Abstract

Optical microscopy is limited to shallow interrogation depths as high-resolution imaging in scattering media is challenging. Current methods require complex and expensive experimental setup or suffer from low resolution. Through gating of photons exiting the scattering media using a restricted numerical aperture (NA) fiber optic plate (FOP), we establish a novel spatio-angular filter imaging device that allows deeper imaging in scattering media. Using dilutions of Intralipid (1-4 v/v%) and a USAF resolution target, it is shown that by reducing the NA of the FOP from 0.55 to 0.17, the interrogation depth improves ~2 times using trans-illumination.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Chronic brain blood-flow imaging device for a behavioral experiment using mice

Makito Haruta, Yuki Kurauchi, Masahiro Ohsawa, Chihiro Inami, Risako Tanaka, Kenji Sugie, Ayaka Kimura, Yasumi Ohta, Toshihiko Noda, Kiyotaka Sasagawa, Takashi Tokuda, Hiroshi Katsuki, and Jun Ohta
Biomed. Opt. Express 10(4) 1557-1566 (2019)

Image contrast enhancement in angular domain optical imaging of turbid media

Fartash Vasefi, Bozena Kaminska, Glenn H. Chapman, and Jeffery J. L. Carson
Opt. Express 16(26) 21492-21504 (2008)

Highly sensitive lens-free fluorescence imaging device enabled by a complementary combination of interference and absorption filters

Kiyotaka Sasagawa, Ayaka Kimura, Makito Haruta, Toshihiko Noda, Takashi Tokuda, and Jun Ohta
Biomed. Opt. Express 9(9) 4329-4344 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Konovalov, E. Genina, and A. Bashkatov, “Diffuse optical mammotomography: state-of-the-art and prospects,” J. Biomed. Photonics Eng. 2, 2 (2016).
  2. E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
    [Crossref] [PubMed]
  3. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
    [Crossref] [PubMed]
  4. G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25(4), 212–214 (2000).
    [Crossref] [PubMed]
  5. S. P. Schilders, X. S. Gan, and M. Gu, “Microscopic imaging through a turbid medium by use of annular objectives for angle gating,” Appl. Opt. 37(22), 5320–5326 (1998).
    [Crossref] [PubMed]
  6. F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008).
    [Crossref] [PubMed]
  7. F. Vasefi, M. Najiminaini, A. Chamson-Reig, M. Brackstone, B. Kaminska, and J. J. L. Carson, “Angular domain spectroscopic imaging for breast cancer margin assessment after lumpectomy,” in Optical Biopsy X (2012), 8220, p. 822003.
  8. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
    [Crossref]
  9. B. W. Pogue, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4(8), 270–286 (2009).
    [PubMed]
  10. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2015)
  11. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2007).
    [PubMed]
  12. L. Becerra, W. Harris, D. Joseph, T. Huppert, D. A. Boas, and D. Borsook, “Diffuse optical tomography of pain and tactile stimulation: Activation in cortical sensory and emotional systems,” Neuroimage 41(2), 252–259 (2008).
    [Crossref] [PubMed]
  13. G. H. Chapman, B. Kaminska, P. K. Y. Chan, F. Vasefi, and N. Pfeiffer, “Angular filters for optical tomography of highly scattering media,” U. S. patent US20080177169A1 (2008).
  14. Y. Zhang, F. Vasefi, E. Ng, A. Chamson-Reig, B. Kaminska, and J. J. L. Carson, “Mesoscopic reflectance angular domain spectroscopic imaging,” J. Biomed. Opt. 19(7), 076010 (2014).
    [Crossref] [PubMed]
  15. E. Ng, “Two dimensional angular domain optical imaging in biological tissues,” Western University thesis (2013).
  16. A. Orth, M. Ploschner, I. S. Maksymov, and B. C. Gibson, “Extended depth of field imaging through multicore optical fibers,” Opt. Express 26(5), 6407–6419 (2018).
    [Crossref] [PubMed]
  17. I. Schelkanova, A. Pandya, Z. Zalevsky, and A. Douplik, “Spatial Phase Filter and Illumination Device for Deep Interrogation of Strongly Scattering Media and Uses Thereof,” U.S. patent Provisional 62/696,519 (2018).
  18. H. Assadi, R. Karshafian, and A. Douplik, “Optical scattering properties of intralipid phantom in presence of encapsulated microbubbles,” Int. J. Photoenergy 2014(471764), 1–9 (2014).
    [Crossref]
  19. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  20. Rice University, “2D Frequency Domain Filtering and the 2D DFT,” https://www.clear.rice.edu/elec301/Projects01/image_filt/matlab.html .
  21. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [Crossref] [PubMed]

2018 (1)

2016 (1)

A. Konovalov, E. Genina, and A. Bashkatov, “Diffuse optical mammotomography: state-of-the-art and prospects,” J. Biomed. Photonics Eng. 2, 2 (2016).

2014 (2)

H. Assadi, R. Karshafian, and A. Douplik, “Optical scattering properties of intralipid phantom in presence of encapsulated microbubbles,” Int. J. Photoenergy 2014(471764), 1–9 (2014).
[Crossref]

Y. Zhang, F. Vasefi, E. Ng, A. Chamson-Reig, B. Kaminska, and J. J. L. Carson, “Mesoscopic reflectance angular domain spectroscopic imaging,” J. Biomed. Opt. 19(7), 076010 (2014).
[Crossref] [PubMed]

2013 (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2009 (1)

2008 (2)

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008).
[Crossref] [PubMed]

L. Becerra, W. Harris, D. Joseph, T. Huppert, D. A. Boas, and D. Borsook, “Diffuse optical tomography of pain and tactile stimulation: Activation in cortical sensory and emotional systems,” Neuroimage 41(2), 252–259 (2008).
[Crossref] [PubMed]

2007 (2)

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2007).
[PubMed]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

2001 (2)

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

2000 (1)

1998 (1)

1991 (1)

Arridge, S. R.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

Assadi, H.

H. Assadi, R. Karshafian, and A. Douplik, “Optical scattering properties of intralipid phantom in presence of encapsulated microbubbles,” Int. J. Photoenergy 2014(471764), 1–9 (2014).
[Crossref]

Bashkatov, A.

A. Konovalov, E. Genina, and A. Bashkatov, “Diffuse optical mammotomography: state-of-the-art and prospects,” J. Biomed. Photonics Eng. 2, 2 (2016).

Becerra, L.

L. Becerra, W. Harris, D. Joseph, T. Huppert, D. A. Boas, and D. Borsook, “Diffuse optical tomography of pain and tactile stimulation: Activation in cortical sensory and emotional systems,” Neuroimage 41(2), 252–259 (2008).
[Crossref] [PubMed]

Boas, D. A.

L. Becerra, W. Harris, D. Joseph, T. Huppert, D. A. Boas, and D. Borsook, “Diffuse optical tomography of pain and tactile stimulation: Activation in cortical sensory and emotional systems,” Neuroimage 41(2), 252–259 (2008).
[Crossref] [PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2007).
[PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Boppart, S. A.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Borsook, D.

L. Becerra, W. Harris, D. Joseph, T. Huppert, D. A. Boas, and D. Borsook, “Diffuse optical tomography of pain and tactile stimulation: Activation in cortical sensory and emotional systems,” Neuroimage 41(2), 252–259 (2008).
[Crossref] [PubMed]

Brooks, D. H.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Brukilacchio, T. J.

Carson, J. J. L.

Y. Zhang, F. Vasefi, E. Ng, A. Chamson-Reig, B. Kaminska, and J. J. L. Carson, “Mesoscopic reflectance angular domain spectroscopic imaging,” J. Biomed. Opt. 19(7), 076010 (2014).
[Crossref] [PubMed]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008).
[Crossref] [PubMed]

Chamson-Reig, A.

Y. Zhang, F. Vasefi, E. Ng, A. Chamson-Reig, B. Kaminska, and J. J. L. Carson, “Mesoscopic reflectance angular domain spectroscopic imaging,” J. Biomed. Opt. 19(7), 076010 (2014).
[Crossref] [PubMed]

Chapman, G. H.

Chaves, T.

Chorlton, M.

Dehghani, H.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

Delpy, D. T.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

Dimarzio, C. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Douplik, A.

H. Assadi, R. Karshafian, and A. Douplik, “Optical scattering properties of intralipid phantom in presence of encapsulated microbubbles,” Int. J. Photoenergy 2014(471764), 1–9 (2014).
[Crossref]

Gan, X. S.

Gaudette, R. J.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Genina, E.

A. Konovalov, E. Genina, and A. Bashkatov, “Diffuse optical mammotomography: state-of-the-art and prospects,” J. Biomed. Photonics Eng. 2, 2 (2016).

Gibson, B. C.

Gu, M.

Harris, W.

L. Becerra, W. Harris, D. Joseph, T. Huppert, D. A. Boas, and D. Borsook, “Diffuse optical tomography of pain and tactile stimulation: Activation in cortical sensory and emotional systems,” Neuroimage 41(2), 252–259 (2008).
[Crossref] [PubMed]

Hebden, J. C.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

Hillman, E. M.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

Huppert, T.

L. Becerra, W. Harris, D. Joseph, T. Huppert, D. A. Boas, and D. Borsook, “Diffuse optical tomography of pain and tactile stimulation: Activation in cortical sensory and emotional systems,” Neuroimage 41(2), 252–259 (2008).
[Crossref] [PubMed]

Indebetouw, G.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Joseph, D.

L. Becerra, W. Harris, D. Joseph, T. Huppert, D. A. Boas, and D. Borsook, “Diffuse optical tomography of pain and tactile stimulation: Activation in cortical sensory and emotional systems,” Neuroimage 41(2), 252–259 (2008).
[Crossref] [PubMed]

Kaminska, B.

Y. Zhang, F. Vasefi, E. Ng, A. Chamson-Reig, B. Kaminska, and J. J. L. Carson, “Mesoscopic reflectance angular domain spectroscopic imaging,” J. Biomed. Opt. 19(7), 076010 (2014).
[Crossref] [PubMed]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008).
[Crossref] [PubMed]

Karshafian, R.

H. Assadi, R. Karshafian, and A. Douplik, “Optical scattering properties of intralipid phantom in presence of encapsulated microbubbles,” Int. J. Photoenergy 2014(471764), 1–9 (2014).
[Crossref]

Kilmer, M.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Kilmer, M. E.

Klysubun, P.

Konovalov, A.

A. Konovalov, E. Genina, and A. Bashkatov, “Diffuse optical mammotomography: state-of-the-art and prospects,” J. Biomed. Photonics Eng. 2, 2 (2016).

Kopans, D. B.

Li, A.

Maksymov, I. S.

Marks, D. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

McBride, T. O.

Miller, E. L.

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2007).
[PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Moes, C. J. M.

Moore, R. H.

Ng, E.

Y. Zhang, F. Vasefi, E. Ng, A. Chamson-Reig, B. Kaminska, and J. J. L. Carson, “Mesoscopic reflectance angular domain spectroscopic imaging,” J. Biomed. Opt. 19(7), 076010 (2014).
[Crossref] [PubMed]

Nguyen, F. T.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Oldenburg, A. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Orth, A.

Osterberg, U. L.

Paulsen, K. D.

Ploschner, M.

Pogue, B. W.

Prahl, S. A.

Schilders, S. P.

Schmidt, F. E.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

Schweiger, M.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

Stott, J.

Tuchin, V. V.

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2015)

van Gemert, M. J. C.

van Marie, J.

van Staveren, H. J.

Vasefi, F.

Y. Zhang, F. Vasefi, E. Ng, A. Chamson-Reig, B. Kaminska, and J. J. L. Carson, “Mesoscopic reflectance angular domain spectroscopic imaging,” J. Biomed. Opt. 19(7), 076010 (2014).
[Crossref] [PubMed]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008).
[Crossref] [PubMed]

Wu, T.

Zhang, Q.

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2007).
[PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Zhang, Y.

Y. Zhang, F. Vasefi, E. Ng, A. Chamson-Reig, B. Kaminska, and J. J. L. Carson, “Mesoscopic reflectance angular domain spectroscopic imaging,” J. Biomed. Opt. 19(7), 076010 (2014).
[Crossref] [PubMed]

Zysk, A. M.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Appl. Opt. (3)

IEEE Signal Process. Mag. (1)

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Int. J. Photoenergy (1)

H. Assadi, R. Karshafian, and A. Douplik, “Optical scattering properties of intralipid phantom in presence of encapsulated microbubbles,” Int. J. Photoenergy 2014(471764), 1–9 (2014).
[Crossref]

J. Biomed. Opt. (2)

Y. Zhang, F. Vasefi, E. Ng, A. Chamson-Reig, B. Kaminska, and J. J. L. Carson, “Mesoscopic reflectance angular domain spectroscopic imaging,” J. Biomed. Opt. 19(7), 076010 (2014).
[Crossref] [PubMed]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

J. Biomed. Photonics Eng. (1)

A. Konovalov, E. Genina, and A. Bashkatov, “Diffuse optical mammotomography: state-of-the-art and prospects,” J. Biomed. Photonics Eng. 2, 2 (2016).

Neuroimage (1)

L. Becerra, W. Harris, D. Joseph, T. Huppert, D. A. Boas, and D. Borsook, “Diffuse optical tomography of pain and tactile stimulation: Activation in cortical sensory and emotional systems,” Neuroimage 41(2), 252–259 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Med. Biol. (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref] [PubMed]

Other (6)

F. Vasefi, M. Najiminaini, A. Chamson-Reig, M. Brackstone, B. Kaminska, and J. J. L. Carson, “Angular domain spectroscopic imaging for breast cancer margin assessment after lumpectomy,” in Optical Biopsy X (2012), 8220, p. 822003.

G. H. Chapman, B. Kaminska, P. K. Y. Chan, F. Vasefi, and N. Pfeiffer, “Angular filters for optical tomography of highly scattering media,” U. S. patent US20080177169A1 (2008).

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2015)

Rice University, “2D Frequency Domain Filtering and the 2D DFT,” https://www.clear.rice.edu/elec301/Projects01/image_filt/matlab.html .

E. Ng, “Two dimensional angular domain optical imaging in biological tissues,” Western University thesis (2013).

I. Schelkanova, A. Pandya, Z. Zalevsky, and A. Douplik, “Spatial Phase Filter and Illumination Device for Deep Interrogation of Strongly Scattering Media and Uses Thereof,” U.S. patent Provisional 62/696,519 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a) Experimental setup where a broadband light source (BLS) was used to project collimated light onto a transparent petri-dish with a USAF target glued to the bottom. The FOP camera (LC) was translated in the Z direction with a resolution of 100µm in the range 0-2mm. The microscope objective (MO) was focused onto the USAF target and a holder (PG) was translated in the Z direction like LC. The base of PG that was immersed in intralipid had a glass coverslip attached in the center to create an imaging window. b) the FOP coupled directly to the exposed sensor surface using matching refractive index medium (mineral oil). The FOP was attached to the sensor while continuously acquiring images to confirm that the FOP was at a minimal distance away from the sensor. The outer casing had a screw to hold the FOP in place once a desired distance was achieved. This setup proved to be robust for the experiments and the FOP placement was secure for a long period of time even after the experiments.
Fig. 2
Fig. 2 a) Optical setup for ray tracing simulation in Zemax. A point source with light emanating parallel to the axial transmission direction is impinged upon a 1mm layer of scattering media with a mean free path of 0.25mm and g (Henyey-Greenstein scattering function) value of 0.85 simulating a 1% intralipid solution [21]. The simulation had no absorption.
Fig. 3
Fig. 3 Summary of images acquired through all 3 setups. The rows represent increasing concentration of Intralipid from 1 to 4% and a comparison of 0.17NA FOP, 0.25NA lens and 0.55NA FOP is presented. The columns represent the depth of target immersed inside a scattering layer of Intralipid. The depth was controlled using a translation stage to change the distance between the distal surface of the FOP and the surface of the target.
Fig. 4
Fig. 4 a) Radiant intensity for a point source transmitting through a scattering slab of 1mm thickness depicting largely forward scattering. b) A schematic showing the angle of light entering each optical fiber when the FOP is placed 1mm away from the USAF target.
Fig. 5
Fig. 5 Contrast ratio for a) 0.17NA FOP b) 0.25NA objective lens and c) 0.55NA FOP. The horizontal dashed lines in the figures represent the 10% contrast threshold. d) Imaging interrogating depth at 10% contrast threshold for all the setups, blue line represents 0.17NA FOP, red line represents 0.25 NA lens and black lines represents 0.55 NA FOP.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f(u,v)= 1 1+ ( r(u,v) cutoff ) 2n
contrast= I target I background I target + I background

Metrics