Abstract

Mohs surgery uses en face frozen section analysis (FSA) with complete margin examination for the excision of select basal cell carcinomas (BCC), obtaining excellent cosmetic outcomes and extremely low recurrence rates. However, Mohs with FSA is time-consuming because of the need to iteratively perform cryosectioning on sequential excisions. Fluorescent microscopies can image tissue specimens without requiring physical sectioning, potentially reducing the time to perform Mohs surgery. We demonstrate a protocol for nonlinear microscopy (NLM) imaging of surgical specimens that combines dual agent staining, virtual H&E rendering, and video rate imaging. We also introduce a novel protocol that enables micron-level co-registration of NLM images with FSA histology, and demonstrate that NLM can reproduce similar features similar to FSA in BCC specimens with both negative and positive surgical margins. We show that the fluorescent labels can be extracted with conventional vacuum infiltration processing, enabling subsequent immunohistochemistry on fluorescently labeled tissue. This protocol can also be applied to evaluate the performance of NLM compared with FSA in a wide range of pathologies for intraoperative consultation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiscale nonlinear microscopy and widefield white light imaging enables rapid histological imaging of surgical specimen margins

Michael G. Giacomelli, Tadayuki Yoshitake, Lucas C. Cahill, Hilde Vardeh, Liza M. Quintana, Beverly E. Faulkner-Jones, Jeff Brooker, James L. Connolly, and James G. Fujimoto
Biomed. Opt. Express 9(5) 2457-2475 (2018)

Rapid pathology of lumpectomy margins with open-top light-sheet (OTLS) microscopy

Ye Chen, Weisi Xie, Adam K. Glaser, Nicholas P. Reder, Chenyi Mao, Suzanne M. Dintzis, Joshua C. Vaughan, and Jonathan T. C. Liu
Biomed. Opt. Express 10(3) 1257-1272 (2019)

Optimization of multimodal spectral imaging for assessment of resection margins during Mohs micrographic surgery for basal cell carcinoma

Sho Takamori, Kenny Kong, Sandeep Varma, Iain Leach, Hywel C. Williams, and Ioan Notingher
Biomed. Opt. Express 6(1) 98-111 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. W. Rogers, M. A. Weinstock, S. R. Feldman, and B. M. Coldiron, “Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012,” JAMA Dermatol. 151(10), 1081–1086 (2015).
    [Crossref]
  2. American Cancer Society, “Cancer Facts & Figures 2018,” http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2016/ .
  3. K. V. Viola, M. Jhaveri, P. Soulos, R. Turner, W. Tolpinrud, D. Doshi, and C. P. Gross, “Mohs micrographic surgery and surgical excision for nonmelanoma skin cancer treatment in the Medicare population,” Arch. Dermatol. 148(4), 473–477 (2012).
    [Crossref]
  4. I. Leibovitch, S. C. Huilgol, D. Selva, S. Richards, and R. Paver, “Basal cell carcinoma treated with Mohs surgery in Australia II. Outcome at 5-year follow-up,” J. Am. Acad. Dermatol. 53(3), 452–457 (2005).
    [Crossref]
  5. E. P. Tierney and C. W. Hanke, “Cost effectiveness of Mohs micrographic surgery: review of the literature,” J. Drugs Dermatol. 8(10), 914–922 (2009).
  6. T. Yoshitake, M. G. Giacomelli, L. M. Quintana, H. Vardeh, L. C. Cahill, B. E. Faulkner-Jones, J. L. Connolly, D. Do, and J. G. Fujimoto, “Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation,” Sci. Rep. 8(1), 4476 (2018).
    [Crossref]
  7. C. Longo, M. Rajadhyaksha, M. Ragazzi, K. S. Nehal, S. Gardini, E. Moscarella, A. Lallas, I. Zalaudek, S. Piana, G. Argenziano, and G. Pellacani, “Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue,” Br. J. Dermatol. 171(3), 561–570 (2014).
    [Crossref]
  8. S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt. 18(6), 061227 (2013).
    [Crossref]
  9. J. Bini, J. Spain, K. S. Nehal, V. Hazelwood, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance,” J. Biomed. Opt. 16(7), 076008 (2011).
    [Crossref]
  10. J. K. Karen, D. S. Gareau, S. W. Dusza, M. Tudisco, M. Rajadhyaksha, and K. S. Nehal, “Detection of basal cell carcinomas in Mohs excisions with fluorescence confocal mosaicing microscopy,” Br. J. Dermatol. 160(6), 1242–1250 (2009).
    [Crossref]
  11. M. Balu, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, B. J. Tromberg, and K. M. Kelly, “In Vivo Multiphoton Microscopy of Basal Cell Carcinoma,” JAMA Dermatol. 151(10), 1068 (2015).
    [Crossref]
  12. D. S. Gareau, Y. Li, B. Huang, Z. Eastman, K. S. Nehal, and M. Rajadhyaksha, “Confocal mosaicing microscopy in Mohs skin excisions: feasibility of rapid surgical pathology,” J. Biomed. Opt. 13(5), 054001 (2008).
    [Crossref]
  13. A. Bennàssar, A. Vilata, S. Puig, and J. Malvehy, “Ex vivo fluorescence confocal microscopy for fast evaluation of tumour margins during Mohs surgery,” Br. J. Dermatol. 170(2), 360–365 (2014).
    [Crossref]
  14. D. S. Gareau, “Feasibility of digitally stained multimodal confocal mosaics to simulate histopathology,” J. Biomed. Opt. 14(3), 034050 (2009).
    [Crossref]
  15. D. S. Gareau, A. Bar, N. Snaveley, K. Lee, N. Chen, N. Swanson, E. Simpson, and S. Jacques, “Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions,” J. Biomed. Opt. 17(6), 066018 (2012).
    [Crossref]
  16. Y. K. Tao, D. Shen, Y. Sheikine, O. O. Ahsen, H. H. Wang, D. B. Schmolze, N. B. Johnson, J. S. Brooker, A. E. Cable, J. L. Connolly, and J. G. Fujimoto, “Assessment of breast pathologies using nonlinear microscopy,” Proc. Natl. Acad. Sci. 111(43), 15304–15309 (2014).
    [Crossref]
  17. M. G. Giacomelli, L. Husvogt, H. Vardeh, B. E. Faulkner-Jones, J. Hornegger, J. L. Connolly, and J. G. Fujimoto, “Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging,” PLoS One 11(8), e0159337 (2016).
    [Crossref]
  18. L. C. Cahill, M. G. Giacomelli, T. Yoshitake, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, C.-K. Sun, and J. G. Fujimoto, “Rapid virtual hematoxylin and eosin histology of breast tissue specimens using a compact fluorescence nonlinear microscope,” Lab. Invest. 98(1), 150–160 (2018).
    [Crossref]
  19. W. Xie, Y. Chen, Y. Wang, L. Wei, C. Yin, A. K. Glaser, M. E. Fauver, E. J. Seibel, S. M. Dintzis, J. C. Vaughan, N. P. Reder, and J. T. C. Liu, “Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins,” J. Biomed. Opt. 24(02), 1–11 (2019).
    [Crossref]
  20. M. G. Giacomelli, T. Yoshitake, L. C. Cahill, H. Vardeh, L. M. Quintana, B. E. Faulkner-Jones, J. Brooker, J. L. Connolly, and J. G. Fujimoto, “Multiscale nonlinear microscopy and widefield white light imaging enables rapid histological imaging of surgical specimen margins,” Biomed. Opt. Express 9(5), 2457–2475 (2018).
    [Crossref]
  21. L. C. Cahill, J. G. Fujimoto, M. G. Giacomelli, T. Yoshitake, Y. Wu, D. I. Lin, H. Ye, O. M. Carrasco-Zevallos, A. A. Wagner, and S. Rosen, “Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study,” Mod. Pathol. (2019).
  22. T. Yoshitake, M. G. Giacomelli, L. C. Cahill, D. B. Schmolze, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, and J. G. Fujimoto, “Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue,” J. Biomed. Opt. 21(12), 126021 (2016).
    [Crossref]

2019 (1)

W. Xie, Y. Chen, Y. Wang, L. Wei, C. Yin, A. K. Glaser, M. E. Fauver, E. J. Seibel, S. M. Dintzis, J. C. Vaughan, N. P. Reder, and J. T. C. Liu, “Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins,” J. Biomed. Opt. 24(02), 1–11 (2019).
[Crossref]

2018 (3)

M. G. Giacomelli, T. Yoshitake, L. C. Cahill, H. Vardeh, L. M. Quintana, B. E. Faulkner-Jones, J. Brooker, J. L. Connolly, and J. G. Fujimoto, “Multiscale nonlinear microscopy and widefield white light imaging enables rapid histological imaging of surgical specimen margins,” Biomed. Opt. Express 9(5), 2457–2475 (2018).
[Crossref]

T. Yoshitake, M. G. Giacomelli, L. M. Quintana, H. Vardeh, L. C. Cahill, B. E. Faulkner-Jones, J. L. Connolly, D. Do, and J. G. Fujimoto, “Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation,” Sci. Rep. 8(1), 4476 (2018).
[Crossref]

L. C. Cahill, M. G. Giacomelli, T. Yoshitake, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, C.-K. Sun, and J. G. Fujimoto, “Rapid virtual hematoxylin and eosin histology of breast tissue specimens using a compact fluorescence nonlinear microscope,” Lab. Invest. 98(1), 150–160 (2018).
[Crossref]

2016 (2)

T. Yoshitake, M. G. Giacomelli, L. C. Cahill, D. B. Schmolze, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, and J. G. Fujimoto, “Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue,” J. Biomed. Opt. 21(12), 126021 (2016).
[Crossref]

M. G. Giacomelli, L. Husvogt, H. Vardeh, B. E. Faulkner-Jones, J. Hornegger, J. L. Connolly, and J. G. Fujimoto, “Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging,” PLoS One 11(8), e0159337 (2016).
[Crossref]

2015 (2)

H. W. Rogers, M. A. Weinstock, S. R. Feldman, and B. M. Coldiron, “Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012,” JAMA Dermatol. 151(10), 1081–1086 (2015).
[Crossref]

M. Balu, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, B. J. Tromberg, and K. M. Kelly, “In Vivo Multiphoton Microscopy of Basal Cell Carcinoma,” JAMA Dermatol. 151(10), 1068 (2015).
[Crossref]

2014 (3)

C. Longo, M. Rajadhyaksha, M. Ragazzi, K. S. Nehal, S. Gardini, E. Moscarella, A. Lallas, I. Zalaudek, S. Piana, G. Argenziano, and G. Pellacani, “Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue,” Br. J. Dermatol. 171(3), 561–570 (2014).
[Crossref]

Y. K. Tao, D. Shen, Y. Sheikine, O. O. Ahsen, H. H. Wang, D. B. Schmolze, N. B. Johnson, J. S. Brooker, A. E. Cable, J. L. Connolly, and J. G. Fujimoto, “Assessment of breast pathologies using nonlinear microscopy,” Proc. Natl. Acad. Sci. 111(43), 15304–15309 (2014).
[Crossref]

A. Bennàssar, A. Vilata, S. Puig, and J. Malvehy, “Ex vivo fluorescence confocal microscopy for fast evaluation of tumour margins during Mohs surgery,” Br. J. Dermatol. 170(2), 360–365 (2014).
[Crossref]

2013 (1)

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt. 18(6), 061227 (2013).
[Crossref]

2012 (2)

K. V. Viola, M. Jhaveri, P. Soulos, R. Turner, W. Tolpinrud, D. Doshi, and C. P. Gross, “Mohs micrographic surgery and surgical excision for nonmelanoma skin cancer treatment in the Medicare population,” Arch. Dermatol. 148(4), 473–477 (2012).
[Crossref]

D. S. Gareau, A. Bar, N. Snaveley, K. Lee, N. Chen, N. Swanson, E. Simpson, and S. Jacques, “Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions,” J. Biomed. Opt. 17(6), 066018 (2012).
[Crossref]

2011 (1)

J. Bini, J. Spain, K. S. Nehal, V. Hazelwood, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance,” J. Biomed. Opt. 16(7), 076008 (2011).
[Crossref]

2009 (3)

J. K. Karen, D. S. Gareau, S. W. Dusza, M. Tudisco, M. Rajadhyaksha, and K. S. Nehal, “Detection of basal cell carcinomas in Mohs excisions with fluorescence confocal mosaicing microscopy,” Br. J. Dermatol. 160(6), 1242–1250 (2009).
[Crossref]

E. P. Tierney and C. W. Hanke, “Cost effectiveness of Mohs micrographic surgery: review of the literature,” J. Drugs Dermatol. 8(10), 914–922 (2009).

D. S. Gareau, “Feasibility of digitally stained multimodal confocal mosaics to simulate histopathology,” J. Biomed. Opt. 14(3), 034050 (2009).
[Crossref]

2008 (1)

D. S. Gareau, Y. Li, B. Huang, Z. Eastman, K. S. Nehal, and M. Rajadhyaksha, “Confocal mosaicing microscopy in Mohs skin excisions: feasibility of rapid surgical pathology,” J. Biomed. Opt. 13(5), 054001 (2008).
[Crossref]

2005 (1)

I. Leibovitch, S. C. Huilgol, D. Selva, S. Richards, and R. Paver, “Basal cell carcinoma treated with Mohs surgery in Australia II. Outcome at 5-year follow-up,” J. Am. Acad. Dermatol. 53(3), 452–457 (2005).
[Crossref]

Abeytunge, S.

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt. 18(6), 061227 (2013).
[Crossref]

Ahsen, O. O.

Y. K. Tao, D. Shen, Y. Sheikine, O. O. Ahsen, H. H. Wang, D. B. Schmolze, N. B. Johnson, J. S. Brooker, A. E. Cable, J. L. Connolly, and J. G. Fujimoto, “Assessment of breast pathologies using nonlinear microscopy,” Proc. Natl. Acad. Sci. 111(43), 15304–15309 (2014).
[Crossref]

Argenziano, G.

C. Longo, M. Rajadhyaksha, M. Ragazzi, K. S. Nehal, S. Gardini, E. Moscarella, A. Lallas, I. Zalaudek, S. Piana, G. Argenziano, and G. Pellacani, “Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue,” Br. J. Dermatol. 171(3), 561–570 (2014).
[Crossref]

Balu, M.

M. Balu, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, B. J. Tromberg, and K. M. Kelly, “In Vivo Multiphoton Microscopy of Basal Cell Carcinoma,” JAMA Dermatol. 151(10), 1068 (2015).
[Crossref]

Bar, A.

D. S. Gareau, A. Bar, N. Snaveley, K. Lee, N. Chen, N. Swanson, E. Simpson, and S. Jacques, “Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions,” J. Biomed. Opt. 17(6), 066018 (2012).
[Crossref]

Bennàssar, A.

A. Bennàssar, A. Vilata, S. Puig, and J. Malvehy, “Ex vivo fluorescence confocal microscopy for fast evaluation of tumour margins during Mohs surgery,” Br. J. Dermatol. 170(2), 360–365 (2014).
[Crossref]

Bini, J.

J. Bini, J. Spain, K. S. Nehal, V. Hazelwood, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance,” J. Biomed. Opt. 16(7), 076008 (2011).
[Crossref]

Brooker, J.

Brooker, J. S.

Y. K. Tao, D. Shen, Y. Sheikine, O. O. Ahsen, H. H. Wang, D. B. Schmolze, N. B. Johnson, J. S. Brooker, A. E. Cable, J. L. Connolly, and J. G. Fujimoto, “Assessment of breast pathologies using nonlinear microscopy,” Proc. Natl. Acad. Sci. 111(43), 15304–15309 (2014).
[Crossref]

Cable, A. E.

Y. K. Tao, D. Shen, Y. Sheikine, O. O. Ahsen, H. H. Wang, D. B. Schmolze, N. B. Johnson, J. S. Brooker, A. E. Cable, J. L. Connolly, and J. G. Fujimoto, “Assessment of breast pathologies using nonlinear microscopy,” Proc. Natl. Acad. Sci. 111(43), 15304–15309 (2014).
[Crossref]

Cahill, L. C.

L. C. Cahill, M. G. Giacomelli, T. Yoshitake, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, C.-K. Sun, and J. G. Fujimoto, “Rapid virtual hematoxylin and eosin histology of breast tissue specimens using a compact fluorescence nonlinear microscope,” Lab. Invest. 98(1), 150–160 (2018).
[Crossref]

M. G. Giacomelli, T. Yoshitake, L. C. Cahill, H. Vardeh, L. M. Quintana, B. E. Faulkner-Jones, J. Brooker, J. L. Connolly, and J. G. Fujimoto, “Multiscale nonlinear microscopy and widefield white light imaging enables rapid histological imaging of surgical specimen margins,” Biomed. Opt. Express 9(5), 2457–2475 (2018).
[Crossref]

T. Yoshitake, M. G. Giacomelli, L. M. Quintana, H. Vardeh, L. C. Cahill, B. E. Faulkner-Jones, J. L. Connolly, D. Do, and J. G. Fujimoto, “Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation,” Sci. Rep. 8(1), 4476 (2018).
[Crossref]

T. Yoshitake, M. G. Giacomelli, L. C. Cahill, D. B. Schmolze, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, and J. G. Fujimoto, “Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue,” J. Biomed. Opt. 21(12), 126021 (2016).
[Crossref]

L. C. Cahill, J. G. Fujimoto, M. G. Giacomelli, T. Yoshitake, Y. Wu, D. I. Lin, H. Ye, O. M. Carrasco-Zevallos, A. A. Wagner, and S. Rosen, “Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study,” Mod. Pathol. (2019).

Carrasco-Zevallos, O. M.

L. C. Cahill, J. G. Fujimoto, M. G. Giacomelli, T. Yoshitake, Y. Wu, D. I. Lin, H. Ye, O. M. Carrasco-Zevallos, A. A. Wagner, and S. Rosen, “Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study,” Mod. Pathol. (2019).

Chen, N.

D. S. Gareau, A. Bar, N. Snaveley, K. Lee, N. Chen, N. Swanson, E. Simpson, and S. Jacques, “Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions,” J. Biomed. Opt. 17(6), 066018 (2012).
[Crossref]

Chen, Y.

W. Xie, Y. Chen, Y. Wang, L. Wei, C. Yin, A. K. Glaser, M. E. Fauver, E. J. Seibel, S. M. Dintzis, J. C. Vaughan, N. P. Reder, and J. T. C. Liu, “Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins,” J. Biomed. Opt. 24(02), 1–11 (2019).
[Crossref]

Coldiron, B. M.

H. W. Rogers, M. A. Weinstock, S. R. Feldman, and B. M. Coldiron, “Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012,” JAMA Dermatol. 151(10), 1081–1086 (2015).
[Crossref]

Connolly, J. L.

T. Yoshitake, M. G. Giacomelli, L. M. Quintana, H. Vardeh, L. C. Cahill, B. E. Faulkner-Jones, J. L. Connolly, D. Do, and J. G. Fujimoto, “Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation,” Sci. Rep. 8(1), 4476 (2018).
[Crossref]

L. C. Cahill, M. G. Giacomelli, T. Yoshitake, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, C.-K. Sun, and J. G. Fujimoto, “Rapid virtual hematoxylin and eosin histology of breast tissue specimens using a compact fluorescence nonlinear microscope,” Lab. Invest. 98(1), 150–160 (2018).
[Crossref]

M. G. Giacomelli, T. Yoshitake, L. C. Cahill, H. Vardeh, L. M. Quintana, B. E. Faulkner-Jones, J. Brooker, J. L. Connolly, and J. G. Fujimoto, “Multiscale nonlinear microscopy and widefield white light imaging enables rapid histological imaging of surgical specimen margins,” Biomed. Opt. Express 9(5), 2457–2475 (2018).
[Crossref]

M. G. Giacomelli, L. Husvogt, H. Vardeh, B. E. Faulkner-Jones, J. Hornegger, J. L. Connolly, and J. G. Fujimoto, “Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging,” PLoS One 11(8), e0159337 (2016).
[Crossref]

T. Yoshitake, M. G. Giacomelli, L. C. Cahill, D. B. Schmolze, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, and J. G. Fujimoto, “Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue,” J. Biomed. Opt. 21(12), 126021 (2016).
[Crossref]

Y. K. Tao, D. Shen, Y. Sheikine, O. O. Ahsen, H. H. Wang, D. B. Schmolze, N. B. Johnson, J. S. Brooker, A. E. Cable, J. L. Connolly, and J. G. Fujimoto, “Assessment of breast pathologies using nonlinear microscopy,” Proc. Natl. Acad. Sci. 111(43), 15304–15309 (2014).
[Crossref]

DiMarzio, C. A.

J. Bini, J. Spain, K. S. Nehal, V. Hazelwood, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance,” J. Biomed. Opt. 16(7), 076008 (2011).
[Crossref]

Dintzis, S. M.

W. Xie, Y. Chen, Y. Wang, L. Wei, C. Yin, A. K. Glaser, M. E. Fauver, E. J. Seibel, S. M. Dintzis, J. C. Vaughan, N. P. Reder, and J. T. C. Liu, “Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins,” J. Biomed. Opt. 24(02), 1–11 (2019).
[Crossref]

Do, D.

T. Yoshitake, M. G. Giacomelli, L. M. Quintana, H. Vardeh, L. C. Cahill, B. E. Faulkner-Jones, J. L. Connolly, D. Do, and J. G. Fujimoto, “Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation,” Sci. Rep. 8(1), 4476 (2018).
[Crossref]

Doshi, D.

K. V. Viola, M. Jhaveri, P. Soulos, R. Turner, W. Tolpinrud, D. Doshi, and C. P. Gross, “Mohs micrographic surgery and surgical excision for nonmelanoma skin cancer treatment in the Medicare population,” Arch. Dermatol. 148(4), 473–477 (2012).
[Crossref]

Dusza, S. W.

J. K. Karen, D. S. Gareau, S. W. Dusza, M. Tudisco, M. Rajadhyaksha, and K. S. Nehal, “Detection of basal cell carcinomas in Mohs excisions with fluorescence confocal mosaicing microscopy,” Br. J. Dermatol. 160(6), 1242–1250 (2009).
[Crossref]

Eastman, Z.

D. S. Gareau, Y. Li, B. Huang, Z. Eastman, K. S. Nehal, and M. Rajadhyaksha, “Confocal mosaicing microscopy in Mohs skin excisions: feasibility of rapid surgical pathology,” J. Biomed. Opt. 13(5), 054001 (2008).
[Crossref]

Faulkner-Jones, B. E.

T. Yoshitake, M. G. Giacomelli, L. M. Quintana, H. Vardeh, L. C. Cahill, B. E. Faulkner-Jones, J. L. Connolly, D. Do, and J. G. Fujimoto, “Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation,” Sci. Rep. 8(1), 4476 (2018).
[Crossref]

L. C. Cahill, M. G. Giacomelli, T. Yoshitake, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, C.-K. Sun, and J. G. Fujimoto, “Rapid virtual hematoxylin and eosin histology of breast tissue specimens using a compact fluorescence nonlinear microscope,” Lab. Invest. 98(1), 150–160 (2018).
[Crossref]

M. G. Giacomelli, T. Yoshitake, L. C. Cahill, H. Vardeh, L. M. Quintana, B. E. Faulkner-Jones, J. Brooker, J. L. Connolly, and J. G. Fujimoto, “Multiscale nonlinear microscopy and widefield white light imaging enables rapid histological imaging of surgical specimen margins,” Biomed. Opt. Express 9(5), 2457–2475 (2018).
[Crossref]

M. G. Giacomelli, L. Husvogt, H. Vardeh, B. E. Faulkner-Jones, J. Hornegger, J. L. Connolly, and J. G. Fujimoto, “Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging,” PLoS One 11(8), e0159337 (2016).
[Crossref]

T. Yoshitake, M. G. Giacomelli, L. C. Cahill, D. B. Schmolze, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, and J. G. Fujimoto, “Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue,” J. Biomed. Opt. 21(12), 126021 (2016).
[Crossref]

Fauver, M. E.

W. Xie, Y. Chen, Y. Wang, L. Wei, C. Yin, A. K. Glaser, M. E. Fauver, E. J. Seibel, S. M. Dintzis, J. C. Vaughan, N. P. Reder, and J. T. C. Liu, “Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins,” J. Biomed. Opt. 24(02), 1–11 (2019).
[Crossref]

Feldman, S. R.

H. W. Rogers, M. A. Weinstock, S. R. Feldman, and B. M. Coldiron, “Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012,” JAMA Dermatol. 151(10), 1081–1086 (2015).
[Crossref]

Fujimoto, J. G.

T. Yoshitake, M. G. Giacomelli, L. M. Quintana, H. Vardeh, L. C. Cahill, B. E. Faulkner-Jones, J. L. Connolly, D. Do, and J. G. Fujimoto, “Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation,” Sci. Rep. 8(1), 4476 (2018).
[Crossref]

L. C. Cahill, M. G. Giacomelli, T. Yoshitake, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, C.-K. Sun, and J. G. Fujimoto, “Rapid virtual hematoxylin and eosin histology of breast tissue specimens using a compact fluorescence nonlinear microscope,” Lab. Invest. 98(1), 150–160 (2018).
[Crossref]

M. G. Giacomelli, T. Yoshitake, L. C. Cahill, H. Vardeh, L. M. Quintana, B. E. Faulkner-Jones, J. Brooker, J. L. Connolly, and J. G. Fujimoto, “Multiscale nonlinear microscopy and widefield white light imaging enables rapid histological imaging of surgical specimen margins,” Biomed. Opt. Express 9(5), 2457–2475 (2018).
[Crossref]

M. G. Giacomelli, L. Husvogt, H. Vardeh, B. E. Faulkner-Jones, J. Hornegger, J. L. Connolly, and J. G. Fujimoto, “Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging,” PLoS One 11(8), e0159337 (2016).
[Crossref]

T. Yoshitake, M. G. Giacomelli, L. C. Cahill, D. B. Schmolze, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, and J. G. Fujimoto, “Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue,” J. Biomed. Opt. 21(12), 126021 (2016).
[Crossref]

Y. K. Tao, D. Shen, Y. Sheikine, O. O. Ahsen, H. H. Wang, D. B. Schmolze, N. B. Johnson, J. S. Brooker, A. E. Cable, J. L. Connolly, and J. G. Fujimoto, “Assessment of breast pathologies using nonlinear microscopy,” Proc. Natl. Acad. Sci. 111(43), 15304–15309 (2014).
[Crossref]

L. C. Cahill, J. G. Fujimoto, M. G. Giacomelli, T. Yoshitake, Y. Wu, D. I. Lin, H. Ye, O. M. Carrasco-Zevallos, A. A. Wagner, and S. Rosen, “Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study,” Mod. Pathol. (2019).

Gardini, S.

C. Longo, M. Rajadhyaksha, M. Ragazzi, K. S. Nehal, S. Gardini, E. Moscarella, A. Lallas, I. Zalaudek, S. Piana, G. Argenziano, and G. Pellacani, “Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue,” Br. J. Dermatol. 171(3), 561–570 (2014).
[Crossref]

Gareau, D. S.

D. S. Gareau, A. Bar, N. Snaveley, K. Lee, N. Chen, N. Swanson, E. Simpson, and S. Jacques, “Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions,” J. Biomed. Opt. 17(6), 066018 (2012).
[Crossref]

D. S. Gareau, “Feasibility of digitally stained multimodal confocal mosaics to simulate histopathology,” J. Biomed. Opt. 14(3), 034050 (2009).
[Crossref]

J. K. Karen, D. S. Gareau, S. W. Dusza, M. Tudisco, M. Rajadhyaksha, and K. S. Nehal, “Detection of basal cell carcinomas in Mohs excisions with fluorescence confocal mosaicing microscopy,” Br. J. Dermatol. 160(6), 1242–1250 (2009).
[Crossref]

D. S. Gareau, Y. Li, B. Huang, Z. Eastman, K. S. Nehal, and M. Rajadhyaksha, “Confocal mosaicing microscopy in Mohs skin excisions: feasibility of rapid surgical pathology,” J. Biomed. Opt. 13(5), 054001 (2008).
[Crossref]

Giacomelli, M. G.

T. Yoshitake, M. G. Giacomelli, L. M. Quintana, H. Vardeh, L. C. Cahill, B. E. Faulkner-Jones, J. L. Connolly, D. Do, and J. G. Fujimoto, “Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation,” Sci. Rep. 8(1), 4476 (2018).
[Crossref]

L. C. Cahill, M. G. Giacomelli, T. Yoshitake, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, C.-K. Sun, and J. G. Fujimoto, “Rapid virtual hematoxylin and eosin histology of breast tissue specimens using a compact fluorescence nonlinear microscope,” Lab. Invest. 98(1), 150–160 (2018).
[Crossref]

M. G. Giacomelli, T. Yoshitake, L. C. Cahill, H. Vardeh, L. M. Quintana, B. E. Faulkner-Jones, J. Brooker, J. L. Connolly, and J. G. Fujimoto, “Multiscale nonlinear microscopy and widefield white light imaging enables rapid histological imaging of surgical specimen margins,” Biomed. Opt. Express 9(5), 2457–2475 (2018).
[Crossref]

M. G. Giacomelli, L. Husvogt, H. Vardeh, B. E. Faulkner-Jones, J. Hornegger, J. L. Connolly, and J. G. Fujimoto, “Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging,” PLoS One 11(8), e0159337 (2016).
[Crossref]

T. Yoshitake, M. G. Giacomelli, L. C. Cahill, D. B. Schmolze, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, and J. G. Fujimoto, “Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue,” J. Biomed. Opt. 21(12), 126021 (2016).
[Crossref]

L. C. Cahill, J. G. Fujimoto, M. G. Giacomelli, T. Yoshitake, Y. Wu, D. I. Lin, H. Ye, O. M. Carrasco-Zevallos, A. A. Wagner, and S. Rosen, “Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study,” Mod. Pathol. (2019).

Glaser, A. K.

W. Xie, Y. Chen, Y. Wang, L. Wei, C. Yin, A. K. Glaser, M. E. Fauver, E. J. Seibel, S. M. Dintzis, J. C. Vaughan, N. P. Reder, and J. T. C. Liu, “Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins,” J. Biomed. Opt. 24(02), 1–11 (2019).
[Crossref]

Gross, C. P.

K. V. Viola, M. Jhaveri, P. Soulos, R. Turner, W. Tolpinrud, D. Doshi, and C. P. Gross, “Mohs micrographic surgery and surgical excision for nonmelanoma skin cancer treatment in the Medicare population,” Arch. Dermatol. 148(4), 473–477 (2012).
[Crossref]

Hanke, C. W.

E. P. Tierney and C. W. Hanke, “Cost effectiveness of Mohs micrographic surgery: review of the literature,” J. Drugs Dermatol. 8(10), 914–922 (2009).

Harris, R. M.

M. Balu, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, B. J. Tromberg, and K. M. Kelly, “In Vivo Multiphoton Microscopy of Basal Cell Carcinoma,” JAMA Dermatol. 151(10), 1068 (2015).
[Crossref]

Hazelwood, V.

J. Bini, J. Spain, K. S. Nehal, V. Hazelwood, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance,” J. Biomed. Opt. 16(7), 076008 (2011).
[Crossref]

Hornegger, J.

M. G. Giacomelli, L. Husvogt, H. Vardeh, B. E. Faulkner-Jones, J. Hornegger, J. L. Connolly, and J. G. Fujimoto, “Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging,” PLoS One 11(8), e0159337 (2016).
[Crossref]

Huang, B.

D. S. Gareau, Y. Li, B. Huang, Z. Eastman, K. S. Nehal, and M. Rajadhyaksha, “Confocal mosaicing microscopy in Mohs skin excisions: feasibility of rapid surgical pathology,” J. Biomed. Opt. 13(5), 054001 (2008).
[Crossref]

Huilgol, S. C.

I. Leibovitch, S. C. Huilgol, D. Selva, S. Richards, and R. Paver, “Basal cell carcinoma treated with Mohs surgery in Australia II. Outcome at 5-year follow-up,” J. Am. Acad. Dermatol. 53(3), 452–457 (2005).
[Crossref]

Husvogt, L.

M. G. Giacomelli, L. Husvogt, H. Vardeh, B. E. Faulkner-Jones, J. Hornegger, J. L. Connolly, and J. G. Fujimoto, “Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging,” PLoS One 11(8), e0159337 (2016).
[Crossref]

Jacques, S.

D. S. Gareau, A. Bar, N. Snaveley, K. Lee, N. Chen, N. Swanson, E. Simpson, and S. Jacques, “Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions,” J. Biomed. Opt. 17(6), 066018 (2012).
[Crossref]

Jhaveri, M.

K. V. Viola, M. Jhaveri, P. Soulos, R. Turner, W. Tolpinrud, D. Doshi, and C. P. Gross, “Mohs micrographic surgery and surgical excision for nonmelanoma skin cancer treatment in the Medicare population,” Arch. Dermatol. 148(4), 473–477 (2012).
[Crossref]

Johnson, N. B.

Y. K. Tao, D. Shen, Y. Sheikine, O. O. Ahsen, H. H. Wang, D. B. Schmolze, N. B. Johnson, J. S. Brooker, A. E. Cable, J. L. Connolly, and J. G. Fujimoto, “Assessment of breast pathologies using nonlinear microscopy,” Proc. Natl. Acad. Sci. 111(43), 15304–15309 (2014).
[Crossref]

Karen, J. K.

J. K. Karen, D. S. Gareau, S. W. Dusza, M. Tudisco, M. Rajadhyaksha, and K. S. Nehal, “Detection of basal cell carcinomas in Mohs excisions with fluorescence confocal mosaicing microscopy,” Br. J. Dermatol. 160(6), 1242–1250 (2009).
[Crossref]

Kelly, K. M.

M. Balu, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, B. J. Tromberg, and K. M. Kelly, “In Vivo Multiphoton Microscopy of Basal Cell Carcinoma,” JAMA Dermatol. 151(10), 1068 (2015).
[Crossref]

König, K.

M. Balu, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, B. J. Tromberg, and K. M. Kelly, “In Vivo Multiphoton Microscopy of Basal Cell Carcinoma,” JAMA Dermatol. 151(10), 1068 (2015).
[Crossref]

Krasieva, T. B.

M. Balu, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, B. J. Tromberg, and K. M. Kelly, “In Vivo Multiphoton Microscopy of Basal Cell Carcinoma,” JAMA Dermatol. 151(10), 1068 (2015).
[Crossref]

Lallas, A.

C. Longo, M. Rajadhyaksha, M. Ragazzi, K. S. Nehal, S. Gardini, E. Moscarella, A. Lallas, I. Zalaudek, S. Piana, G. Argenziano, and G. Pellacani, “Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue,” Br. J. Dermatol. 171(3), 561–570 (2014).
[Crossref]

Larson, B.

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt. 18(6), 061227 (2013).
[Crossref]

Lee, K.

D. S. Gareau, A. Bar, N. Snaveley, K. Lee, N. Chen, N. Swanson, E. Simpson, and S. Jacques, “Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions,” J. Biomed. Opt. 17(6), 066018 (2012).
[Crossref]

Leibovitch, I.

I. Leibovitch, S. C. Huilgol, D. Selva, S. Richards, and R. Paver, “Basal cell carcinoma treated with Mohs surgery in Australia II. Outcome at 5-year follow-up,” J. Am. Acad. Dermatol. 53(3), 452–457 (2005).
[Crossref]

Li, Y.

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt. 18(6), 061227 (2013).
[Crossref]

D. S. Gareau, Y. Li, B. Huang, Z. Eastman, K. S. Nehal, and M. Rajadhyaksha, “Confocal mosaicing microscopy in Mohs skin excisions: feasibility of rapid surgical pathology,” J. Biomed. Opt. 13(5), 054001 (2008).
[Crossref]

Lin, D. I.

L. C. Cahill, J. G. Fujimoto, M. G. Giacomelli, T. Yoshitake, Y. Wu, D. I. Lin, H. Ye, O. M. Carrasco-Zevallos, A. A. Wagner, and S. Rosen, “Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study,” Mod. Pathol. (2019).

Liu, J. T. C.

W. Xie, Y. Chen, Y. Wang, L. Wei, C. Yin, A. K. Glaser, M. E. Fauver, E. J. Seibel, S. M. Dintzis, J. C. Vaughan, N. P. Reder, and J. T. C. Liu, “Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins,” J. Biomed. Opt. 24(02), 1–11 (2019).
[Crossref]

Longo, C.

C. Longo, M. Rajadhyaksha, M. Ragazzi, K. S. Nehal, S. Gardini, E. Moscarella, A. Lallas, I. Zalaudek, S. Piana, G. Argenziano, and G. Pellacani, “Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue,” Br. J. Dermatol. 171(3), 561–570 (2014).
[Crossref]

Malvehy, J.

A. Bennàssar, A. Vilata, S. Puig, and J. Malvehy, “Ex vivo fluorescence confocal microscopy for fast evaluation of tumour margins during Mohs surgery,” Br. J. Dermatol. 170(2), 360–365 (2014).
[Crossref]

Moscarella, E.

C. Longo, M. Rajadhyaksha, M. Ragazzi, K. S. Nehal, S. Gardini, E. Moscarella, A. Lallas, I. Zalaudek, S. Piana, G. Argenziano, and G. Pellacani, “Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue,” Br. J. Dermatol. 171(3), 561–570 (2014).
[Crossref]

Nehal, K. S.

C. Longo, M. Rajadhyaksha, M. Ragazzi, K. S. Nehal, S. Gardini, E. Moscarella, A. Lallas, I. Zalaudek, S. Piana, G. Argenziano, and G. Pellacani, “Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue,” Br. J. Dermatol. 171(3), 561–570 (2014).
[Crossref]

J. Bini, J. Spain, K. S. Nehal, V. Hazelwood, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance,” J. Biomed. Opt. 16(7), 076008 (2011).
[Crossref]

J. K. Karen, D. S. Gareau, S. W. Dusza, M. Tudisco, M. Rajadhyaksha, and K. S. Nehal, “Detection of basal cell carcinomas in Mohs excisions with fluorescence confocal mosaicing microscopy,” Br. J. Dermatol. 160(6), 1242–1250 (2009).
[Crossref]

D. S. Gareau, Y. Li, B. Huang, Z. Eastman, K. S. Nehal, and M. Rajadhyaksha, “Confocal mosaicing microscopy in Mohs skin excisions: feasibility of rapid surgical pathology,” J. Biomed. Opt. 13(5), 054001 (2008).
[Crossref]

Paver, R.

I. Leibovitch, S. C. Huilgol, D. Selva, S. Richards, and R. Paver, “Basal cell carcinoma treated with Mohs surgery in Australia II. Outcome at 5-year follow-up,” J. Am. Acad. Dermatol. 53(3), 452–457 (2005).
[Crossref]

Pellacani, G.

C. Longo, M. Rajadhyaksha, M. Ragazzi, K. S. Nehal, S. Gardini, E. Moscarella, A. Lallas, I. Zalaudek, S. Piana, G. Argenziano, and G. Pellacani, “Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue,” Br. J. Dermatol. 171(3), 561–570 (2014).
[Crossref]

Peterson, G.

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt. 18(6), 061227 (2013).
[Crossref]

Piana, S.

C. Longo, M. Rajadhyaksha, M. Ragazzi, K. S. Nehal, S. Gardini, E. Moscarella, A. Lallas, I. Zalaudek, S. Piana, G. Argenziano, and G. Pellacani, “Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue,” Br. J. Dermatol. 171(3), 561–570 (2014).
[Crossref]

Puig, S.

A. Bennàssar, A. Vilata, S. Puig, and J. Malvehy, “Ex vivo fluorescence confocal microscopy for fast evaluation of tumour margins during Mohs surgery,” Br. J. Dermatol. 170(2), 360–365 (2014).
[Crossref]

Quintana, L. M.

M. G. Giacomelli, T. Yoshitake, L. C. Cahill, H. Vardeh, L. M. Quintana, B. E. Faulkner-Jones, J. Brooker, J. L. Connolly, and J. G. Fujimoto, “Multiscale nonlinear microscopy and widefield white light imaging enables rapid histological imaging of surgical specimen margins,” Biomed. Opt. Express 9(5), 2457–2475 (2018).
[Crossref]

T. Yoshitake, M. G. Giacomelli, L. M. Quintana, H. Vardeh, L. C. Cahill, B. E. Faulkner-Jones, J. L. Connolly, D. Do, and J. G. Fujimoto, “Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation,” Sci. Rep. 8(1), 4476 (2018).
[Crossref]

Ragazzi, M.

C. Longo, M. Rajadhyaksha, M. Ragazzi, K. S. Nehal, S. Gardini, E. Moscarella, A. Lallas, I. Zalaudek, S. Piana, G. Argenziano, and G. Pellacani, “Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue,” Br. J. Dermatol. 171(3), 561–570 (2014).
[Crossref]

Rajadhyaksha, M.

C. Longo, M. Rajadhyaksha, M. Ragazzi, K. S. Nehal, S. Gardini, E. Moscarella, A. Lallas, I. Zalaudek, S. Piana, G. Argenziano, and G. Pellacani, “Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue,” Br. J. Dermatol. 171(3), 561–570 (2014).
[Crossref]

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt. 18(6), 061227 (2013).
[Crossref]

J. Bini, J. Spain, K. S. Nehal, V. Hazelwood, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance,” J. Biomed. Opt. 16(7), 076008 (2011).
[Crossref]

J. K. Karen, D. S. Gareau, S. W. Dusza, M. Tudisco, M. Rajadhyaksha, and K. S. Nehal, “Detection of basal cell carcinomas in Mohs excisions with fluorescence confocal mosaicing microscopy,” Br. J. Dermatol. 160(6), 1242–1250 (2009).
[Crossref]

D. S. Gareau, Y. Li, B. Huang, Z. Eastman, K. S. Nehal, and M. Rajadhyaksha, “Confocal mosaicing microscopy in Mohs skin excisions: feasibility of rapid surgical pathology,” J. Biomed. Opt. 13(5), 054001 (2008).
[Crossref]

Reder, N. P.

W. Xie, Y. Chen, Y. Wang, L. Wei, C. Yin, A. K. Glaser, M. E. Fauver, E. J. Seibel, S. M. Dintzis, J. C. Vaughan, N. P. Reder, and J. T. C. Liu, “Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins,” J. Biomed. Opt. 24(02), 1–11 (2019).
[Crossref]

Richards, S.

I. Leibovitch, S. C. Huilgol, D. Selva, S. Richards, and R. Paver, “Basal cell carcinoma treated with Mohs surgery in Australia II. Outcome at 5-year follow-up,” J. Am. Acad. Dermatol. 53(3), 452–457 (2005).
[Crossref]

Rogers, H. W.

H. W. Rogers, M. A. Weinstock, S. R. Feldman, and B. M. Coldiron, “Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012,” JAMA Dermatol. 151(10), 1081–1086 (2015).
[Crossref]

Rosen, S.

L. C. Cahill, J. G. Fujimoto, M. G. Giacomelli, T. Yoshitake, Y. Wu, D. I. Lin, H. Ye, O. M. Carrasco-Zevallos, A. A. Wagner, and S. Rosen, “Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study,” Mod. Pathol. (2019).

Schmolze, D. B.

T. Yoshitake, M. G. Giacomelli, L. C. Cahill, D. B. Schmolze, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, and J. G. Fujimoto, “Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue,” J. Biomed. Opt. 21(12), 126021 (2016).
[Crossref]

Y. K. Tao, D. Shen, Y. Sheikine, O. O. Ahsen, H. H. Wang, D. B. Schmolze, N. B. Johnson, J. S. Brooker, A. E. Cable, J. L. Connolly, and J. G. Fujimoto, “Assessment of breast pathologies using nonlinear microscopy,” Proc. Natl. Acad. Sci. 111(43), 15304–15309 (2014).
[Crossref]

Seibel, E. J.

W. Xie, Y. Chen, Y. Wang, L. Wei, C. Yin, A. K. Glaser, M. E. Fauver, E. J. Seibel, S. M. Dintzis, J. C. Vaughan, N. P. Reder, and J. T. C. Liu, “Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins,” J. Biomed. Opt. 24(02), 1–11 (2019).
[Crossref]

Seltzer, E.

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt. 18(6), 061227 (2013).
[Crossref]

Selva, D.

I. Leibovitch, S. C. Huilgol, D. Selva, S. Richards, and R. Paver, “Basal cell carcinoma treated with Mohs surgery in Australia II. Outcome at 5-year follow-up,” J. Am. Acad. Dermatol. 53(3), 452–457 (2005).
[Crossref]

Sheikine, Y.

Y. K. Tao, D. Shen, Y. Sheikine, O. O. Ahsen, H. H. Wang, D. B. Schmolze, N. B. Johnson, J. S. Brooker, A. E. Cable, J. L. Connolly, and J. G. Fujimoto, “Assessment of breast pathologies using nonlinear microscopy,” Proc. Natl. Acad. Sci. 111(43), 15304–15309 (2014).
[Crossref]

Shen, D.

Y. K. Tao, D. Shen, Y. Sheikine, O. O. Ahsen, H. H. Wang, D. B. Schmolze, N. B. Johnson, J. S. Brooker, A. E. Cable, J. L. Connolly, and J. G. Fujimoto, “Assessment of breast pathologies using nonlinear microscopy,” Proc. Natl. Acad. Sci. 111(43), 15304–15309 (2014).
[Crossref]

Simpson, E.

D. S. Gareau, A. Bar, N. Snaveley, K. Lee, N. Chen, N. Swanson, E. Simpson, and S. Jacques, “Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions,” J. Biomed. Opt. 17(6), 066018 (2012).
[Crossref]

Snaveley, N.

D. S. Gareau, A. Bar, N. Snaveley, K. Lee, N. Chen, N. Swanson, E. Simpson, and S. Jacques, “Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions,” J. Biomed. Opt. 17(6), 066018 (2012).
[Crossref]

Soulos, P.

K. V. Viola, M. Jhaveri, P. Soulos, R. Turner, W. Tolpinrud, D. Doshi, and C. P. Gross, “Mohs micrographic surgery and surgical excision for nonmelanoma skin cancer treatment in the Medicare population,” Arch. Dermatol. 148(4), 473–477 (2012).
[Crossref]

Spain, J.

J. Bini, J. Spain, K. S. Nehal, V. Hazelwood, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance,” J. Biomed. Opt. 16(7), 076008 (2011).
[Crossref]

Sun, C.-K.

L. C. Cahill, M. G. Giacomelli, T. Yoshitake, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, C.-K. Sun, and J. G. Fujimoto, “Rapid virtual hematoxylin and eosin histology of breast tissue specimens using a compact fluorescence nonlinear microscope,” Lab. Invest. 98(1), 150–160 (2018).
[Crossref]

Swanson, N.

D. S. Gareau, A. Bar, N. Snaveley, K. Lee, N. Chen, N. Swanson, E. Simpson, and S. Jacques, “Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions,” J. Biomed. Opt. 17(6), 066018 (2012).
[Crossref]

Tao, Y. K.

Y. K. Tao, D. Shen, Y. Sheikine, O. O. Ahsen, H. H. Wang, D. B. Schmolze, N. B. Johnson, J. S. Brooker, A. E. Cable, J. L. Connolly, and J. G. Fujimoto, “Assessment of breast pathologies using nonlinear microscopy,” Proc. Natl. Acad. Sci. 111(43), 15304–15309 (2014).
[Crossref]

Tierney, E. P.

E. P. Tierney and C. W. Hanke, “Cost effectiveness of Mohs micrographic surgery: review of the literature,” J. Drugs Dermatol. 8(10), 914–922 (2009).

Toledo-Crow, R.

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt. 18(6), 061227 (2013).
[Crossref]

Tolpinrud, W.

K. V. Viola, M. Jhaveri, P. Soulos, R. Turner, W. Tolpinrud, D. Doshi, and C. P. Gross, “Mohs micrographic surgery and surgical excision for nonmelanoma skin cancer treatment in the Medicare population,” Arch. Dermatol. 148(4), 473–477 (2012).
[Crossref]

Tromberg, B. J.

M. Balu, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, B. J. Tromberg, and K. M. Kelly, “In Vivo Multiphoton Microscopy of Basal Cell Carcinoma,” JAMA Dermatol. 151(10), 1068 (2015).
[Crossref]

Tudisco, M.

J. K. Karen, D. S. Gareau, S. W. Dusza, M. Tudisco, M. Rajadhyaksha, and K. S. Nehal, “Detection of basal cell carcinomas in Mohs excisions with fluorescence confocal mosaicing microscopy,” Br. J. Dermatol. 160(6), 1242–1250 (2009).
[Crossref]

Turner, R.

K. V. Viola, M. Jhaveri, P. Soulos, R. Turner, W. Tolpinrud, D. Doshi, and C. P. Gross, “Mohs micrographic surgery and surgical excision for nonmelanoma skin cancer treatment in the Medicare population,” Arch. Dermatol. 148(4), 473–477 (2012).
[Crossref]

Vardeh, H.

T. Yoshitake, M. G. Giacomelli, L. M. Quintana, H. Vardeh, L. C. Cahill, B. E. Faulkner-Jones, J. L. Connolly, D. Do, and J. G. Fujimoto, “Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation,” Sci. Rep. 8(1), 4476 (2018).
[Crossref]

L. C. Cahill, M. G. Giacomelli, T. Yoshitake, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, C.-K. Sun, and J. G. Fujimoto, “Rapid virtual hematoxylin and eosin histology of breast tissue specimens using a compact fluorescence nonlinear microscope,” Lab. Invest. 98(1), 150–160 (2018).
[Crossref]

M. G. Giacomelli, T. Yoshitake, L. C. Cahill, H. Vardeh, L. M. Quintana, B. E. Faulkner-Jones, J. Brooker, J. L. Connolly, and J. G. Fujimoto, “Multiscale nonlinear microscopy and widefield white light imaging enables rapid histological imaging of surgical specimen margins,” Biomed. Opt. Express 9(5), 2457–2475 (2018).
[Crossref]

M. G. Giacomelli, L. Husvogt, H. Vardeh, B. E. Faulkner-Jones, J. Hornegger, J. L. Connolly, and J. G. Fujimoto, “Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging,” PLoS One 11(8), e0159337 (2016).
[Crossref]

T. Yoshitake, M. G. Giacomelli, L. C. Cahill, D. B. Schmolze, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, and J. G. Fujimoto, “Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue,” J. Biomed. Opt. 21(12), 126021 (2016).
[Crossref]

Vaughan, J. C.

W. Xie, Y. Chen, Y. Wang, L. Wei, C. Yin, A. K. Glaser, M. E. Fauver, E. J. Seibel, S. M. Dintzis, J. C. Vaughan, N. P. Reder, and J. T. C. Liu, “Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins,” J. Biomed. Opt. 24(02), 1–11 (2019).
[Crossref]

Vilata, A.

A. Bennàssar, A. Vilata, S. Puig, and J. Malvehy, “Ex vivo fluorescence confocal microscopy for fast evaluation of tumour margins during Mohs surgery,” Br. J. Dermatol. 170(2), 360–365 (2014).
[Crossref]

Viola, K. V.

K. V. Viola, M. Jhaveri, P. Soulos, R. Turner, W. Tolpinrud, D. Doshi, and C. P. Gross, “Mohs micrographic surgery and surgical excision for nonmelanoma skin cancer treatment in the Medicare population,” Arch. Dermatol. 148(4), 473–477 (2012).
[Crossref]

Wagner, A. A.

L. C. Cahill, J. G. Fujimoto, M. G. Giacomelli, T. Yoshitake, Y. Wu, D. I. Lin, H. Ye, O. M. Carrasco-Zevallos, A. A. Wagner, and S. Rosen, “Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study,” Mod. Pathol. (2019).

Wang, H. H.

Y. K. Tao, D. Shen, Y. Sheikine, O. O. Ahsen, H. H. Wang, D. B. Schmolze, N. B. Johnson, J. S. Brooker, A. E. Cable, J. L. Connolly, and J. G. Fujimoto, “Assessment of breast pathologies using nonlinear microscopy,” Proc. Natl. Acad. Sci. 111(43), 15304–15309 (2014).
[Crossref]

Wang, Y.

W. Xie, Y. Chen, Y. Wang, L. Wei, C. Yin, A. K. Glaser, M. E. Fauver, E. J. Seibel, S. M. Dintzis, J. C. Vaughan, N. P. Reder, and J. T. C. Liu, “Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins,” J. Biomed. Opt. 24(02), 1–11 (2019).
[Crossref]

Wei, L.

W. Xie, Y. Chen, Y. Wang, L. Wei, C. Yin, A. K. Glaser, M. E. Fauver, E. J. Seibel, S. M. Dintzis, J. C. Vaughan, N. P. Reder, and J. T. C. Liu, “Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins,” J. Biomed. Opt. 24(02), 1–11 (2019).
[Crossref]

Weinstock, M. A.

H. W. Rogers, M. A. Weinstock, S. R. Feldman, and B. M. Coldiron, “Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012,” JAMA Dermatol. 151(10), 1081–1086 (2015).
[Crossref]

Wu, Y.

L. C. Cahill, J. G. Fujimoto, M. G. Giacomelli, T. Yoshitake, Y. Wu, D. I. Lin, H. Ye, O. M. Carrasco-Zevallos, A. A. Wagner, and S. Rosen, “Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study,” Mod. Pathol. (2019).

Xie, W.

W. Xie, Y. Chen, Y. Wang, L. Wei, C. Yin, A. K. Glaser, M. E. Fauver, E. J. Seibel, S. M. Dintzis, J. C. Vaughan, N. P. Reder, and J. T. C. Liu, “Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins,” J. Biomed. Opt. 24(02), 1–11 (2019).
[Crossref]

Ye, H.

L. C. Cahill, J. G. Fujimoto, M. G. Giacomelli, T. Yoshitake, Y. Wu, D. I. Lin, H. Ye, O. M. Carrasco-Zevallos, A. A. Wagner, and S. Rosen, “Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study,” Mod. Pathol. (2019).

Yin, C.

W. Xie, Y. Chen, Y. Wang, L. Wei, C. Yin, A. K. Glaser, M. E. Fauver, E. J. Seibel, S. M. Dintzis, J. C. Vaughan, N. P. Reder, and J. T. C. Liu, “Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins,” J. Biomed. Opt. 24(02), 1–11 (2019).
[Crossref]

Yoshitake, T.

M. G. Giacomelli, T. Yoshitake, L. C. Cahill, H. Vardeh, L. M. Quintana, B. E. Faulkner-Jones, J. Brooker, J. L. Connolly, and J. G. Fujimoto, “Multiscale nonlinear microscopy and widefield white light imaging enables rapid histological imaging of surgical specimen margins,” Biomed. Opt. Express 9(5), 2457–2475 (2018).
[Crossref]

L. C. Cahill, M. G. Giacomelli, T. Yoshitake, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, C.-K. Sun, and J. G. Fujimoto, “Rapid virtual hematoxylin and eosin histology of breast tissue specimens using a compact fluorescence nonlinear microscope,” Lab. Invest. 98(1), 150–160 (2018).
[Crossref]

T. Yoshitake, M. G. Giacomelli, L. M. Quintana, H. Vardeh, L. C. Cahill, B. E. Faulkner-Jones, J. L. Connolly, D. Do, and J. G. Fujimoto, “Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation,” Sci. Rep. 8(1), 4476 (2018).
[Crossref]

T. Yoshitake, M. G. Giacomelli, L. C. Cahill, D. B. Schmolze, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, and J. G. Fujimoto, “Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue,” J. Biomed. Opt. 21(12), 126021 (2016).
[Crossref]

L. C. Cahill, J. G. Fujimoto, M. G. Giacomelli, T. Yoshitake, Y. Wu, D. I. Lin, H. Ye, O. M. Carrasco-Zevallos, A. A. Wagner, and S. Rosen, “Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study,” Mod. Pathol. (2019).

Zachary, C. B.

M. Balu, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, B. J. Tromberg, and K. M. Kelly, “In Vivo Multiphoton Microscopy of Basal Cell Carcinoma,” JAMA Dermatol. 151(10), 1068 (2015).
[Crossref]

Zalaudek, I.

C. Longo, M. Rajadhyaksha, M. Ragazzi, K. S. Nehal, S. Gardini, E. Moscarella, A. Lallas, I. Zalaudek, S. Piana, G. Argenziano, and G. Pellacani, “Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue,” Br. J. Dermatol. 171(3), 561–570 (2014).
[Crossref]

Arch. Dermatol. (1)

K. V. Viola, M. Jhaveri, P. Soulos, R. Turner, W. Tolpinrud, D. Doshi, and C. P. Gross, “Mohs micrographic surgery and surgical excision for nonmelanoma skin cancer treatment in the Medicare population,” Arch. Dermatol. 148(4), 473–477 (2012).
[Crossref]

Biomed. Opt. Express (1)

Br. J. Dermatol. (3)

C. Longo, M. Rajadhyaksha, M. Ragazzi, K. S. Nehal, S. Gardini, E. Moscarella, A. Lallas, I. Zalaudek, S. Piana, G. Argenziano, and G. Pellacani, “Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue,” Br. J. Dermatol. 171(3), 561–570 (2014).
[Crossref]

A. Bennàssar, A. Vilata, S. Puig, and J. Malvehy, “Ex vivo fluorescence confocal microscopy for fast evaluation of tumour margins during Mohs surgery,” Br. J. Dermatol. 170(2), 360–365 (2014).
[Crossref]

J. K. Karen, D. S. Gareau, S. W. Dusza, M. Tudisco, M. Rajadhyaksha, and K. S. Nehal, “Detection of basal cell carcinomas in Mohs excisions with fluorescence confocal mosaicing microscopy,” Br. J. Dermatol. 160(6), 1242–1250 (2009).
[Crossref]

J. Am. Acad. Dermatol. (1)

I. Leibovitch, S. C. Huilgol, D. Selva, S. Richards, and R. Paver, “Basal cell carcinoma treated with Mohs surgery in Australia II. Outcome at 5-year follow-up,” J. Am. Acad. Dermatol. 53(3), 452–457 (2005).
[Crossref]

J. Biomed. Opt. (7)

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt. 18(6), 061227 (2013).
[Crossref]

J. Bini, J. Spain, K. S. Nehal, V. Hazelwood, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance,” J. Biomed. Opt. 16(7), 076008 (2011).
[Crossref]

D. S. Gareau, Y. Li, B. Huang, Z. Eastman, K. S. Nehal, and M. Rajadhyaksha, “Confocal mosaicing microscopy in Mohs skin excisions: feasibility of rapid surgical pathology,” J. Biomed. Opt. 13(5), 054001 (2008).
[Crossref]

D. S. Gareau, “Feasibility of digitally stained multimodal confocal mosaics to simulate histopathology,” J. Biomed. Opt. 14(3), 034050 (2009).
[Crossref]

D. S. Gareau, A. Bar, N. Snaveley, K. Lee, N. Chen, N. Swanson, E. Simpson, and S. Jacques, “Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions,” J. Biomed. Opt. 17(6), 066018 (2012).
[Crossref]

W. Xie, Y. Chen, Y. Wang, L. Wei, C. Yin, A. K. Glaser, M. E. Fauver, E. J. Seibel, S. M. Dintzis, J. C. Vaughan, N. P. Reder, and J. T. C. Liu, “Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins,” J. Biomed. Opt. 24(02), 1–11 (2019).
[Crossref]

T. Yoshitake, M. G. Giacomelli, L. C. Cahill, D. B. Schmolze, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, and J. G. Fujimoto, “Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue,” J. Biomed. Opt. 21(12), 126021 (2016).
[Crossref]

J. Drugs Dermatol. (1)

E. P. Tierney and C. W. Hanke, “Cost effectiveness of Mohs micrographic surgery: review of the literature,” J. Drugs Dermatol. 8(10), 914–922 (2009).

JAMA Dermatol. (2)

H. W. Rogers, M. A. Weinstock, S. R. Feldman, and B. M. Coldiron, “Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012,” JAMA Dermatol. 151(10), 1081–1086 (2015).
[Crossref]

M. Balu, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, B. J. Tromberg, and K. M. Kelly, “In Vivo Multiphoton Microscopy of Basal Cell Carcinoma,” JAMA Dermatol. 151(10), 1068 (2015).
[Crossref]

Lab. Invest. (1)

L. C. Cahill, M. G. Giacomelli, T. Yoshitake, H. Vardeh, B. E. Faulkner-Jones, J. L. Connolly, C.-K. Sun, and J. G. Fujimoto, “Rapid virtual hematoxylin and eosin histology of breast tissue specimens using a compact fluorescence nonlinear microscope,” Lab. Invest. 98(1), 150–160 (2018).
[Crossref]

PLoS One (1)

M. G. Giacomelli, L. Husvogt, H. Vardeh, B. E. Faulkner-Jones, J. Hornegger, J. L. Connolly, and J. G. Fujimoto, “Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging,” PLoS One 11(8), e0159337 (2016).
[Crossref]

Proc. Natl. Acad. Sci. (1)

Y. K. Tao, D. Shen, Y. Sheikine, O. O. Ahsen, H. H. Wang, D. B. Schmolze, N. B. Johnson, J. S. Brooker, A. E. Cable, J. L. Connolly, and J. G. Fujimoto, “Assessment of breast pathologies using nonlinear microscopy,” Proc. Natl. Acad. Sci. 111(43), 15304–15309 (2014).
[Crossref]

Sci. Rep. (1)

T. Yoshitake, M. G. Giacomelli, L. M. Quintana, H. Vardeh, L. C. Cahill, B. E. Faulkner-Jones, J. L. Connolly, D. Do, and J. G. Fujimoto, “Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation,” Sci. Rep. 8(1), 4476 (2018).
[Crossref]

Other (2)

American Cancer Society, “Cancer Facts & Figures 2018,” http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2016/ .

L. C. Cahill, J. G. Fujimoto, M. G. Giacomelli, T. Yoshitake, Y. Wu, D. I. Lin, H. Ye, O. M. Carrasco-Zevallos, A. A. Wagner, and S. Rosen, “Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study,” Mod. Pathol. (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Method used to NLM image Mohs surgical specimens (red) with precise registration to FSA histology. A) Saucer-shaped tissue specimen is removed during surgery. B) Relaxing incisions are made to partially flatten the tissue. C) The tissue is fully flattened against a heat extractor and frozen in optimal cutting temperature (OCT) media. D) The tissue is cryosectioned to produce an FSA slide for margin evaluation. E) At this stage the block is no longer required for diagnosis and is discarded. An additional FSA section and a thicker volume of frozen tissue are sectioned for study immediately adjacent to the final FSA plane used during margin evaluation. F) Thawing the frozen block distorts the bulk tissue, but there is minimal distortion of the section used for NLM imaging.
Fig. 2.
Fig. 2. Normal skin removed during Mohs surgery. High magnification of adipose tissue (green inset), shows adipocytes with red surgical marking ink. Fat is difficult to freeze and appears distorted in FSA histology, while NLM better represents the original tissue appearance. Higher magnification views of the epidermis (blue) show normal structure with sebaceous glands, hair follicles and a hidrocystoma. Full resolution: http://imstore.mit.edu/mohs-boe/Fig2/Fig2.html.
Fig. 3.
Fig. 3. Mohs margin with mixed nodular and infiltrative pattern BCC. Red surgical marking ink is visible along the top of the figure (red arrows) in both the NLM and FSA images, while green surgical ink (green arrow), which lacks fluorescence, is visible only in the FSA image. Full resolution: http://imstore.mit.edu/mohs-boe/Fig3/Fig3.html.
Fig. 4.
Fig. 4. Excision with large nodular BCC. The FSA section intercepts the edge of the tumor, while the NLM image is from a section tens of microns further into the tumor, showing a larger area of nodular BCC. At low magnification, multiple nodules of basaloid tumor with peripheral palisading form a large deep dermal tumor mass. At higher magnification, palisading of tumor cells at the periphery of the nodule and peritumoral stromal mucin, both characteristics of basal cell carcinomas, are seen equally well on NLM and FSA images. Full resolution: http://imstore.mit.edu/mohs-boe/Fig4/Fig4.html.
Fig. 5.
Fig. 5. Mohs excision with a large mass of infiltrative CC. The central portion of each half of the excision contains nests and cords of tumor cells that irregularly infiltrate into the deep fatty subcutaneous tissue. The overlying epidermis is histologically normal. Full resolution: http://imstore.mit.edu/mohs-boe/Fig5/Fig5.html.
Fig. 6.
Fig. 6. Mohs excision with well differentiated squamous cell carcinoma (SCC). The high magnification view (bottom) shows a region of invasion. http://imstore.mit.edu/mohs-boe/Fig6/Fig6.html.
Fig. 7.
Fig. 7. SHG (left column) and AO/SR101 fluorescence NLM imaging (center column) image of fresh human skin (not frozen) both before (top row) and after (bottom) fixation and processing on a vacuum infiltration processor. SHG is almost completely unaffected by vacuum infiltration processing because it is an intrinsic signal produced by collagen, which is not soluble in either ethanol or xylene. In contrast, the highly soluble AO and SR101 labels are reduced to undetectable levels after processing. In the right column, a magnified view of a sebaceous gland with SHG (blue), AO (red) and SR101 (green) shows the collagen is unchanged after vacuum processing, but the fluorescent signal from cell nuclei is reduced to undetectable levels.
Fig. 8.
Fig. 8. Demonstration of IHC on tissue after AO/SR101 labelling and washout. Melan-A (left panel) highlights the cytoplasm of an isolated melanocyte within the sebaceous gland, with a high signal and without non-specific labeling of other cell types. Similarly, we observed high signal and specific cytokeratin labeling of the basal layer is a sebaceous lobule (right panel). These results are consistent with the finding that AO/SR101 are extracted from tissue.

Metrics