci. of benign and malignant lesions

Tables Icon

Table 5 p-value obtained by Mann-Whitney test for ∆Ci between benign and malignant lesions

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T(t)= T 0 (t) e Δ μ a l(t)
l(t)= 1 T 0 (t) T 0 (t) μ a .
T ˜ (t)= T ˜ 0 (t) e Δ μ a l ˜ (t) ,
l ˜ (t)= 1 T ˜ 0 (t) T ˜ 0 (t) μ a .
Δ μ a = 1 l 8 th ln( T pert T MTOF ),
Δ μ a ( x,y )= 1 l 8 th ln( T pert ( x,y ) T MTOF ).

Metrics