L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta 53(22), 6372–6379 (2008).
[Crossref]
J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref]
[PubMed]
J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc. 129(18), 5954–5961 (2007).
[Crossref]
[PubMed]
L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir 21(25), 11666–11672 (2005).
[Crossref]
[PubMed]
I. Mocchetti, “Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins,” Cell. Mol. Life Sci. 62(19-20), 2283–2294 (2005).
[Crossref]
[PubMed]
J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[Crossref]
[PubMed]
I. D. Alves, Z. Salamon, V. J. Hruby, and G. Tollin, “Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers,” Biochemistry 44(25), 9168–9178 (2005).
[Crossref]
[PubMed]
B. Chini and M. Parenti, “G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there?” J. Mol. Endocrinol. 32(2), 325–338 (2004).
[Crossref]
[PubMed]
R. S. Ostrom and P. A. Insel, “The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology,” Br. J. Pharmacol. 143(2), 235–245 (2004).
[Crossref]
[PubMed]
T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci. 258(2), 298–309 (2003).
[Crossref]
[PubMed]
R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J. 85(5), 3035–3047 (2003).
[Crossref]
[PubMed]
S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl. 42(2), 208–211 (2003).
[Crossref]
[PubMed]
D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem. 277(30), 26966–26970 (2002).
[Crossref]
[PubMed]
C. Yuan, J. Furlong, P. Burgos, and L. J. Johnston, “The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes,” Biophys. J. 82(5), 2526–2535 (2002).
[Crossref]
[PubMed]
R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron. 17(1-2), 25–34 (2002).
[Crossref]
[PubMed]
C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J. 80(3), 1417–1428 (2001).
[Crossref]
[PubMed]
A. V. Samsonov, I. Mihalyov, and F. S. Cohen, “Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes,” Biophys. J. 81(3), 1486–1500 (2001).
[Crossref]
[PubMed]
Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
[Crossref]
[PubMed]
C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem. 272(9), 5533–5538 (1997).
[Crossref]
[PubMed]
G. M. Kuziemko, M. Stroh, and R. C. Stevens, “Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance,” Biochemistry 35(20), 6375–6384 (1996).
[Crossref]
[PubMed]
T. Parasassi, A. M. Giusti, M. Raimondi, and E. Gratton, “Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations,” Biophys. J. 68(5), 1895–1902 (1995).
[Crossref]
[PubMed]
S. Terrettaz, T. Stora, C. Duschl, and H. Vogel, “Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance,” Langmuir 9(5), 1361–1369 (1993).
[Crossref]
W. I. Lencer, S. H. Chu, and W. A. Walker, “Differential binding kinetics of cholera toxin to intestinal microvillus membrane during development,” Infect. Immun. 55(12), 3126–3130 (1987)
[PubMed]
Z. Derzko and K. Jacobson, “Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers,” Biochemistry 19(26), 6050–6057 (1980).
[Crossref]
[PubMed]
N. L. Thompson and D. Axelrod, “Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane,” Biochim. Biophys. Acta 597(1), 155–165 (1980).
[Crossref]
[PubMed]
D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16(9), 1055–1069 (1976).
[Crossref]
[PubMed]
C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem. 272(9), 5533–5538 (1997).
[Crossref]
[PubMed]
I. D. Alves, Z. Salamon, V. J. Hruby, and G. Tollin, “Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers,” Biochemistry 44(25), 9168–9178 (2005).
[Crossref]
[PubMed]
N. L. Thompson and D. Axelrod, “Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane,” Biochim. Biophys. Acta 597(1), 155–165 (1980).
[Crossref]
[PubMed]
D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16(9), 1055–1069 (1976).
[Crossref]
[PubMed]
C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J. 80(3), 1417–1428 (2001).
[Crossref]
[PubMed]
T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci. 258(2), 298–309 (2003).
[Crossref]
[PubMed]
R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron. 17(1-2), 25–34 (2002).
[Crossref]
[PubMed]
L. Becucci, A. L. Schwan, E. E. Sheepwash, and R. Guidelli, “A new method to evaluate the surface dipole potential of thiol and disulfide self-assembled monolayers and its application to a disulfidated tetraoxyethylene glycol,” Langmuir 25(3), 1828–1835 (2009).
[Crossref]
[PubMed]
L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta 53(22), 6372–6379 (2008).
[Crossref]
R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J. 85(5), 3035–3047 (2003).
[Crossref]
[PubMed]
D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem. 277(30), 26966–26970 (2002).
[Crossref]
[PubMed]
C. Yuan, J. Furlong, P. Burgos, and L. J. Johnston, “The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes,” Biophys. J. 82(5), 2526–2535 (2002).
[Crossref]
[PubMed]
B. Chini and M. Parenti, “G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there?” J. Mol. Endocrinol. 32(2), 325–338 (2004).
[Crossref]
[PubMed]
W. I. Lencer, S. H. Chu, and W. A. Walker, “Differential binding kinetics of cholera toxin to intestinal microvillus membrane during development,” Infect. Immun. 55(12), 3126–3130 (1987)
[PubMed]
A. V. Samsonov, I. Mihalyov, and F. S. Cohen, “Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes,” Biophys. J. 81(3), 1486–1500 (2001).
[Crossref]
[PubMed]
J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc. 129(18), 5954–5961 (2007).
[Crossref]
[PubMed]
Z. Derzko and K. Jacobson, “Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers,” Biochemistry 19(26), 6050–6057 (1980).
[Crossref]
[PubMed]
J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc. 129(18), 5954–5961 (2007).
[Crossref]
[PubMed]
C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J. 80(3), 1417–1428 (2001).
[Crossref]
[PubMed]
S. Terrettaz, T. Stora, C. Duschl, and H. Vogel, “Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance,” Langmuir 9(5), 1361–1369 (1993).
[Crossref]
D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem. 277(30), 26966–26970 (2002).
[Crossref]
[PubMed]
D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16(9), 1055–1069 (1976).
[Crossref]
[PubMed]
L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta 53(22), 6372–6379 (2008).
[Crossref]
C. Yuan, J. Furlong, P. Burgos, and L. J. Johnston, “The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes,” Biophys. J. 82(5), 2526–2535 (2002).
[Crossref]
[PubMed]
T. Parasassi, A. M. Giusti, M. Raimondi, and E. Gratton, “Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations,” Biophys. J. 68(5), 1895–1902 (1995).
[Crossref]
[PubMed]
R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron. 17(1-2), 25–34 (2002).
[Crossref]
[PubMed]
C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J. 80(3), 1417–1428 (2001).
[Crossref]
[PubMed]
T. Parasassi, A. M. Giusti, M. Raimondi, and E. Gratton, “Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations,” Biophys. J. 68(5), 1895–1902 (1995).
[Crossref]
[PubMed]
L. Becucci, A. L. Schwan, E. E. Sheepwash, and R. Guidelli, “A new method to evaluate the surface dipole potential of thiol and disulfide self-assembled monolayers and its application to a disulfidated tetraoxyethylene glycol,” Langmuir 25(3), 1828–1835 (2009).
[Crossref]
[PubMed]
L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta 53(22), 6372–6379 (2008).
[Crossref]
L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir 21(25), 11666–11672 (2005).
[Crossref]
[PubMed]
D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem. 277(30), 26966–26970 (2002).
[Crossref]
[PubMed]
C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem. 272(9), 5533–5538 (1997).
[Crossref]
[PubMed]
I. D. Alves, Z. Salamon, V. J. Hruby, and G. Tollin, “Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers,” Biochemistry 44(25), 9168–9178 (2005).
[Crossref]
[PubMed]
L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta 53(22), 6372–6379 (2008).
[Crossref]
R. S. Ostrom and P. A. Insel, “The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology,” Br. J. Pharmacol. 143(2), 235–245 (2004).
[Crossref]
[PubMed]
C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J. 80(3), 1417–1428 (2001).
[Crossref]
[PubMed]
Z. Derzko and K. Jacobson, “Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers,” Biochemistry 19(26), 6050–6057 (1980).
[Crossref]
[PubMed]
C. Yuan, J. Furlong, P. Burgos, and L. J. Johnston, “The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes,” Biophys. J. 82(5), 2526–2535 (2002).
[Crossref]
[PubMed]
T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci. 258(2), 298–309 (2003).
[Crossref]
[PubMed]
R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron. 17(1-2), 25–34 (2002).
[Crossref]
[PubMed]
T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci. 258(2), 298–309 (2003).
[Crossref]
[PubMed]
L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir 21(25), 11666–11672 (2005).
[Crossref]
[PubMed]
J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc. 129(18), 5954–5961 (2007).
[Crossref]
[PubMed]
L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir 21(25), 11666–11672 (2005).
[Crossref]
[PubMed]
S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl. 42(2), 208–211 (2003).
[Crossref]
[PubMed]
T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci. 258(2), 298–309 (2003).
[Crossref]
[PubMed]
R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron. 17(1-2), 25–34 (2002).
[Crossref]
[PubMed]
D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16(9), 1055–1069 (1976).
[Crossref]
[PubMed]
T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci. 258(2), 298–309 (2003).
[Crossref]
[PubMed]
S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl. 42(2), 208–211 (2003).
[Crossref]
[PubMed]
G. M. Kuziemko, M. Stroh, and R. C. Stevens, “Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance,” Biochemistry 35(20), 6375–6384 (1996).
[Crossref]
[PubMed]
J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[Crossref]
[PubMed]
T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci. 258(2), 298–309 (2003).
[Crossref]
[PubMed]
D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem. 277(30), 26966–26970 (2002).
[Crossref]
[PubMed]
C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem. 272(9), 5533–5538 (1997).
[Crossref]
[PubMed]
W. I. Lencer, S. H. Chu, and W. A. Walker, “Differential binding kinetics of cholera toxin to intestinal microvillus membrane during development,” Infect. Immun. 55(12), 3126–3130 (1987)
[PubMed]
C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J. 80(3), 1417–1428 (2001).
[Crossref]
[PubMed]
L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir 21(25), 11666–11672 (2005).
[Crossref]
[PubMed]
S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl. 42(2), 208–211 (2003).
[Crossref]
[PubMed]
C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem. 272(9), 5533–5538 (1997).
[Crossref]
[PubMed]
Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
[Crossref]
[PubMed]
A. V. Samsonov, I. Mihalyov, and F. S. Cohen, “Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes,” Biophys. J. 81(3), 1486–1500 (2001).
[Crossref]
[PubMed]
I. Mocchetti, “Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins,” Cell. Mol. Life Sci. 62(19-20), 2283–2294 (2005).
[Crossref]
[PubMed]
R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J. 85(5), 3035–3047 (2003).
[Crossref]
[PubMed]
L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir 21(25), 11666–11672 (2005).
[Crossref]
[PubMed]
S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl. 42(2), 208–211 (2003).
[Crossref]
[PubMed]
T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci. 258(2), 298–309 (2003).
[Crossref]
[PubMed]
R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron. 17(1-2), 25–34 (2002).
[Crossref]
[PubMed]
T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci. 258(2), 298–309 (2003).
[Crossref]
[PubMed]
R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron. 17(1-2), 25–34 (2002).
[Crossref]
[PubMed]
R. S. Ostrom and P. A. Insel, “The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology,” Br. J. Pharmacol. 143(2), 235–245 (2004).
[Crossref]
[PubMed]
T. Parasassi, A. M. Giusti, M. Raimondi, and E. Gratton, “Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations,” Biophys. J. 68(5), 1895–1902 (1995).
[Crossref]
[PubMed]
B. Chini and M. Parenti, “G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there?” J. Mol. Endocrinol. 32(2), 325–338 (2004).
[Crossref]
[PubMed]
L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta 53(22), 6372–6379 (2008).
[Crossref]
T. Parasassi, A. M. Giusti, M. Raimondi, and E. Gratton, “Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations,” Biophys. J. 68(5), 1895–1902 (1995).
[Crossref]
[PubMed]
D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem. 277(30), 26966–26970 (2002).
[Crossref]
[PubMed]
R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J. 85(5), 3035–3047 (2003).
[Crossref]
[PubMed]
L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta 53(22), 6372–6379 (2008).
[Crossref]
L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir 21(25), 11666–11672 (2005).
[Crossref]
[PubMed]
I. D. Alves, Z. Salamon, V. J. Hruby, and G. Tollin, “Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers,” Biochemistry 44(25), 9168–9178 (2005).
[Crossref]
[PubMed]
Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
[Crossref]
[PubMed]
L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta 53(22), 6372–6379 (2008).
[Crossref]
A. V. Samsonov, I. Mihalyov, and F. S. Cohen, “Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes,” Biophys. J. 81(3), 1486–1500 (2001).
[Crossref]
[PubMed]
D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem. 277(30), 26966–26970 (2002).
[Crossref]
[PubMed]
L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir 21(25), 11666–11672 (2005).
[Crossref]
[PubMed]
S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl. 42(2), 208–211 (2003).
[Crossref]
[PubMed]
D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16(9), 1055–1069 (1976).
[Crossref]
[PubMed]
L. Becucci, A. L. Schwan, E. E. Sheepwash, and R. Guidelli, “A new method to evaluate the surface dipole potential of thiol and disulfide self-assembled monolayers and its application to a disulfidated tetraoxyethylene glycol,” Langmuir 25(3), 1828–1835 (2009).
[Crossref]
[PubMed]
L. Becucci, A. L. Schwan, E. E. Sheepwash, and R. Guidelli, “A new method to evaluate the surface dipole potential of thiol and disulfide self-assembled monolayers and its application to a disulfidated tetraoxyethylene glycol,” Langmuir 25(3), 1828–1835 (2009).
[Crossref]
[PubMed]
J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc. 129(18), 5954–5961 (2007).
[Crossref]
[PubMed]
G. M. Kuziemko, M. Stroh, and R. C. Stevens, “Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance,” Biochemistry 35(20), 6375–6384 (1996).
[Crossref]
[PubMed]
S. Terrettaz, T. Stora, C. Duschl, and H. Vogel, “Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance,” Langmuir 9(5), 1361–1369 (1993).
[Crossref]
G. M. Kuziemko, M. Stroh, and R. C. Stevens, “Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance,” Biochemistry 35(20), 6375–6384 (1996).
[Crossref]
[PubMed]
S. Terrettaz, T. Stora, C. Duschl, and H. Vogel, “Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance,” Langmuir 9(5), 1361–1369 (1993).
[Crossref]
C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J. 80(3), 1417–1428 (2001).
[Crossref]
[PubMed]
N. L. Thompson and D. Axelrod, “Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane,” Biochim. Biophys. Acta 597(1), 155–165 (1980).
[Crossref]
[PubMed]
I. D. Alves, Z. Salamon, V. J. Hruby, and G. Tollin, “Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers,” Biochemistry 44(25), 9168–9178 (2005).
[Crossref]
[PubMed]
Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
[Crossref]
[PubMed]
L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta 53(22), 6372–6379 (2008).
[Crossref]
S. Terrettaz, T. Stora, C. Duschl, and H. Vogel, “Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance,” Langmuir 9(5), 1361–1369 (1993).
[Crossref]
C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J. 80(3), 1417–1428 (2001).
[Crossref]
[PubMed]
W. I. Lencer, S. H. Chu, and W. A. Walker, “Differential binding kinetics of cholera toxin to intestinal microvillus membrane during development,” Infect. Immun. 55(12), 3126–3130 (1987)
[PubMed]
D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16(9), 1055–1069 (1976).
[Crossref]
[PubMed]
J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc. 129(18), 5954–5961 (2007).
[Crossref]
[PubMed]
C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem. 272(9), 5533–5538 (1997).
[Crossref]
[PubMed]
C. Yuan, J. Furlong, P. Burgos, and L. J. Johnston, “The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes,” Biophys. J. 82(5), 2526–2535 (2002).
[Crossref]
[PubMed]
J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc. 129(18), 5954–5961 (2007).
[Crossref]
[PubMed]
J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[Crossref]
[PubMed]
S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl. 42(2), 208–211 (2003).
[Crossref]
[PubMed]
I. D. Alves, Z. Salamon, V. J. Hruby, and G. Tollin, “Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers,” Biochemistry 44(25), 9168–9178 (2005).
[Crossref]
[PubMed]
Z. Derzko and K. Jacobson, “Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers,” Biochemistry 19(26), 6050–6057 (1980).
[Crossref]
[PubMed]
G. M. Kuziemko, M. Stroh, and R. C. Stevens, “Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance,” Biochemistry 35(20), 6375–6384 (1996).
[Crossref]
[PubMed]
N. L. Thompson and D. Axelrod, “Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane,” Biochim. Biophys. Acta 597(1), 155–165 (1980).
[Crossref]
[PubMed]
C. Yuan, J. Furlong, P. Burgos, and L. J. Johnston, “The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes,” Biophys. J. 82(5), 2526–2535 (2002).
[Crossref]
[PubMed]
R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J. 85(5), 3035–3047 (2003).
[Crossref]
[PubMed]
C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J. 80(3), 1417–1428 (2001).
[Crossref]
[PubMed]
A. V. Samsonov, I. Mihalyov, and F. S. Cohen, “Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes,” Biophys. J. 81(3), 1486–1500 (2001).
[Crossref]
[PubMed]
D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16(9), 1055–1069 (1976).
[Crossref]
[PubMed]
Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
[Crossref]
[PubMed]
T. Parasassi, A. M. Giusti, M. Raimondi, and E. Gratton, “Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations,” Biophys. J. 68(5), 1895–1902 (1995).
[Crossref]
[PubMed]
R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron. 17(1-2), 25–34 (2002).
[Crossref]
[PubMed]
R. S. Ostrom and P. A. Insel, “The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology,” Br. J. Pharmacol. 143(2), 235–245 (2004).
[Crossref]
[PubMed]
I. Mocchetti, “Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins,” Cell. Mol. Life Sci. 62(19-20), 2283–2294 (2005).
[Crossref]
[PubMed]
J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref]
[PubMed]
L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta 53(22), 6372–6379 (2008).
[Crossref]
W. I. Lencer, S. H. Chu, and W. A. Walker, “Differential binding kinetics of cholera toxin to intestinal microvillus membrane during development,” Infect. Immun. 55(12), 3126–3130 (1987)
[PubMed]
J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc. 129(18), 5954–5961 (2007).
[Crossref]
[PubMed]
C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem. 272(9), 5533–5538 (1997).
[Crossref]
[PubMed]
D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem. 277(30), 26966–26970 (2002).
[Crossref]
[PubMed]
T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci. 258(2), 298–309 (2003).
[Crossref]
[PubMed]
B. Chini and M. Parenti, “G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there?” J. Mol. Endocrinol. 32(2), 325–338 (2004).
[Crossref]
[PubMed]
S. Terrettaz, T. Stora, C. Duschl, and H. Vogel, “Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance,” Langmuir 9(5), 1361–1369 (1993).
[Crossref]
L. Becucci, A. L. Schwan, E. E. Sheepwash, and R. Guidelli, “A new method to evaluate the surface dipole potential of thiol and disulfide self-assembled monolayers and its application to a disulfidated tetraoxyethylene glycol,” Langmuir 25(3), 1828–1835 (2009).
[Crossref]
[PubMed]
L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir 21(25), 11666–11672 (2005).
[Crossref]
[PubMed]
J. Stepanek, H. Vaisocherova, and M. Piliarick, Surface Plasmon Resonance Based Sensors (Springer, 2006), Chap. 4.