Abstract

In dynamic optical coherence elastography (OCE), surface acoustic waves are the predominant perturbations. They constrain the quantification of elastic modulus to the direction of wave propagation only along the surface of tissues, and disregard elasticity gradients along depth. Longitudinal shear waves (LSW), on the other hand, can be generated at the surface of the tissue and propagate through depth with desirable properties for OCE: (1) LSW travel at the shear wave speed and can discriminate elasticity gradients along depth, and (2) the displacement of LSW is longitudinally polarized along the direction of propagation; therefore, it can be measured by a phase-sensitive optical coherence tomography system. In this study, we explore the capabilities of LSW generated by a circular glass plate in contact with a sample using numerical simulations and tissue-mimicking phantom experiments. Results demonstrate the potential of LSW in detecting an elasticity gradient along axial and lateral directions simultaneously. Finally, LSW are used for the elastography of ex vivo mouse brain and demonstrate important implications in in vivo and in situ measurements of local elasticity changes in brain and how they might correlate with the onset and progression of degenerative brain diseases.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms

Marjan Razani, Adrian Mariampillai, Cuiru Sun, Timothy W. H. Luk, Victor X. D. Yang, and Michael C. Kolios
Biomed. Opt. Express 3(5) 972-980 (2012)

Nonlinear characterization of elasticity using quantitative optical coherence elastography

Yi Qiu, Farzana R. Zaki, Namas Chandra, Shawn A. Chester, and Xuan Liu
Biomed. Opt. Express 7(11) 4702-4710 (2016)

Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography

Shang Wang, Andrew L. Lopez, Yuka Morikawa, Ge Tao, Jiasong Li, Irina V. Larina, James F. Martin, and Kirill V. Larin
Biomed. Opt. Express 5(7) 1980-1992 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Medicine Biol. 56, R1 (2011).
    [Crossref]
  2. J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22, 246–265 (2016).
    [Crossref]
  3. S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. biophotonics 8, 279–302 (2015).
    [Crossref]
  4. B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11, 215 (2017).
    [Crossref]
  5. K. V. Larin and D. D. Sampson, “Optical coherence elastography - oct at work in tissue biomechanics [invited],” Biomed. Opt. Express 8, 1172–1202 (2017).
    [Crossref] [PubMed]
  6. M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J Biomed Opt 22, 1–28 (2017).
    [Crossref] [PubMed]
  7. R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17, 100501 (2012).
    [Crossref] [PubMed]
  8. C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37, 1625–1627 (2012).
    [Crossref] [PubMed]
  9. S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (swi-oct) for ocular tissue biomechanics,” Opt. letters 39, 41–44 (2014).
    [Crossref]
  10. F. Zvietcovich, J. Yao, J. P. Rolland, and K. J. Parker, “Experimental classification of surface waves in optical coherence elastography,” in SPIE BiOS, vol. 9710 (SPIE, 2016), p. 97100Z.
  11. I. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (SpringerUS, 2013).
  12. M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating elastic anisotropy of the porcine cornea as a function of intraocular pressure with optical coherence elastography,” J Refract Surg 32, 562–567 (2016).
    [Crossref] [PubMed]
  13. M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the effects of riboflavin/uv-a and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography,” Invest Ophthalmol Vis Sci 57, OCT112 (2016).
    [Crossref] [PubMed]
  14. L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4d imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
    [Crossref]
  15. K. F. Graff, Wave motion in elastic solids (Oxford University Press, 1975).
  16. A. Abass, S. Hayes, N. White, T. Sorensen, and K. M. Meek, “Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution,” J R Soc Interface 12, 20140717 (2015).
    [Crossref] [PubMed]
  17. M. C. Murphy, J. R. Huston, C. R. J. Jack, K. J. Glaser, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Decreased brain stiffness in alzheimer’s disease determined by magnetic resonance elastography,” J. magnetic resonance imaging : JMRI 34, 494–498 (2011).
    [Crossref]
  18. A. Lipp, R. Trbojevic, F. Paul, A. Fehlner, S. Hirsch, M. Scheel, C. Noack, J. Braun, and I. Sack, “Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic parkinson’s disease,” NeuroImage. Clin. 3, 381–387 (2013).
    [Crossref]
  19. S. Catheline and N. Benech, “Longitudinal shear wave and transverse dilatational wave in solids,” J Acoust Soc Am 137, EL200–5 (2015).
    [Crossref] [PubMed]
  20. E. L. Carstensen and K. J. Parker, “Oestreicher and elastography,” J Acoust Soc Am 138, 2317–2325 (2015).
    [Crossref] [PubMed]
  21. L. Sandrin, S. Catheline, M. Tanter, X. Hennequin, and M. Fink, “Time-resolved pulsed elastography with ultrafast ultrasonic imaging,” Ultrason. Imaging 21, 259–272 (1999).
    [Crossref]
  22. J. Zhu, Y. Miao, L. Qi, Y. Qu, Y. He, Q. Yang, and Z. Chen, “Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography,” Appl Phys Lett 110, 201101 (2017).
    [Crossref] [PubMed]
  23. J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt Lett 43, 2388–2391 (2018).
    [Crossref] [PubMed]
  24. M. Zhang, P. Nigwekar, B. Castaneda, K. Hoyt, J. V. Joseph, A. di Sant’Agnese, E. M. Messing, J. G. Strang, D. J. Rubens, and K. J. Parker, “Quantitative characterization of viscoelastic properties of human prostate correlated with histology,” Ultrasound Medicine Biol. 34, 1033–1042 (2008).
    [Crossref]
  25. M. Bigot, F. Chauveau, O. Beuf, and S. A. Lambert, “Magnetic resonance elastography of rodent brain,” Front. neurology 9, 1010 (2018).
    [Crossref]
  26. F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22, 035010 (2017).
    [Crossref]
  27. S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18, 121505 (2013).
    [Crossref] [PubMed]
  28. T. Loupas, R. B. Peterson, and R. W. Gill, “Experimental evaluation of velocity and power estimation for ultrasound blood flow imaging, by means of a two-dimensional autocorrelation approach,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42, 689–699 (1995).
    [Crossref]
  29. K. Hoyt, B. Castaneda, and K. J. Parker, “Two-dimensional sonoelastographic shear velocity imaging,” Ultrasound Medicine Biol. 34, 276–288 (2008).
    [Crossref]
  30. S. Song, N. M. Le, Z. Huang, T. Shen, and R. K. Wang, “Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source,” Opt. Lett. 40, 5007–5010 (2015).
    [Crossref] [PubMed]
  31. M. S. Hepburn, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Analysis of spatial resolution in phase-sensitive compression optical coherence elastography,” Biomed. Opt. Express 10, 1496–1513 (2019).
    [Crossref] [PubMed]
  32. K. J. Parker, J. Ormachea, F. Zvietcovich, and B. Castaneda, “Reverberant shear wave fields and estimation of tissue properties,” Phys Med Biol 62, 1046–1061 (2017).
    [Crossref] [PubMed]
  33. J. Zhang, M. A. Green, R. Sinkus, and L. E. Bilston, “Viscoelastic properties of human cerebellum using magnetic resonance elastography,” J. Biomech. 44, 1909–1913 (2011).
    [Crossref] [PubMed]
  34. M. C. Murphy, R. Huston, John, J. Jack, R. Clifford, K. J. Glaser, M. L. Senjem, J. Chen, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Measuring the characteristic topography of brain stiffness with magnetic resonance elastography,” PloS one 8, e81668 (2013).
    [Crossref] [PubMed]
  35. C. Klein, E. G. Hain, J. Braun, K. Riek, S. Mueller, B. Steiner, and I. Sack, “Enhanced adult neurogenesis increases brain stiffness: In vivo magnetic resonance elastography in a mouse model of dopamine depletion,” PLOS ONE 9, e92582 (2014).
    [Crossref] [PubMed]
  36. G. R. Ge, F. Zvietcovich, J. P. Rolland, H. Mestre, M. Giannetto, M. Nedergaard, and K. J. Parker, “A preliminary study on using reverberant shear wave fields in optical coherence elastography to examine mice brain ex vivo,” (SPIE, 2019).
  37. H. Mestre, J. Tithof, T. Du, W. Song, W. Peng, A. M. Sweeney, G. Olveda, J. H. Thomas, M. Nedergaard, and D. H. Kelley, “Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension,” Nat Commun 9, 4878 (2018).
    [Crossref] [PubMed]

2019 (1)

2018 (3)

H. Mestre, J. Tithof, T. Du, W. Song, W. Peng, A. M. Sweeney, G. Olveda, J. H. Thomas, M. Nedergaard, and D. H. Kelley, “Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension,” Nat Commun 9, 4878 (2018).
[Crossref] [PubMed]

M. Bigot, F. Chauveau, O. Beuf, and S. A. Lambert, “Magnetic resonance elastography of rodent brain,” Front. neurology 9, 1010 (2018).
[Crossref]

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt Lett 43, 2388–2391 (2018).
[Crossref] [PubMed]

2017 (6)

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22, 035010 (2017).
[Crossref]

K. J. Parker, J. Ormachea, F. Zvietcovich, and B. Castaneda, “Reverberant shear wave fields and estimation of tissue properties,” Phys Med Biol 62, 1046–1061 (2017).
[Crossref] [PubMed]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11, 215 (2017).
[Crossref]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - oct at work in tissue biomechanics [invited],” Biomed. Opt. Express 8, 1172–1202 (2017).
[Crossref] [PubMed]

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J Biomed Opt 22, 1–28 (2017).
[Crossref] [PubMed]

J. Zhu, Y. Miao, L. Qi, Y. Qu, Y. He, Q. Yang, and Z. Chen, “Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography,” Appl Phys Lett 110, 201101 (2017).
[Crossref] [PubMed]

2016 (4)

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating elastic anisotropy of the porcine cornea as a function of intraocular pressure with optical coherence elastography,” J Refract Surg 32, 562–567 (2016).
[Crossref] [PubMed]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the effects of riboflavin/uv-a and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography,” Invest Ophthalmol Vis Sci 57, OCT112 (2016).
[Crossref] [PubMed]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4d imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22, 246–265 (2016).
[Crossref]

2015 (5)

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. biophotonics 8, 279–302 (2015).
[Crossref]

A. Abass, S. Hayes, N. White, T. Sorensen, and K. M. Meek, “Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution,” J R Soc Interface 12, 20140717 (2015).
[Crossref] [PubMed]

S. Catheline and N. Benech, “Longitudinal shear wave and transverse dilatational wave in solids,” J Acoust Soc Am 137, EL200–5 (2015).
[Crossref] [PubMed]

E. L. Carstensen and K. J. Parker, “Oestreicher and elastography,” J Acoust Soc Am 138, 2317–2325 (2015).
[Crossref] [PubMed]

S. Song, N. M. Le, Z. Huang, T. Shen, and R. K. Wang, “Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source,” Opt. Lett. 40, 5007–5010 (2015).
[Crossref] [PubMed]

2014 (2)

C. Klein, E. G. Hain, J. Braun, K. Riek, S. Mueller, B. Steiner, and I. Sack, “Enhanced adult neurogenesis increases brain stiffness: In vivo magnetic resonance elastography in a mouse model of dopamine depletion,” PLOS ONE 9, e92582 (2014).
[Crossref] [PubMed]

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (swi-oct) for ocular tissue biomechanics,” Opt. letters 39, 41–44 (2014).
[Crossref]

2013 (3)

A. Lipp, R. Trbojevic, F. Paul, A. Fehlner, S. Hirsch, M. Scheel, C. Noack, J. Braun, and I. Sack, “Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic parkinson’s disease,” NeuroImage. Clin. 3, 381–387 (2013).
[Crossref]

M. C. Murphy, R. Huston, John, J. Jack, R. Clifford, K. J. Glaser, M. L. Senjem, J. Chen, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Measuring the characteristic topography of brain stiffness with magnetic resonance elastography,” PloS one 8, e81668 (2013).
[Crossref] [PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18, 121505 (2013).
[Crossref] [PubMed]

2012 (2)

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17, 100501 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37, 1625–1627 (2012).
[Crossref] [PubMed]

2011 (3)

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Medicine Biol. 56, R1 (2011).
[Crossref]

M. C. Murphy, J. R. Huston, C. R. J. Jack, K. J. Glaser, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Decreased brain stiffness in alzheimer’s disease determined by magnetic resonance elastography,” J. magnetic resonance imaging : JMRI 34, 494–498 (2011).
[Crossref]

J. Zhang, M. A. Green, R. Sinkus, and L. E. Bilston, “Viscoelastic properties of human cerebellum using magnetic resonance elastography,” J. Biomech. 44, 1909–1913 (2011).
[Crossref] [PubMed]

2008 (2)

K. Hoyt, B. Castaneda, and K. J. Parker, “Two-dimensional sonoelastographic shear velocity imaging,” Ultrasound Medicine Biol. 34, 276–288 (2008).
[Crossref]

M. Zhang, P. Nigwekar, B. Castaneda, K. Hoyt, J. V. Joseph, A. di Sant’Agnese, E. M. Messing, J. G. Strang, D. J. Rubens, and K. J. Parker, “Quantitative characterization of viscoelastic properties of human prostate correlated with histology,” Ultrasound Medicine Biol. 34, 1033–1042 (2008).
[Crossref]

1999 (1)

L. Sandrin, S. Catheline, M. Tanter, X. Hennequin, and M. Fink, “Time-resolved pulsed elastography with ultrafast ultrasonic imaging,” Ultrason. Imaging 21, 259–272 (1999).
[Crossref]

1995 (1)

T. Loupas, R. B. Peterson, and R. W. Gill, “Experimental evaluation of velocity and power estimation for ultrasound blood flow imaging, by means of a two-dimensional autocorrelation approach,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42, 689–699 (1995).
[Crossref]

Abass, A.

A. Abass, S. Hayes, N. White, T. Sorensen, and K. M. Meek, “Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution,” J R Soc Interface 12, 20140717 (2015).
[Crossref] [PubMed]

Adie, S. G.

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22, 246–265 (2016).
[Crossref]

Aglyamov, S. R.

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating elastic anisotropy of the porcine cornea as a function of intraocular pressure with optical coherence elastography,” J Refract Surg 32, 562–567 (2016).
[Crossref] [PubMed]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the effects of riboflavin/uv-a and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography,” Invest Ophthalmol Vis Sci 57, OCT112 (2016).
[Crossref] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17, 100501 (2012).
[Crossref] [PubMed]

Ambrozinski, L.

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J Biomed Opt 22, 1–28 (2017).
[Crossref] [PubMed]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4d imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Benech, N.

S. Catheline and N. Benech, “Longitudinal shear wave and transverse dilatational wave in solids,” J Acoust Soc Am 137, EL200–5 (2015).
[Crossref] [PubMed]

Beuf, O.

M. Bigot, F. Chauveau, O. Beuf, and S. A. Lambert, “Magnetic resonance elastography of rodent brain,” Front. neurology 9, 1010 (2018).
[Crossref]

Bigot, M.

M. Bigot, F. Chauveau, O. Beuf, and S. A. Lambert, “Magnetic resonance elastography of rodent brain,” Front. neurology 9, 1010 (2018).
[Crossref]

Bilston, L. E.

J. Zhang, M. A. Green, R. Sinkus, and L. E. Bilston, “Viscoelastic properties of human cerebellum using magnetic resonance elastography,” J. Biomech. 44, 1909–1913 (2011).
[Crossref] [PubMed]

Braun, J.

C. Klein, E. G. Hain, J. Braun, K. Riek, S. Mueller, B. Steiner, and I. Sack, “Enhanced adult neurogenesis increases brain stiffness: In vivo magnetic resonance elastography in a mouse model of dopamine depletion,” PLOS ONE 9, e92582 (2014).
[Crossref] [PubMed]

A. Lipp, R. Trbojevic, F. Paul, A. Fehlner, S. Hirsch, M. Scheel, C. Noack, J. Braun, and I. Sack, “Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic parkinson’s disease,” NeuroImage. Clin. 3, 381–387 (2013).
[Crossref]

Brown, C. N.

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22, 246–265 (2016).
[Crossref]

Carstensen, E. L.

E. L. Carstensen and K. J. Parker, “Oestreicher and elastography,” J Acoust Soc Am 138, 2317–2325 (2015).
[Crossref] [PubMed]

Castaneda, B.

K. J. Parker, J. Ormachea, F. Zvietcovich, and B. Castaneda, “Reverberant shear wave fields and estimation of tissue properties,” Phys Med Biol 62, 1046–1061 (2017).
[Crossref] [PubMed]

K. Hoyt, B. Castaneda, and K. J. Parker, “Two-dimensional sonoelastographic shear velocity imaging,” Ultrasound Medicine Biol. 34, 276–288 (2008).
[Crossref]

M. Zhang, P. Nigwekar, B. Castaneda, K. Hoyt, J. V. Joseph, A. di Sant’Agnese, E. M. Messing, J. G. Strang, D. J. Rubens, and K. J. Parker, “Quantitative characterization of viscoelastic properties of human prostate correlated with histology,” Ultrasound Medicine Biol. 34, 1033–1042 (2008).
[Crossref]

Catheline, S.

S. Catheline and N. Benech, “Longitudinal shear wave and transverse dilatational wave in solids,” J Acoust Soc Am 137, EL200–5 (2015).
[Crossref] [PubMed]

L. Sandrin, S. Catheline, M. Tanter, X. Hennequin, and M. Fink, “Time-resolved pulsed elastography with ultrafast ultrasonic imaging,” Ultrason. Imaging 21, 259–272 (1999).
[Crossref]

Chandrasekaran, S. N.

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22, 246–265 (2016).
[Crossref]

Chauveau, F.

M. Bigot, F. Chauveau, O. Beuf, and S. A. Lambert, “Magnetic resonance elastography of rodent brain,” Front. neurology 9, 1010 (2018).
[Crossref]

Chen, J.

M. C. Murphy, R. Huston, John, J. Jack, R. Clifford, K. J. Glaser, M. L. Senjem, J. Chen, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Measuring the characteristic topography of brain stiffness with magnetic resonance elastography,” PloS one 8, e81668 (2013).
[Crossref] [PubMed]

Chen, Z.

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt Lett 43, 2388–2391 (2018).
[Crossref] [PubMed]

J. Zhu, Y. Miao, L. Qi, Y. Qu, Y. He, Q. Yang, and Z. Chen, “Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography,” Appl Phys Lett 110, 201101 (2017).
[Crossref] [PubMed]

Chin, L.

Clifford, R.

M. C. Murphy, R. Huston, John, J. Jack, R. Clifford, K. J. Glaser, M. L. Senjem, J. Chen, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Measuring the characteristic topography of brain stiffness with magnetic resonance elastography,” PloS one 8, e81668 (2013).
[Crossref] [PubMed]

di Sant’Agnese, A.

M. Zhang, P. Nigwekar, B. Castaneda, K. Hoyt, J. V. Joseph, A. di Sant’Agnese, E. M. Messing, J. G. Strang, D. J. Rubens, and K. J. Parker, “Quantitative characterization of viscoelastic properties of human prostate correlated with histology,” Ultrasound Medicine Biol. 34, 1033–1042 (2008).
[Crossref]

Doyley, M. M.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Medicine Biol. 56, R1 (2011).
[Crossref]

Du, T.

H. Mestre, J. Tithof, T. Du, W. Song, W. Peng, A. M. Sweeney, G. Olveda, J. H. Thomas, M. Nedergaard, and D. H. Kelley, “Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension,” Nat Commun 9, 4878 (2018).
[Crossref] [PubMed]

Ehman, R. L.

M. C. Murphy, R. Huston, John, J. Jack, R. Clifford, K. J. Glaser, M. L. Senjem, J. Chen, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Measuring the characteristic topography of brain stiffness with magnetic resonance elastography,” PloS one 8, e81668 (2013).
[Crossref] [PubMed]

M. C. Murphy, J. R. Huston, C. R. J. Jack, K. J. Glaser, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Decreased brain stiffness in alzheimer’s disease determined by magnetic resonance elastography,” J. magnetic resonance imaging : JMRI 34, 494–498 (2011).
[Crossref]

Emelianov, S. Y.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17, 100501 (2012).
[Crossref] [PubMed]

Fehlner, A.

A. Lipp, R. Trbojevic, F. Paul, A. Fehlner, S. Hirsch, M. Scheel, C. Noack, J. Braun, and I. Sack, “Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic parkinson’s disease,” NeuroImage. Clin. 3, 381–387 (2013).
[Crossref]

Felmlee, J. P.

M. C. Murphy, R. Huston, John, J. Jack, R. Clifford, K. J. Glaser, M. L. Senjem, J. Chen, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Measuring the characteristic topography of brain stiffness with magnetic resonance elastography,” PloS one 8, e81668 (2013).
[Crossref] [PubMed]

M. C. Murphy, J. R. Huston, C. R. J. Jack, K. J. Glaser, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Decreased brain stiffness in alzheimer’s disease determined by magnetic resonance elastography,” J. magnetic resonance imaging : JMRI 34, 494–498 (2011).
[Crossref]

Fink, M.

L. Sandrin, S. Catheline, M. Tanter, X. Hennequin, and M. Fink, “Time-resolved pulsed elastography with ultrafast ultrasonic imaging,” Ultrason. Imaging 21, 259–272 (1999).
[Crossref]

Gao, L.

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J Biomed Opt 22, 1–28 (2017).
[Crossref] [PubMed]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4d imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Ge, G. R.

G. R. Ge, F. Zvietcovich, J. P. Rolland, H. Mestre, M. Giannetto, M. Nedergaard, and K. J. Parker, “A preliminary study on using reverberant shear wave fields in optical coherence elastography to examine mice brain ex vivo,” (SPIE, 2019).

Giannetto, M.

G. R. Ge, F. Zvietcovich, J. P. Rolland, H. Mestre, M. Giannetto, M. Nedergaard, and K. J. Parker, “A preliminary study on using reverberant shear wave fields in optical coherence elastography to examine mice brain ex vivo,” (SPIE, 2019).

Gill, R. W.

T. Loupas, R. B. Peterson, and R. W. Gill, “Experimental evaluation of velocity and power estimation for ultrasound blood flow imaging, by means of a two-dimensional autocorrelation approach,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42, 689–699 (1995).
[Crossref]

Glaser, K. J.

M. C. Murphy, R. Huston, John, J. Jack, R. Clifford, K. J. Glaser, M. L. Senjem, J. Chen, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Measuring the characteristic topography of brain stiffness with magnetic resonance elastography,” PloS one 8, e81668 (2013).
[Crossref] [PubMed]

M. C. Murphy, J. R. Huston, C. R. J. Jack, K. J. Glaser, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Decreased brain stiffness in alzheimer’s disease determined by magnetic resonance elastography,” J. magnetic resonance imaging : JMRI 34, 494–498 (2011).
[Crossref]

Graff, K. F.

K. F. Graff, Wave motion in elastic solids (Oxford University Press, 1975).

Green, M. A.

J. Zhang, M. A. Green, R. Sinkus, and L. E. Bilston, “Viscoelastic properties of human cerebellum using magnetic resonance elastography,” J. Biomech. 44, 1909–1913 (2011).
[Crossref] [PubMed]

Guan, G.

Hain, E. G.

C. Klein, E. G. Hain, J. Braun, K. Riek, S. Mueller, B. Steiner, and I. Sack, “Enhanced adult neurogenesis increases brain stiffness: In vivo magnetic resonance elastography in a mouse model of dopamine depletion,” PLOS ONE 9, e92582 (2014).
[Crossref] [PubMed]

Han, Z.

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the effects of riboflavin/uv-a and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography,” Invest Ophthalmol Vis Sci 57, OCT112 (2016).
[Crossref] [PubMed]

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating elastic anisotropy of the porcine cornea as a function of intraocular pressure with optical coherence elastography,” J Refract Surg 32, 562–567 (2016).
[Crossref] [PubMed]

Hayes, S.

A. Abass, S. Hayes, N. White, T. Sorensen, and K. M. Meek, “Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution,” J R Soc Interface 12, 20140717 (2015).
[Crossref] [PubMed]

He, X.

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt Lett 43, 2388–2391 (2018).
[Crossref] [PubMed]

He, Y.

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt Lett 43, 2388–2391 (2018).
[Crossref] [PubMed]

J. Zhu, Y. Miao, L. Qi, Y. Qu, Y. He, Q. Yang, and Z. Chen, “Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography,” Appl Phys Lett 110, 201101 (2017).
[Crossref] [PubMed]

Hennequin, X.

L. Sandrin, S. Catheline, M. Tanter, X. Hennequin, and M. Fink, “Time-resolved pulsed elastography with ultrafast ultrasonic imaging,” Ultrason. Imaging 21, 259–272 (1999).
[Crossref]

Hepburn, M. S.

Hirsch, S.

A. Lipp, R. Trbojevic, F. Paul, A. Fehlner, S. Hirsch, M. Scheel, C. Noack, J. Braun, and I. Sack, “Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic parkinson’s disease,” NeuroImage. Clin. 3, 381–387 (2013).
[Crossref]

Hoyt, K.

M. Zhang, P. Nigwekar, B. Castaneda, K. Hoyt, J. V. Joseph, A. di Sant’Agnese, E. M. Messing, J. G. Strang, D. J. Rubens, and K. J. Parker, “Quantitative characterization of viscoelastic properties of human prostate correlated with histology,” Ultrasound Medicine Biol. 34, 1033–1042 (2008).
[Crossref]

K. Hoyt, B. Castaneda, and K. J. Parker, “Two-dimensional sonoelastographic shear velocity imaging,” Ultrasound Medicine Biol. 34, 276–288 (2008).
[Crossref]

Huang, Z.

Huo, T.

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt Lett 43, 2388–2391 (2018).
[Crossref] [PubMed]

Huston, J. R.

M. C. Murphy, J. R. Huston, C. R. J. Jack, K. J. Glaser, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Decreased brain stiffness in alzheimer’s disease determined by magnetic resonance elastography,” J. magnetic resonance imaging : JMRI 34, 494–498 (2011).
[Crossref]

Huston, R.

M. C. Murphy, R. Huston, John, J. Jack, R. Clifford, K. J. Glaser, M. L. Senjem, J. Chen, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Measuring the characteristic topography of brain stiffness with magnetic resonance elastography,” PloS one 8, e81668 (2013).
[Crossref] [PubMed]

Jack, C. R. J.

M. C. Murphy, J. R. Huston, C. R. J. Jack, K. J. Glaser, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Decreased brain stiffness in alzheimer’s disease determined by magnetic resonance elastography,” J. magnetic resonance imaging : JMRI 34, 494–498 (2011).
[Crossref]

Jack, J.

M. C. Murphy, R. Huston, John, J. Jack, R. Clifford, K. J. Glaser, M. L. Senjem, J. Chen, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Measuring the characteristic topography of brain stiffness with magnetic resonance elastography,” PloS one 8, e81668 (2013).
[Crossref] [PubMed]

John,

M. C. Murphy, R. Huston, John, J. Jack, R. Clifford, K. J. Glaser, M. L. Senjem, J. Chen, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Measuring the characteristic topography of brain stiffness with magnetic resonance elastography,” PloS one 8, e81668 (2013).
[Crossref] [PubMed]

Johnstone, M.

Joseph, J. V.

M. Zhang, P. Nigwekar, B. Castaneda, K. Hoyt, J. V. Joseph, A. di Sant’Agnese, E. M. Messing, J. G. Strang, D. J. Rubens, and K. J. Parker, “Quantitative characterization of viscoelastic properties of human prostate correlated with histology,” Ultrasound Medicine Biol. 34, 1033–1042 (2008).
[Crossref]

Kelley, D. H.

H. Mestre, J. Tithof, T. Du, W. Song, W. Peng, A. M. Sweeney, G. Olveda, J. H. Thomas, M. Nedergaard, and D. H. Kelley, “Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension,” Nat Commun 9, 4878 (2018).
[Crossref] [PubMed]

Kennedy, B. F.

Kirby, M. A.

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J Biomed Opt 22, 1–28 (2017).
[Crossref] [PubMed]

Klein, C.

C. Klein, E. G. Hain, J. Braun, K. Riek, S. Mueller, B. Steiner, and I. Sack, “Enhanced adult neurogenesis increases brain stiffness: In vivo magnetic resonance elastography in a mouse model of dopamine depletion,” PLOS ONE 9, e92582 (2014).
[Crossref] [PubMed]

Lambert, S. A.

M. Bigot, F. Chauveau, O. Beuf, and S. A. Lambert, “Magnetic resonance elastography of rodent brain,” Front. neurology 9, 1010 (2018).
[Crossref]

Larin, K. V.

K. V. Larin and D. D. Sampson, “Optical coherence elastography - oct at work in tissue biomechanics [invited],” Biomed. Opt. Express 8, 1172–1202 (2017).
[Crossref] [PubMed]

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating elastic anisotropy of the porcine cornea as a function of intraocular pressure with optical coherence elastography,” J Refract Surg 32, 562–567 (2016).
[Crossref] [PubMed]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the effects of riboflavin/uv-a and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography,” Invest Ophthalmol Vis Sci 57, OCT112 (2016).
[Crossref] [PubMed]

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. biophotonics 8, 279–302 (2015).
[Crossref]

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (swi-oct) for ocular tissue biomechanics,” Opt. letters 39, 41–44 (2014).
[Crossref]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17, 100501 (2012).
[Crossref] [PubMed]

Le, N. M.

Li, C.

Li, D.

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J Biomed Opt 22, 1–28 (2017).
[Crossref] [PubMed]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4d imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Li, J.

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating elastic anisotropy of the porcine cornea as a function of intraocular pressure with optical coherence elastography,” J Refract Surg 32, 562–567 (2016).
[Crossref] [PubMed]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the effects of riboflavin/uv-a and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography,” Invest Ophthalmol Vis Sci 57, OCT112 (2016).
[Crossref] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17, 100501 (2012).
[Crossref] [PubMed]

Li, Y.

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt Lett 43, 2388–2391 (2018).
[Crossref] [PubMed]

Lipp, A.

A. Lipp, R. Trbojevic, F. Paul, A. Fehlner, S. Hirsch, M. Scheel, C. Noack, J. Braun, and I. Sack, “Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic parkinson’s disease,” NeuroImage. Clin. 3, 381–387 (2013).
[Crossref]

Liu, C. H.

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the effects of riboflavin/uv-a and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography,” Invest Ophthalmol Vis Sci 57, OCT112 (2016).
[Crossref] [PubMed]

Loupas, T.

T. Loupas, R. B. Peterson, and R. W. Gill, “Experimental evaluation of velocity and power estimation for ultrasound blood flow imaging, by means of a two-dimensional autocorrelation approach,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42, 689–699 (1995).
[Crossref]

Manapuram, R. K.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17, 100501 (2012).
[Crossref] [PubMed]

Manduca, A.

M. C. Murphy, R. Huston, John, J. Jack, R. Clifford, K. J. Glaser, M. L. Senjem, J. Chen, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Measuring the characteristic topography of brain stiffness with magnetic resonance elastography,” PloS one 8, e81668 (2013).
[Crossref] [PubMed]

M. C. Murphy, J. R. Huston, C. R. J. Jack, K. J. Glaser, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Decreased brain stiffness in alzheimer’s disease determined by magnetic resonance elastography,” J. magnetic resonance imaging : JMRI 34, 494–498 (2011).
[Crossref]

Mashiatulla, M.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17, 100501 (2012).
[Crossref] [PubMed]

Meek, K. M.

A. Abass, S. Hayes, N. White, T. Sorensen, and K. M. Meek, “Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution,” J R Soc Interface 12, 20140717 (2015).
[Crossref] [PubMed]

Meemon, P.

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22, 035010 (2017).
[Crossref]

Messing, E. M.

M. Zhang, P. Nigwekar, B. Castaneda, K. Hoyt, J. V. Joseph, A. di Sant’Agnese, E. M. Messing, J. G. Strang, D. J. Rubens, and K. J. Parker, “Quantitative characterization of viscoelastic properties of human prostate correlated with histology,” Ultrasound Medicine Biol. 34, 1033–1042 (2008).
[Crossref]

Mestre, H.

H. Mestre, J. Tithof, T. Du, W. Song, W. Peng, A. M. Sweeney, G. Olveda, J. H. Thomas, M. Nedergaard, and D. H. Kelley, “Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension,” Nat Commun 9, 4878 (2018).
[Crossref] [PubMed]

G. R. Ge, F. Zvietcovich, J. P. Rolland, H. Mestre, M. Giannetto, M. Nedergaard, and K. J. Parker, “A preliminary study on using reverberant shear wave fields in optical coherence elastography to examine mice brain ex vivo,” (SPIE, 2019).

Miao, Y.

J. Zhu, Y. Miao, L. Qi, Y. Qu, Y. He, Q. Yang, and Z. Chen, “Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography,” Appl Phys Lett 110, 201101 (2017).
[Crossref] [PubMed]

Monediado, F. M.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17, 100501 (2012).
[Crossref] [PubMed]

Mueller, S.

C. Klein, E. G. Hain, J. Braun, K. Riek, S. Mueller, B. Steiner, and I. Sack, “Enhanced adult neurogenesis increases brain stiffness: In vivo magnetic resonance elastography in a mouse model of dopamine depletion,” PLOS ONE 9, e92582 (2014).
[Crossref] [PubMed]

Mulligan, J. A.

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22, 246–265 (2016).
[Crossref]

Murphy, M. C.

M. C. Murphy, R. Huston, John, J. Jack, R. Clifford, K. J. Glaser, M. L. Senjem, J. Chen, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Measuring the characteristic topography of brain stiffness with magnetic resonance elastography,” PloS one 8, e81668 (2013).
[Crossref] [PubMed]

M. C. Murphy, J. R. Huston, C. R. J. Jack, K. J. Glaser, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Decreased brain stiffness in alzheimer’s disease determined by magnetic resonance elastography,” J. magnetic resonance imaging : JMRI 34, 494–498 (2011).
[Crossref]

Nedergaard, M.

H. Mestre, J. Tithof, T. Du, W. Song, W. Peng, A. M. Sweeney, G. Olveda, J. H. Thomas, M. Nedergaard, and D. H. Kelley, “Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension,” Nat Commun 9, 4878 (2018).
[Crossref] [PubMed]

G. R. Ge, F. Zvietcovich, J. P. Rolland, H. Mestre, M. Giannetto, M. Nedergaard, and K. J. Parker, “A preliminary study on using reverberant shear wave fields in optical coherence elastography to examine mice brain ex vivo,” (SPIE, 2019).

Nigwekar, P.

M. Zhang, P. Nigwekar, B. Castaneda, K. Hoyt, J. V. Joseph, A. di Sant’Agnese, E. M. Messing, J. G. Strang, D. J. Rubens, and K. J. Parker, “Quantitative characterization of viscoelastic properties of human prostate correlated with histology,” Ultrasound Medicine Biol. 34, 1033–1042 (2008).
[Crossref]

Noack, C.

A. Lipp, R. Trbojevic, F. Paul, A. Fehlner, S. Hirsch, M. Scheel, C. Noack, J. Braun, and I. Sack, “Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic parkinson’s disease,” NeuroImage. Clin. 3, 381–387 (2013).
[Crossref]

O’Donnell, M.

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J Biomed Opt 22, 1–28 (2017).
[Crossref] [PubMed]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4d imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Olveda, G.

H. Mestre, J. Tithof, T. Du, W. Song, W. Peng, A. M. Sweeney, G. Olveda, J. H. Thomas, M. Nedergaard, and D. H. Kelley, “Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension,” Nat Commun 9, 4878 (2018).
[Crossref] [PubMed]

Ormachea, J.

K. J. Parker, J. Ormachea, F. Zvietcovich, and B. Castaneda, “Reverberant shear wave fields and estimation of tissue properties,” Phys Med Biol 62, 1046–1061 (2017).
[Crossref] [PubMed]

Parker, K. J.

K. J. Parker, J. Ormachea, F. Zvietcovich, and B. Castaneda, “Reverberant shear wave fields and estimation of tissue properties,” Phys Med Biol 62, 1046–1061 (2017).
[Crossref] [PubMed]

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22, 035010 (2017).
[Crossref]

E. L. Carstensen and K. J. Parker, “Oestreicher and elastography,” J Acoust Soc Am 138, 2317–2325 (2015).
[Crossref] [PubMed]

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Medicine Biol. 56, R1 (2011).
[Crossref]

K. Hoyt, B. Castaneda, and K. J. Parker, “Two-dimensional sonoelastographic shear velocity imaging,” Ultrasound Medicine Biol. 34, 276–288 (2008).
[Crossref]

M. Zhang, P. Nigwekar, B. Castaneda, K. Hoyt, J. V. Joseph, A. di Sant’Agnese, E. M. Messing, J. G. Strang, D. J. Rubens, and K. J. Parker, “Quantitative characterization of viscoelastic properties of human prostate correlated with histology,” Ultrasound Medicine Biol. 34, 1033–1042 (2008).
[Crossref]

G. R. Ge, F. Zvietcovich, J. P. Rolland, H. Mestre, M. Giannetto, M. Nedergaard, and K. J. Parker, “A preliminary study on using reverberant shear wave fields in optical coherence elastography to examine mice brain ex vivo,” (SPIE, 2019).

F. Zvietcovich, J. Yao, J. P. Rolland, and K. J. Parker, “Experimental classification of surface waves in optical coherence elastography,” in SPIE BiOS, vol. 9710 (SPIE, 2016), p. 97100Z.

Paul, F.

A. Lipp, R. Trbojevic, F. Paul, A. Fehlner, S. Hirsch, M. Scheel, C. Noack, J. Braun, and I. Sack, “Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic parkinson’s disease,” NeuroImage. Clin. 3, 381–387 (2013).
[Crossref]

Pelivanov, I.

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J Biomed Opt 22, 1–28 (2017).
[Crossref] [PubMed]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4d imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Peng, W.

H. Mestre, J. Tithof, T. Du, W. Song, W. Peng, A. M. Sweeney, G. Olveda, J. H. Thomas, M. Nedergaard, and D. H. Kelley, “Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension,” Nat Commun 9, 4878 (2018).
[Crossref] [PubMed]

Peterson, R. B.

T. Loupas, R. B. Peterson, and R. W. Gill, “Experimental evaluation of velocity and power estimation for ultrasound blood flow imaging, by means of a two-dimensional autocorrelation approach,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42, 689–699 (1995).
[Crossref]

Qi, L.

J. Zhu, Y. Miao, L. Qi, Y. Qu, Y. He, Q. Yang, and Z. Chen, “Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography,” Appl Phys Lett 110, 201101 (2017).
[Crossref] [PubMed]

Qu, Y.

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt Lett 43, 2388–2391 (2018).
[Crossref] [PubMed]

J. Zhu, Y. Miao, L. Qi, Y. Qu, Y. He, Q. Yang, and Z. Chen, “Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography,” Appl Phys Lett 110, 201101 (2017).
[Crossref] [PubMed]

Raghunathan, R.

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the effects of riboflavin/uv-a and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography,” Invest Ophthalmol Vis Sci 57, OCT112 (2016).
[Crossref] [PubMed]

Riek, K.

C. Klein, E. G. Hain, J. Braun, K. Riek, S. Mueller, B. Steiner, and I. Sack, “Enhanced adult neurogenesis increases brain stiffness: In vivo magnetic resonance elastography in a mouse model of dopamine depletion,” PLOS ONE 9, e92582 (2014).
[Crossref] [PubMed]

Rolland, J. P.

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22, 035010 (2017).
[Crossref]

G. R. Ge, F. Zvietcovich, J. P. Rolland, H. Mestre, M. Giannetto, M. Nedergaard, and K. J. Parker, “A preliminary study on using reverberant shear wave fields in optical coherence elastography to examine mice brain ex vivo,” (SPIE, 2019).

F. Zvietcovich, J. Yao, J. P. Rolland, and K. J. Parker, “Experimental classification of surface waves in optical coherence elastography,” in SPIE BiOS, vol. 9710 (SPIE, 2016), p. 97100Z.

Rubens, D. J.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Medicine Biol. 56, R1 (2011).
[Crossref]

M. Zhang, P. Nigwekar, B. Castaneda, K. Hoyt, J. V. Joseph, A. di Sant’Agnese, E. M. Messing, J. G. Strang, D. J. Rubens, and K. J. Parker, “Quantitative characterization of viscoelastic properties of human prostate correlated with histology,” Ultrasound Medicine Biol. 34, 1033–1042 (2008).
[Crossref]

Sack, I.

C. Klein, E. G. Hain, J. Braun, K. Riek, S. Mueller, B. Steiner, and I. Sack, “Enhanced adult neurogenesis increases brain stiffness: In vivo magnetic resonance elastography in a mouse model of dopamine depletion,” PLOS ONE 9, e92582 (2014).
[Crossref] [PubMed]

A. Lipp, R. Trbojevic, F. Paul, A. Fehlner, S. Hirsch, M. Scheel, C. Noack, J. Braun, and I. Sack, “Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic parkinson’s disease,” NeuroImage. Clin. 3, 381–387 (2013).
[Crossref]

Sampson, D. D.

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11, 215 (2017).
[Crossref]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - oct at work in tissue biomechanics [invited],” Biomed. Opt. Express 8, 1172–1202 (2017).
[Crossref] [PubMed]

Sandrin, L.

L. Sandrin, S. Catheline, M. Tanter, X. Hennequin, and M. Fink, “Time-resolved pulsed elastography with ultrafast ultrasonic imaging,” Ultrason. Imaging 21, 259–272 (1999).
[Crossref]

Scheel, M.

A. Lipp, R. Trbojevic, F. Paul, A. Fehlner, S. Hirsch, M. Scheel, C. Noack, J. Braun, and I. Sack, “Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic parkinson’s disease,” NeuroImage. Clin. 3, 381–387 (2013).
[Crossref]

Senjem, M. L.

M. C. Murphy, R. Huston, John, J. Jack, R. Clifford, K. J. Glaser, M. L. Senjem, J. Chen, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Measuring the characteristic topography of brain stiffness with magnetic resonance elastography,” PloS one 8, e81668 (2013).
[Crossref] [PubMed]

Shen, T.

Shen, T. T.

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J Biomed Opt 22, 1–28 (2017).
[Crossref] [PubMed]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4d imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Singh, M.

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating elastic anisotropy of the porcine cornea as a function of intraocular pressure with optical coherence elastography,” J Refract Surg 32, 562–567 (2016).
[Crossref] [PubMed]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the effects of riboflavin/uv-a and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography,” Invest Ophthalmol Vis Sci 57, OCT112 (2016).
[Crossref] [PubMed]

Sinkus, R.

J. Zhang, M. A. Green, R. Sinkus, and L. E. Bilston, “Viscoelastic properties of human cerebellum using magnetic resonance elastography,” J. Biomech. 44, 1909–1913 (2011).
[Crossref] [PubMed]

Song, S.

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J Biomed Opt 22, 1–28 (2017).
[Crossref] [PubMed]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4d imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

S. Song, N. M. Le, Z. Huang, T. Shen, and R. K. Wang, “Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source,” Opt. Lett. 40, 5007–5010 (2015).
[Crossref] [PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18, 121505 (2013).
[Crossref] [PubMed]

Song, W.

H. Mestre, J. Tithof, T. Du, W. Song, W. Peng, A. M. Sweeney, G. Olveda, J. H. Thomas, M. Nedergaard, and D. H. Kelley, “Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension,” Nat Commun 9, 4878 (2018).
[Crossref] [PubMed]

Sorensen, T.

A. Abass, S. Hayes, N. White, T. Sorensen, and K. M. Meek, “Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution,” J R Soc Interface 12, 20140717 (2015).
[Crossref] [PubMed]

Steiner, B.

C. Klein, E. G. Hain, J. Braun, K. Riek, S. Mueller, B. Steiner, and I. Sack, “Enhanced adult neurogenesis increases brain stiffness: In vivo magnetic resonance elastography in a mouse model of dopamine depletion,” PLOS ONE 9, e92582 (2014).
[Crossref] [PubMed]

Strang, J. G.

M. Zhang, P. Nigwekar, B. Castaneda, K. Hoyt, J. V. Joseph, A. di Sant’Agnese, E. M. Messing, J. G. Strang, D. J. Rubens, and K. J. Parker, “Quantitative characterization of viscoelastic properties of human prostate correlated with histology,” Ultrasound Medicine Biol. 34, 1033–1042 (2008).
[Crossref]

Sweeney, A. M.

H. Mestre, J. Tithof, T. Du, W. Song, W. Peng, A. M. Sweeney, G. Olveda, J. H. Thomas, M. Nedergaard, and D. H. Kelley, “Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension,” Nat Commun 9, 4878 (2018).
[Crossref] [PubMed]

Tanter, M.

L. Sandrin, S. Catheline, M. Tanter, X. Hennequin, and M. Fink, “Time-resolved pulsed elastography with ultrafast ultrasonic imaging,” Ultrason. Imaging 21, 259–272 (1999).
[Crossref]

Thomas, J. H.

H. Mestre, J. Tithof, T. Du, W. Song, W. Peng, A. M. Sweeney, G. Olveda, J. H. Thomas, M. Nedergaard, and D. H. Kelley, “Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension,” Nat Commun 9, 4878 (2018).
[Crossref] [PubMed]

Tithof, J.

H. Mestre, J. Tithof, T. Du, W. Song, W. Peng, A. M. Sweeney, G. Olveda, J. H. Thomas, M. Nedergaard, and D. H. Kelley, “Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension,” Nat Commun 9, 4878 (2018).
[Crossref] [PubMed]

Trbojevic, R.

A. Lipp, R. Trbojevic, F. Paul, A. Fehlner, S. Hirsch, M. Scheel, C. Noack, J. Braun, and I. Sack, “Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic parkinson’s disease,” NeuroImage. Clin. 3, 381–387 (2013).
[Crossref]

Twa, M. D.

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the effects of riboflavin/uv-a and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography,” Invest Ophthalmol Vis Sci 57, OCT112 (2016).
[Crossref] [PubMed]

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating elastic anisotropy of the porcine cornea as a function of intraocular pressure with optical coherence elastography,” J Refract Surg 32, 562–567 (2016).
[Crossref] [PubMed]

Untracht, G. R.

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22, 246–265 (2016).
[Crossref]

Vantipalli, S.

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the effects of riboflavin/uv-a and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography,” Invest Ophthalmol Vis Sci 57, OCT112 (2016).
[Crossref] [PubMed]

Viktorov, I.

I. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (SpringerUS, 2013).

Wang, R. K.

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J Biomed Opt 22, 1–28 (2017).
[Crossref] [PubMed]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4d imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

S. Song, N. M. Le, Z. Huang, T. Shen, and R. K. Wang, “Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source,” Opt. Lett. 40, 5007–5010 (2015).
[Crossref] [PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18, 121505 (2013).
[Crossref] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37, 1625–1627 (2012).
[Crossref] [PubMed]

Wang, S.

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. biophotonics 8, 279–302 (2015).
[Crossref]

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (swi-oct) for ocular tissue biomechanics,” Opt. letters 39, 41–44 (2014).
[Crossref]

White, N.

A. Abass, S. Hayes, N. White, T. Sorensen, and K. M. Meek, “Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution,” J R Soc Interface 12, 20140717 (2015).
[Crossref] [PubMed]

Wijesinghe, P.

Wu, C.

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating elastic anisotropy of the porcine cornea as a function of intraocular pressure with optical coherence elastography,” J Refract Surg 32, 562–567 (2016).
[Crossref] [PubMed]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the effects of riboflavin/uv-a and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography,” Invest Ophthalmol Vis Sci 57, OCT112 (2016).
[Crossref] [PubMed]

Yang, Q.

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt Lett 43, 2388–2391 (2018).
[Crossref] [PubMed]

J. Zhu, Y. Miao, L. Qi, Y. Qu, Y. He, Q. Yang, and Z. Chen, “Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography,” Appl Phys Lett 110, 201101 (2017).
[Crossref] [PubMed]

Yao, J.

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22, 035010 (2017).
[Crossref]

F. Zvietcovich, J. Yao, J. P. Rolland, and K. J. Parker, “Experimental classification of surface waves in optical coherence elastography,” in SPIE BiOS, vol. 9710 (SPIE, 2016), p. 97100Z.

Yoon, S. J.

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J Biomed Opt 22, 1–28 (2017).
[Crossref] [PubMed]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4d imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Yu, J.

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt Lett 43, 2388–2391 (2018).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, M. A. Green, R. Sinkus, and L. E. Bilston, “Viscoelastic properties of human cerebellum using magnetic resonance elastography,” J. Biomech. 44, 1909–1913 (2011).
[Crossref] [PubMed]

Zhang, M.

M. Zhang, P. Nigwekar, B. Castaneda, K. Hoyt, J. V. Joseph, A. di Sant’Agnese, E. M. Messing, J. G. Strang, D. J. Rubens, and K. J. Parker, “Quantitative characterization of viscoelastic properties of human prostate correlated with histology,” Ultrasound Medicine Biol. 34, 1033–1042 (2008).
[Crossref]

Zhu, J.

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt Lett 43, 2388–2391 (2018).
[Crossref] [PubMed]

J. Zhu, Y. Miao, L. Qi, Y. Qu, Y. He, Q. Yang, and Z. Chen, “Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography,” Appl Phys Lett 110, 201101 (2017).
[Crossref] [PubMed]

Zvietcovich, F.

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22, 035010 (2017).
[Crossref]

K. J. Parker, J. Ormachea, F. Zvietcovich, and B. Castaneda, “Reverberant shear wave fields and estimation of tissue properties,” Phys Med Biol 62, 1046–1061 (2017).
[Crossref] [PubMed]

G. R. Ge, F. Zvietcovich, J. P. Rolland, H. Mestre, M. Giannetto, M. Nedergaard, and K. J. Parker, “A preliminary study on using reverberant shear wave fields in optical coherence elastography to examine mice brain ex vivo,” (SPIE, 2019).

F. Zvietcovich, J. Yao, J. P. Rolland, and K. J. Parker, “Experimental classification of surface waves in optical coherence elastography,” in SPIE BiOS, vol. 9710 (SPIE, 2016), p. 97100Z.

Appl Phys Lett (1)

J. Zhu, Y. Miao, L. Qi, Y. Qu, Y. He, Q. Yang, and Z. Chen, “Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography,” Appl Phys Lett 110, 201101 (2017).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Front. neurology (1)

M. Bigot, F. Chauveau, O. Beuf, and S. A. Lambert, “Magnetic resonance elastography of rodent brain,” Front. neurology 9, 1010 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22, 246–265 (2016).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control. (1)

T. Loupas, R. B. Peterson, and R. W. Gill, “Experimental evaluation of velocity and power estimation for ultrasound blood flow imaging, by means of a two-dimensional autocorrelation approach,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42, 689–699 (1995).
[Crossref]

Invest Ophthalmol Vis Sci (1)

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the effects of riboflavin/uv-a and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography,” Invest Ophthalmol Vis Sci 57, OCT112 (2016).
[Crossref] [PubMed]

J Acoust Soc Am (2)

S. Catheline and N. Benech, “Longitudinal shear wave and transverse dilatational wave in solids,” J Acoust Soc Am 137, EL200–5 (2015).
[Crossref] [PubMed]

E. L. Carstensen and K. J. Parker, “Oestreicher and elastography,” J Acoust Soc Am 138, 2317–2325 (2015).
[Crossref] [PubMed]

J Biomed Opt (1)

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J Biomed Opt 22, 1–28 (2017).
[Crossref] [PubMed]

J R Soc Interface (1)

A. Abass, S. Hayes, N. White, T. Sorensen, and K. M. Meek, “Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution,” J R Soc Interface 12, 20140717 (2015).
[Crossref] [PubMed]

J Refract Surg (1)

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating elastic anisotropy of the porcine cornea as a function of intraocular pressure with optical coherence elastography,” J Refract Surg 32, 562–567 (2016).
[Crossref] [PubMed]

J. Biomech. (1)

J. Zhang, M. A. Green, R. Sinkus, and L. E. Bilston, “Viscoelastic properties of human cerebellum using magnetic resonance elastography,” J. Biomech. 44, 1909–1913 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22, 035010 (2017).
[Crossref]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18, 121505 (2013).
[Crossref] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17, 100501 (2012).
[Crossref] [PubMed]

J. biophotonics (1)

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. biophotonics 8, 279–302 (2015).
[Crossref]

J. magnetic resonance imaging : JMRI (1)

M. C. Murphy, J. R. Huston, C. R. J. Jack, K. J. Glaser, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Decreased brain stiffness in alzheimer’s disease determined by magnetic resonance elastography,” J. magnetic resonance imaging : JMRI 34, 494–498 (2011).
[Crossref]

Nat Commun (1)

H. Mestre, J. Tithof, T. Du, W. Song, W. Peng, A. M. Sweeney, G. Olveda, J. H. Thomas, M. Nedergaard, and D. H. Kelley, “Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension,” Nat Commun 9, 4878 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11, 215 (2017).
[Crossref]

NeuroImage. Clin. (1)

A. Lipp, R. Trbojevic, F. Paul, A. Fehlner, S. Hirsch, M. Scheel, C. Noack, J. Braun, and I. Sack, “Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic parkinson’s disease,” NeuroImage. Clin. 3, 381–387 (2013).
[Crossref]

Opt Lett (1)

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt Lett 43, 2388–2391 (2018).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. letters (1)

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (swi-oct) for ocular tissue biomechanics,” Opt. letters 39, 41–44 (2014).
[Crossref]

Phys Med Biol (1)

K. J. Parker, J. Ormachea, F. Zvietcovich, and B. Castaneda, “Reverberant shear wave fields and estimation of tissue properties,” Phys Med Biol 62, 1046–1061 (2017).
[Crossref] [PubMed]

Phys. Medicine Biol. (1)

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Medicine Biol. 56, R1 (2011).
[Crossref]

PloS one (1)

M. C. Murphy, R. Huston, John, J. Jack, R. Clifford, K. J. Glaser, M. L. Senjem, J. Chen, A. Manduca, J. P. Felmlee, and R. L. Ehman, “Measuring the characteristic topography of brain stiffness with magnetic resonance elastography,” PloS one 8, e81668 (2013).
[Crossref] [PubMed]

C. Klein, E. G. Hain, J. Braun, K. Riek, S. Mueller, B. Steiner, and I. Sack, “Enhanced adult neurogenesis increases brain stiffness: In vivo magnetic resonance elastography in a mouse model of dopamine depletion,” PLOS ONE 9, e92582 (2014).
[Crossref] [PubMed]

Sci. Reports (1)

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4d imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Ultrason. Imaging (1)

L. Sandrin, S. Catheline, M. Tanter, X. Hennequin, and M. Fink, “Time-resolved pulsed elastography with ultrafast ultrasonic imaging,” Ultrason. Imaging 21, 259–272 (1999).
[Crossref]

Ultrasound Medicine Biol. (2)

M. Zhang, P. Nigwekar, B. Castaneda, K. Hoyt, J. V. Joseph, A. di Sant’Agnese, E. M. Messing, J. G. Strang, D. J. Rubens, and K. J. Parker, “Quantitative characterization of viscoelastic properties of human prostate correlated with histology,” Ultrasound Medicine Biol. 34, 1033–1042 (2008).
[Crossref]

K. Hoyt, B. Castaneda, and K. J. Parker, “Two-dimensional sonoelastographic shear velocity imaging,” Ultrasound Medicine Biol. 34, 276–288 (2008).
[Crossref]

Other (4)

G. R. Ge, F. Zvietcovich, J. P. Rolland, H. Mestre, M. Giannetto, M. Nedergaard, and K. J. Parker, “A preliminary study on using reverberant shear wave fields in optical coherence elastography to examine mice brain ex vivo,” (SPIE, 2019).

K. F. Graff, Wave motion in elastic solids (Oxford University Press, 1975).

F. Zvietcovich, J. Yao, J. P. Rolland, and K. J. Parker, “Experimental classification of surface waves in optical coherence elastography,” in SPIE BiOS, vol. 9710 (SPIE, 2016), p. 97100Z.

I. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (SpringerUS, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Experimental setup using a PhS-OCT imaging system synchronized with mechanical excitation using a piezoelectric actuator attached to a circular glass coverslip. Two types of samples are shown: gelatin tissue-mimicking phantoms, and embedded mousebrain tissue.
Fig. 2
Fig. 2 Configuration of the sample, glass coverslip, and the OCT scanning probe for analyzing waves generated in the sample and particle velocities measured by OCT.
Fig. 3
Fig. 3 Numerical 3D solid elastic media of 16 × 16 × 10 mm, showing boundary conditions (BC) of displacement and the ROI for measurements. (b) Four cases of material distribution defined in the simulation. Details on Young’s modulus for 3% and 5% material are specified in Table 1.
Fig. 4
Fig. 4 Sequence of motion frames showing LSW propagation when excited by a disk of 9 mm (top row), 6 mm (middle row), and 4 mm (bottom row) diameter, and one cycle of a 1 kHz signal in simulations for a uniform 5% material. Color bar represents displacement in μm. The dashed border box shows how the inward propagating shear wave reaches the center of the LSW faster when a smaller diameter disk is used.
Fig. 5
Fig. 5 Space-time map representation of LSW propagation taken along depth and time at position x1 = 8 mm in Fig. 4, when a disk diameter of 9 mm (a), 6 mm (b), and 4 mm (c) is used as displacement loading, and excited using one cycle of a 1 kHz signal. Solid line indicates LSW propagation and the dashed border box shows the inward propagating shear wave distorting the LSW speed and amplitude. Color bar represents displacement in μm. (d) Displacement produced by the main LSW wavefront peak, while propagating in space and time, produced by disk-distribution displacement of different diameters. (e) Wave speed measured by tracking the main peak of the LSW wavefront produced by disk-distribution displacement of different diameters.Ground truth (GT) shear wave speed in the simulation is 1.943 m/s.
Fig. 6
Fig. 6 Sequence of motion frames showing LSW propagation when excited by a 9 mm diameter disk at one cycle of a 1 kHz signal in simulations for the [L3% − R5%] material. The color bar represents displacement in μm. Space-time representations of LSW propagation are shown in (b) and (c) when measured along depth and time at lateral positions x 1 = 6 mm and x 2 = 10 mm, respectively, in (a). Depth-time tracking of LSW wavefront peak and speed calculation measured from (b) and (c).
Fig. 7
Fig. 7 (a) Sequence of motion frames showing LSW propagation when excited by a 9 mm diameter disk at one cycle of a 1 kHz signal in simulations for the [T5% − B3%] material. The color bar represents displacement in μm. (b) Space-time representation of LSW propagation measured along depth and time at lateral position x1 = 8 mm in (a). (c) Depth-time tracking of LSW wavefront peak and speed calculations measured from (b). (d) Depth-dependent LSW speeds measured from (c) and compared to ground truth (GT) shear wave speed values of each layer material obtained in simulations. A sigmoid fitting is shown using a dashed line for resolution characterization.
Fig. 8
Fig. 8 Experimental results of LSW propagation in uniform phantom materials 3% (top row), and 5% (bottom row) when excited by a 9 mm diameter disk with a continuous 1 kHz harmonic signal. (a) Motion frames recorded at time intervals of 1 ms. The colorbar is in arbitrary units representing particle velocity. (b) 2D SWSM representing local shear wave speeds using Eq. (6). The color bar is in m/s.
Fig. 9
Fig. 9 Experimental results of LSW propagation in the [L3% − R5%] phantom material when excited by 9 mm (top two rows) and 4 mm (bottom two rows) diameter disks with a continuous harmonic signal of 1 kHz and 2 kHz. (a) Motion frames recorded at time intervals of 1 ms. The color bar is in arbitrary units representing particle velocity. (b) 2D SWSM representing local shear wave speed using Eq. 6. The color bar is in m/s.
Fig. 10
Fig. 10 Experimental results of 2 kHz harmonic LSW propagation in [T3% − B5%] (top two rows) and [T5% − B3%] (bottom two rows) phantom materials when excited by 9 mm and 4 mm diameter disks. (a) Motion frames recorded at time intervals of 1 ms. The color bar is in arbitrary units representing particle velocity. (b) 2D SWSM representing local shear wave speed using Eq. (6). The color bar is in m/s.
Fig. 11
Fig. 11 Experimental LSW speed report in all phantom configurations: uniform, [L3% − R5%], [T3% − B5%], and [T5% − B3%] for different glass coverslip diameters and excitation frequencies. Bar heights and whisker size represent average and standard deviation of LSW speed in each case, respectively; and they are compared with ground truth (GT) shear wave speed values of 1.184 m/s for the 3%, and 1.943 m/s for the 5% layer material obtained in simulations.
Fig. 12
Fig. 12 Experimental results in ex vivo mouse brain tissue from a 9 mm diameter glass coverslip excited continuously at 2 kHz. (a) 3D surface representation of the imaged brain area including brain components (cerebral cortex, midbrain, and cerebellum) and locations of cross-section analysis. (b) En face structural image (or transverse cut) of brain taken at a depth of 1.2 mm. (c) Motion snapshot of (b) at 1.8 ms instant showing LSW and Rayleigh wave propagation. The color bar represents particle velocity in arbitrary units. (d) LSW propagation analyzed at xz-plane cross-section (y1 = 6.2 mm). The color code is the same as in (c). (e) B-mode (top) and 2D LSW elastogram (bottom) obtained after processing (d). The color bar represents LSW speed in m/s. Finally, (f) and (g) show B-mode (top) and 2D LSW elastogram (bottom) taken at the cross-sectional xz-plane (or frontal cut) (y2 = 2.7 mm) and yz-plane (or sagittal cut) (x1 = 3.1 mm), respectively. The color bar represents LSW speed in m/s.

Tables (1)

Tables Icon

Table 1 Elastic material parameters of 3% and 5% materials defined in Abaqus/CAE version 6.14-1.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

v z ( z ) = Δ ϕ ( z ) λ 0 4 π n T s ,
Δ ϕ T ( z ) = Δ ϕ ( z ) + ( n 3 n 2 1 ) Δ ϕ ( s 2 ) + ( n 3 n 1 n 3 n 2 ) Δ ϕ ( s 1 ) ,
Δ ϕ T ( z ) = Δ ϕ ( z ) + ( n 3 n 1 1 ) Δ ϕ ( s 1 ) ,
c L S W ( z w ) = Δ z Δ t ,
R ( n , 1 ) = 1 L 1 m = 0 L 2 v z C p l x ( x 0 , n + m ) ¯ v z C p l x ( x 0 , n + m + 1 ) ,
k ( x 0 , z n ) = 1 Δ z arctan  { Im  { R ( n , 1 ) } Re  { R ( n , 1 ) } } ,
c ( z ) = c 3 % + ( c 5 % c 3 % ) 1 1 + e ( z 0 z ) / τ ,
O P L 0 ( z ) = L 1 n 1 + L 2 n 2 + L 3 n 3 ,
O P L 1 ( z ) = ( L 1 + T s v s 1 ) n 1 + ( L 2 + T s v s 2 T s v s 1 ) n 2 + ( L 3 + T s v z T s v s 2 ) n 3 .
Δ O P L ( z ) = ( n 3 ) T s v z + ( n 1 n 2 ) T s v s 1 + ( n 2 n 3 ) T s v s 2 .
Δ O P L ( s 2 ) = lim  L 3 0 Δ O P L ( z ) = ( n 1 n 2 ) T s v s 1 + ( n 2 ) T s v s 2 ,
Δ O P L ( s 1 ) = lim  L 2 0 L 3 0 Δ O P L ( z ) = ( n 1 ) T s v s 1 .
Δ ϕ ( z ) = ( 4 π n 3 λ 0 ) T s v z + ( 1 n 3 n 2 ) Δ ϕ ( s 2 ) + ( n 3 n 2 n 3 n 1 ) Δ ϕ ( s 1 ) .

Metrics