Abstract

Dual view transport of intensity phase microscopy is adopted to quantitatively study the regulation of adenosine triphosphate (ATP) on cellular mechanics. It extracts cell phases in real time from simultaneously captured under- and over-focus images. By computing the root-mean-square phase and correlation time, it is found that the cellular fluctuation amplitude and speed increased with ATP compared to those with ATP depletion. Besides, when adenylyl-imidodiphosphate (AMP-PNP) was introduced, it competed with ATP to bind to the ATP binding site, and the cellular fluctuation amplitude and speed decreased. The results prove that ATP is a factor in the regulation of cellular mechanics. To our best knowledge, it is the first time that the dual view transport of intensity phase microscopy was used for live cell phase imaging and analysis. Our work not only provides direct measurements on cellular fluctuations to study ATP regulation on cellular mechanics, but it also proves that our proposed dual view transport of intensity phase microscopy can be well used, especially in quantitative phase imaging of live cells in biological and medical applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive dual-exposure fusion-based transport of intensity phase microscopy

Junbao Hu, Yan Kong, Zhilong Jiang, Liang Xue, Fei Liu, Cheng Liu, and Shouyu Wang
Appl. Opt. 57(25) 7249-7258 (2018)

Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view

Xiaolin Tian, Wei Yu, Xin Meng, Aihui Sun, Liang Xue, Cheng Liu, and Shouyu Wang
Opt. Lett. 41(7) 1427-1430 (2016)

Quantitative phase microscopy for cellular dynamics based on transport of intensity equation

Ying Li, Jianglei Di, Chaojie Ma, Jiwei Zhang, Jinzhan Zhong, Kaiqiang Wang, Teli Xi, and Jianlin Zhao
Opt. Express 26(1) 586-593 (2018)

References

  • View by:
  • |
  • |
  • |

  1. I. Titushkin and M. Cho, “Regulation of Cell Cytoskeleton and Membrane Mechanics by Electric Field: Role of Linker Proteins,” Biophys. J. 96(2), 717–728 (2009).
    [Crossref] [PubMed]
  2. J. Lembong, B. Sabass, B. Sun, M. E. Rogers, and H. A. Stone, “Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells,” J. R. Soc. Interface 12(108), 20150140 (2015).
    [Crossref] [PubMed]
  3. D. E. Discher, P. Janmey, and Y. L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
    [Crossref] [PubMed]
  4. C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophys. J. 79(1), 144–152 (2000).
    [Crossref] [PubMed]
  5. K. Ghosh, Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. Clark, “Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties,” Biomaterials 28(4), 671–679 (2007).
    [Crossref] [PubMed]
  6. A. Banerjee, M. Arha, S. Choudhary, R. S. Ashton, S. R. Bhatia, D. V. Schaffer, and R. S. Kane, “The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells,” Biomaterials 30(27), 4695–4699 (2009).
    [Crossref] [PubMed]
  7. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
    [Crossref] [PubMed]
  8. A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell 126(4), 677–689 (2006).
    [Crossref] [PubMed]
  9. M. J. Berridge and R. F. Irvine, “Inositol phosphates and cell signalling,” Nature 341(6239), 197–205 (1989).
    [Crossref] [PubMed]
  10. C. D. Ferris, R. L. Huganir, and S. H. Snyder, “Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides,” Proc. Natl. Acad. Sci. U.S.A. 87(6), 2147–2151 (1990).
    [Crossref] [PubMed]
  11. M. J. Sanderson, A. C. Charles, S. Boitano, and E. R. Dirksen, “Mechanisms and function of intercellular calcium signaling,” Mol. Cell. Endocrinol. 98(2), 173–187 (1994).
    [Crossref] [PubMed]
  12. S. Tuvia, S. Levin, A. Bitler, and R. Korenstein, “Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes,” J. Cell Biol. 141(7), 1551–1561 (1998).
    [Crossref] [PubMed]
  13. J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
    [Crossref] [PubMed]
  14. T. Betz, M. Lenz, J. F. Joanny, and C. Sykes, “ATP-dependent mechanics of red blood cells,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15320–15325 (2009).
    [Crossref] [PubMed]
  15. Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
    [Crossref] [PubMed]
  16. J. Wan, A. M. Forsyth, and H. A. Stone, “Red blood cell dynamics: from cell deformation to ATP release,” Integr. Biol. 3(10), 972–981 (2011).
    [Crossref] [PubMed]
  17. Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
    [Crossref] [PubMed]
  18. Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
    [Crossref] [PubMed]
  19. H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
    [Crossref] [PubMed]
  20. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
    [Crossref] [PubMed]
  21. G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Observation of dynamic subdomains in red blood cells,” J. Biomed. Opt. 11(4), 040503 (2006).
    [Crossref] [PubMed]
  22. J. Rodenburg and H. Faulkner, “phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004).
    [Crossref]
  23. A. Sun, X. He, Y. Kong, H. Cui, X. Song, L. Xue, S. Wang, and C. Liu, “Ultra-high speed digital micro-mirror device based ptychographic iterative engine method,” Biomed. Opt. Express 8(7), 3155–3162 (2017).
    [Crossref] [PubMed]
  24. A. Maiden, D. Johnson, and P. Li, “Further improvements to the ptychographical iterative engine,” Optica 4(7), 736–745 (2017).
    [Crossref]
  25. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [Crossref] [PubMed]
  26. G. Zheng, “Breakthroughs in Photonics 2013: Fourier Ptychographic Imaging,” IEEE Photonics J. 6(2), 0701207 (2014).
    [Crossref]
  27. R. Eckert, Z. F. Phillips, and L. Waller, “Efficient illumination angle self-calibration in Fourier ptychography,” Appl. Opt. 57(19), 5434–5442 (2018).
    [Crossref] [PubMed]
  28. A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
    [Crossref] [PubMed]
  29. M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18(1), 126–131 (2018).
    [Crossref] [PubMed]
  30. T. Cacace, V. Bianco, M. Paturzo, P. Memmolo, M. Vassalli, M. Fraldi, G. Mensitieri, and P. Ferraro, “Retrieving acoustic energy densities and local pressure amplitudes in microfluidics by holographic time-lapse imaging,” Lab Chip 18(13), 1921–1927 (2018).
    [Crossref] [PubMed]
  31. Z. Jiang, X. Pan, Y. Kong, W. Qian, S. Wang, and C. Liu, “Partial saturation-aided resolution enhancement for digital holography,” Appl. Opt. 57(14), 3884–3889 (2018).
    [Crossref] [PubMed]
  32. B. Tayebi, J. H. Han, F. Sharif, M. R. Jafarfard, and D. Y. Kim, “Compact single-shot four-wavelength quantitative phase microscopy with polarization- and frequency-division demultiplexing,” Opt. Express 25(17), 20172–20182 (2017).
    [Crossref] [PubMed]
  33. C. Hu, S. Zhu, L. Gao, and G. Popescu, “Endoscopic diffraction phase microscopy,” Opt. Lett. 43(14), 3373–3376 (2018).
    [Crossref] [PubMed]
  34. M. Shan, M. E. Kandel, and G. Popescu, “Refractive index variance of cells and tissues measured by quantitative phase imaging,” Opt. Express 25(2), 1573–1581 (2017).
    [Crossref] [PubMed]
  35. K. Kim, W. S. Park, S. Na, S. Kim, T. Kim, W. Do Heo, and Y. Park, “Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging,” Biomed. Opt. Express 8(12), 5688–5697 (2017).
    [Crossref] [PubMed]
  36. K. Kim and Y. Park, “Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps,” Nat. Commun. 8, 15340 (2017).
    [Crossref] [PubMed]
  37. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
    [Crossref] [PubMed]
  38. L. Wolbromsky, N. A. Turko, and N. T. Shaked, “Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing,” Opt. Lett. 43(9), 2046–2049 (2018).
    [Crossref] [PubMed]
  39. A. Nativ and N. T. Shaked, “Compact interferometric module for full-field interferometric phase microscopy with low spatial coherence illumination,” Opt. Lett. 42(8), 1492–1495 (2017).
    [Crossref] [PubMed]
  40. K. Yan, L. Xue, and S. Wang, “Field of view scanning based quantitative interferometric microscopic cytometers for cellular imaging and analysis,” Microsc. Res. Tech. 81(4), 397–407 (2018).
    [Crossref] [PubMed]
  41. A. Shanker, L. Tian, M. Sczyrba, B. Connolly, A. Neureuther, and L. Waller, “Transport of intensity phase imaging in the presence of curl effects induced by strongly absorbing photomasks,” Appl. Opt. 53(34), J1–J6 (2014).
    [Crossref] [PubMed]
  42. X. Meng, H. Huang, K. Yan, X. Tian, W. Yu, H. Cui, Y. Kong, L. Xue, C. Liu, and S. Wang, “Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method,” Lab Chip 17(1), 104–109 (2017).
    [Crossref] [PubMed]
  43. J. Hu, Y. Kong, Z. Jiang, L. Xue, F. Liu, C. Liu, and S. Wang, “Adaptive dual-exposure fusion-based transport of intensity phase microscopy,” Appl. Opt. 57(25), 7249–7258 (2018).
    [Crossref] [PubMed]
  44. L. Tian, J. C. Petruccelli, and G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett. 37(19), 4131–4133 (2012).
    [Crossref] [PubMed]
  45. L. Tian, J. C. Petruccelli, Q. Miao, H. Kudrolli, V. Nagarkar, and G. Barbastathis, “Compressive x-ray phase tomography based on the transport of intensity equation,” Opt. Lett. 38(17), 3418–3421 (2013).
    [Crossref] [PubMed]
  46. L. Waller, S. S. Kou, C. J. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18(22), 22817–22825 (2010).
    [Crossref] [PubMed]
  47. L. Waller, Y. Luo, S. Y. Yang, and G. Barbastathis, “Transport of intensity phase imaging in a volume holographic microscope,” Opt. Lett. 35(17), 2961–2963 (2010).
    [Crossref] [PubMed]
  48. Z. Yang and Q. Zhan, “Single-Shot Smartphone-Based Quantitative Phase Imaging Using a Distorted Grating,” PLoS One 11(7), e0159596 (2016).
    [Crossref] [PubMed]
  49. W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
    [Crossref]
  50. Y. Li, J. Di, C. Ma, J. Zhang, J. Zhong, K. Wang, T. Xi, and J. Zhao, “Quantitative phase microscopy for cellular dynamics based on transport of intensity equation,” Opt. Express 26(1), 586–593 (2018).
    [Crossref] [PubMed]
  51. C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38(18), 3538–3541 (2013).
    [Crossref] [PubMed]
  52. X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
    [Crossref] [PubMed]
  53. Q. Gong, Q. Wei, J. Xu, Y. Kong, Z. Jiang, W. Qian, Y. Zhu, L. Xue, F. Liu, C. Liu, and S. Wang, “Digital field of view correction combined dual-view transport of intensity equation method for real time quantitative imaging,” Opt. Eng. 57(06), 063102 (2018).
    [Crossref]
  54. P. Memmolo, C. Distante, M. Paturzo, A. Finizio, P. Ferraro, and B. Javidi, “Automatic focusing in digital holography and its application to stretched holograms,” Opt. Lett. 36(10), 1945–1947 (2011).
    [Crossref] [PubMed]
  55. J. Xu, X. Tian, X. Meng, Y. Kong, S. Gao, H. Cui, F. Liu, L. Xue, C. Liu, and S. Wang, “Wavefront-sensing-based autofocusing in microscopy,” J. Biomed. Opt. 22(8), 1–7 (2017).
    [Crossref] [PubMed]
  56. S. Wang, L. Xue, and K. Yan, “Numerical calculation of light scattering from metal and dielectric randomly rough Gaussian surfaces using microfacet slope probability density function based method,” J. Quant. Spectrosc. Radiat. Transf. 196, 183–200 (2017).
    [Crossref]
  57. L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
    [Crossref] [PubMed]
  58. M. Soto and E. Acosta, “Improved phase imaging from intensity measurements in multiple planes,” Appl. Opt. 46(33), 7978–7981 (2007).
    [Crossref] [PubMed]
  59. A. M. Zysk, R. W. Schoonover, P. S. Carney, and M. A. Anastasio, “Transport of intensity and spectrum for partially coherent fields,” Opt. Lett. 35(13), 2239–2241 (2010).
    [Crossref] [PubMed]
  60. L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).
    [Crossref] [PubMed]
  61. B. Xue, S. Zheng, L. Cui, X. Bai, and F. Zhou, “Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes,” Opt. Express 19(21), 20244–20250 (2011).
    [Crossref] [PubMed]
  62. Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).
    [Crossref] [PubMed]
  63. Y. Eguchi, S. Shimizu, and Y. Tsujimoto, “Intracellular ATP levels determine cell death fate by apoptosis or necrosis,” Cancer Res. 57(10), 1835–1840 (1997).
    [PubMed]
  64. J. Shao, Y. Wang, X. Deng, and S. Wang, “Sparse linear discriminant analysis by thresholding for high dimensional data,” Ann. Stat. 39(2), 1241–1265 (2011).
    [Crossref]

2018 (10)

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18(1), 126–131 (2018).
[Crossref] [PubMed]

T. Cacace, V. Bianco, M. Paturzo, P. Memmolo, M. Vassalli, M. Fraldi, G. Mensitieri, and P. Ferraro, “Retrieving acoustic energy densities and local pressure amplitudes in microfluidics by holographic time-lapse imaging,” Lab Chip 18(13), 1921–1927 (2018).
[Crossref] [PubMed]

K. Yan, L. Xue, and S. Wang, “Field of view scanning based quantitative interferometric microscopic cytometers for cellular imaging and analysis,” Microsc. Res. Tech. 81(4), 397–407 (2018).
[Crossref] [PubMed]

Q. Gong, Q. Wei, J. Xu, Y. Kong, Z. Jiang, W. Qian, Y. Zhu, L. Xue, F. Liu, C. Liu, and S. Wang, “Digital field of view correction combined dual-view transport of intensity equation method for real time quantitative imaging,” Opt. Eng. 57(06), 063102 (2018).
[Crossref]

Y. Li, J. Di, C. Ma, J. Zhang, J. Zhong, K. Wang, T. Xi, and J. Zhao, “Quantitative phase microscopy for cellular dynamics based on transport of intensity equation,” Opt. Express 26(1), 586–593 (2018).
[Crossref] [PubMed]

L. Wolbromsky, N. A. Turko, and N. T. Shaked, “Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing,” Opt. Lett. 43(9), 2046–2049 (2018).
[Crossref] [PubMed]

Z. Jiang, X. Pan, Y. Kong, W. Qian, S. Wang, and C. Liu, “Partial saturation-aided resolution enhancement for digital holography,” Appl. Opt. 57(14), 3884–3889 (2018).
[Crossref] [PubMed]

R. Eckert, Z. F. Phillips, and L. Waller, “Efficient illumination angle self-calibration in Fourier ptychography,” Appl. Opt. 57(19), 5434–5442 (2018).
[Crossref] [PubMed]

C. Hu, S. Zhu, L. Gao, and G. Popescu, “Endoscopic diffraction phase microscopy,” Opt. Lett. 43(14), 3373–3376 (2018).
[Crossref] [PubMed]

J. Hu, Y. Kong, Z. Jiang, L. Xue, F. Liu, C. Liu, and S. Wang, “Adaptive dual-exposure fusion-based transport of intensity phase microscopy,” Appl. Opt. 57(25), 7249–7258 (2018).
[Crossref] [PubMed]

2017 (10)

M. Shan, M. E. Kandel, and G. Popescu, “Refractive index variance of cells and tissues measured by quantitative phase imaging,” Opt. Express 25(2), 1573–1581 (2017).
[Crossref] [PubMed]

A. Nativ and N. T. Shaked, “Compact interferometric module for full-field interferometric phase microscopy with low spatial coherence illumination,” Opt. Lett. 42(8), 1492–1495 (2017).
[Crossref] [PubMed]

A. Sun, X. He, Y. Kong, H. Cui, X. Song, L. Xue, S. Wang, and C. Liu, “Ultra-high speed digital micro-mirror device based ptychographic iterative engine method,” Biomed. Opt. Express 8(7), 3155–3162 (2017).
[Crossref] [PubMed]

A. Maiden, D. Johnson, and P. Li, “Further improvements to the ptychographical iterative engine,” Optica 4(7), 736–745 (2017).
[Crossref]

B. Tayebi, J. H. Han, F. Sharif, M. R. Jafarfard, and D. Y. Kim, “Compact single-shot four-wavelength quantitative phase microscopy with polarization- and frequency-division demultiplexing,” Opt. Express 25(17), 20172–20182 (2017).
[Crossref] [PubMed]

K. Kim, W. S. Park, S. Na, S. Kim, T. Kim, W. Do Heo, and Y. Park, “Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging,” Biomed. Opt. Express 8(12), 5688–5697 (2017).
[Crossref] [PubMed]

J. Xu, X. Tian, X. Meng, Y. Kong, S. Gao, H. Cui, F. Liu, L. Xue, C. Liu, and S. Wang, “Wavefront-sensing-based autofocusing in microscopy,” J. Biomed. Opt. 22(8), 1–7 (2017).
[Crossref] [PubMed]

S. Wang, L. Xue, and K. Yan, “Numerical calculation of light scattering from metal and dielectric randomly rough Gaussian surfaces using microfacet slope probability density function based method,” J. Quant. Spectrosc. Radiat. Transf. 196, 183–200 (2017).
[Crossref]

X. Meng, H. Huang, K. Yan, X. Tian, W. Yu, H. Cui, Y. Kong, L. Xue, C. Liu, and S. Wang, “Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method,” Lab Chip 17(1), 104–109 (2017).
[Crossref] [PubMed]

K. Kim and Y. Park, “Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps,” Nat. Commun. 8, 15340 (2017).
[Crossref] [PubMed]

2016 (4)

Z. Yang and Q. Zhan, “Single-Shot Smartphone-Based Quantitative Phase Imaging Using a Distorted Grating,” PLoS One 11(7), e0159596 (2016).
[Crossref] [PubMed]

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
[Crossref] [PubMed]

2015 (1)

J. Lembong, B. Sabass, B. Sun, M. E. Rogers, and H. A. Stone, “Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells,” J. R. Soc. Interface 12(108), 20150140 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (3)

2012 (3)

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

L. Tian, J. C. Petruccelli, and G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett. 37(19), 4131–4133 (2012).
[Crossref] [PubMed]

2011 (4)

J. Shao, Y. Wang, X. Deng, and S. Wang, “Sparse linear discriminant analysis by thresholding for high dimensional data,” Ann. Stat. 39(2), 1241–1265 (2011).
[Crossref]

P. Memmolo, C. Distante, M. Paturzo, A. Finizio, P. Ferraro, and B. Javidi, “Automatic focusing in digital holography and its application to stretched holograms,” Opt. Lett. 36(10), 1945–1947 (2011).
[Crossref] [PubMed]

B. Xue, S. Zheng, L. Cui, X. Bai, and F. Zhou, “Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes,” Opt. Express 19(21), 20244–20250 (2011).
[Crossref] [PubMed]

J. Wan, A. M. Forsyth, and H. A. Stone, “Red blood cell dynamics: from cell deformation to ATP release,” Integr. Biol. 3(10), 972–981 (2011).
[Crossref] [PubMed]

2010 (6)

2009 (3)

T. Betz, M. Lenz, J. F. Joanny, and C. Sykes, “ATP-dependent mechanics of red blood cells,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15320–15325 (2009).
[Crossref] [PubMed]

I. Titushkin and M. Cho, “Regulation of Cell Cytoskeleton and Membrane Mechanics by Electric Field: Role of Linker Proteins,” Biophys. J. 96(2), 717–728 (2009).
[Crossref] [PubMed]

A. Banerjee, M. Arha, S. Choudhary, R. S. Ashton, S. R. Bhatia, D. V. Schaffer, and R. S. Kane, “The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells,” Biomaterials 30(27), 4695–4699 (2009).
[Crossref] [PubMed]

2008 (2)

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
[Crossref] [PubMed]

2007 (3)

K. Ghosh, Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. Clark, “Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties,” Biomaterials 28(4), 671–679 (2007).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

M. Soto and E. Acosta, “Improved phase imaging from intensity measurements in multiple planes,” Appl. Opt. 46(33), 7978–7981 (2007).
[Crossref] [PubMed]

2006 (2)

G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Observation of dynamic subdomains in red blood cells,” J. Biomed. Opt. 11(4), 040503 (2006).
[Crossref] [PubMed]

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell 126(4), 677–689 (2006).
[Crossref] [PubMed]

2005 (1)

D. E. Discher, P. Janmey, and Y. L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
[Crossref] [PubMed]

2004 (2)

2000 (1)

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophys. J. 79(1), 144–152 (2000).
[Crossref] [PubMed]

1998 (1)

S. Tuvia, S. Levin, A. Bitler, and R. Korenstein, “Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes,” J. Cell Biol. 141(7), 1551–1561 (1998).
[Crossref] [PubMed]

1997 (2)

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Y. Eguchi, S. Shimizu, and Y. Tsujimoto, “Intracellular ATP levels determine cell death fate by apoptosis or necrosis,” Cancer Res. 57(10), 1835–1840 (1997).
[PubMed]

1994 (1)

M. J. Sanderson, A. C. Charles, S. Boitano, and E. R. Dirksen, “Mechanisms and function of intercellular calcium signaling,” Mol. Cell. Endocrinol. 98(2), 173–187 (1994).
[Crossref] [PubMed]

1990 (1)

C. D. Ferris, R. L. Huganir, and S. H. Snyder, “Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides,” Proc. Natl. Acad. Sci. U.S.A. 87(6), 2147–2151 (1990).
[Crossref] [PubMed]

1989 (1)

M. J. Berridge and R. F. Irvine, “Inositol phosphates and cell signalling,” Nature 341(6239), 197–205 (1989).
[Crossref] [PubMed]

Acosta, E.

Anastasio, M. A.

Arha, M.

A. Banerjee, M. Arha, S. Choudhary, R. S. Ashton, S. R. Bhatia, D. V. Schaffer, and R. S. Kane, “The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells,” Biomaterials 30(27), 4695–4699 (2009).
[Crossref] [PubMed]

Ashton, R. S.

A. Banerjee, M. Arha, S. Choudhary, R. S. Ashton, S. R. Bhatia, D. V. Schaffer, and R. S. Kane, “The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells,” Biomaterials 30(27), 4695–4699 (2009).
[Crossref] [PubMed]

Asundi, A.

Auth, T.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Badizadegan, K.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Observation of dynamic subdomains in red blood cells,” J. Biomed. Opt. 11(4), 040503 (2006).
[Crossref] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
[Crossref] [PubMed]

Bai, X.

Banerjee, A.

A. Banerjee, M. Arha, S. Choudhary, R. S. Ashton, S. R. Bhatia, D. V. Schaffer, and R. S. Kane, “The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells,” Biomaterials 30(27), 4695–4699 (2009).
[Crossref] [PubMed]

Barbastathis, G.

Berridge, M. J.

M. J. Berridge and R. F. Irvine, “Inositol phosphates and cell signalling,” Nature 341(6239), 197–205 (1989).
[Crossref] [PubMed]

Best, C. A.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Betz, T.

T. Betz, M. Lenz, J. F. Joanny, and C. Sykes, “ATP-dependent mechanics of red blood cells,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15320–15325 (2009).
[Crossref] [PubMed]

Bhaduri, B.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Bhatia, S. R.

A. Banerjee, M. Arha, S. Choudhary, R. S. Ashton, S. R. Bhatia, D. V. Schaffer, and R. S. Kane, “The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells,” Biomaterials 30(27), 4695–4699 (2009).
[Crossref] [PubMed]

Bianco, V.

T. Cacace, V. Bianco, M. Paturzo, P. Memmolo, M. Vassalli, M. Fraldi, G. Mensitieri, and P. Ferraro, “Retrieving acoustic energy densities and local pressure amplitudes in microfluidics by holographic time-lapse imaging,” Lab Chip 18(13), 1921–1927 (2018).
[Crossref] [PubMed]

Bitler, A.

S. Tuvia, S. Levin, A. Bitler, and R. Korenstein, “Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes,” J. Cell Biol. 141(7), 1551–1561 (1998).
[Crossref] [PubMed]

Boitano, S.

M. J. Sanderson, A. C. Charles, S. Boitano, and E. R. Dirksen, “Mechanisms and function of intercellular calcium signaling,” Mol. Cell. Endocrinol. 98(2), 173–187 (1994).
[Crossref] [PubMed]

Byun, H.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Cacace, T.

T. Cacace, V. Bianco, M. Paturzo, P. Memmolo, M. Vassalli, M. Fraldi, G. Mensitieri, and P. Ferraro, “Retrieving acoustic energy densities and local pressure amplitudes in microfluidics by holographic time-lapse imaging,” Lab Chip 18(13), 1921–1927 (2018).
[Crossref] [PubMed]

Carney, P. S.

Chakraborty, A.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Charles, A. C.

M. J. Sanderson, A. C. Charles, S. Boitano, and E. R. Dirksen, “Mechanisms and function of intercellular calcium signaling,” Mol. Cell. Endocrinol. 98(2), 173–187 (1994).
[Crossref] [PubMed]

Chen, C. S.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Chen, Q.

Cho, M.

I. Titushkin and M. Cho, “Regulation of Cell Cytoskeleton and Membrane Mechanics by Electric Field: Role of Linker Proteins,” Biophys. J. 96(2), 717–728 (2009).
[Crossref] [PubMed]

Choi, W.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Choudhary, S.

A. Banerjee, M. Arha, S. Choudhary, R. S. Ashton, S. R. Bhatia, D. V. Schaffer, and R. S. Kane, “The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells,” Biomaterials 30(27), 4695–4699 (2009).
[Crossref] [PubMed]

Clark, R. A.

K. Ghosh, Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. Clark, “Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties,” Biomaterials 28(4), 671–679 (2007).
[Crossref] [PubMed]

Claus, R. A.

Connolly, B.

Coskun, A. F.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Cui, H.

A. Sun, X. He, Y. Kong, H. Cui, X. Song, L. Xue, S. Wang, and C. Liu, “Ultra-high speed digital micro-mirror device based ptychographic iterative engine method,” Biomed. Opt. Express 8(7), 3155–3162 (2017).
[Crossref] [PubMed]

X. Meng, H. Huang, K. Yan, X. Tian, W. Yu, H. Cui, Y. Kong, L. Xue, C. Liu, and S. Wang, “Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method,” Lab Chip 17(1), 104–109 (2017).
[Crossref] [PubMed]

J. Xu, X. Tian, X. Meng, Y. Kong, S. Gao, H. Cui, F. Liu, L. Xue, C. Liu, and S. Wang, “Wavefront-sensing-based autofocusing in microscopy,” J. Biomed. Opt. 22(8), 1–7 (2017).
[Crossref] [PubMed]

Cui, L.

Dao, M.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Dasari, R. R.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Observation of dynamic subdomains in red blood cells,” J. Biomed. Opt. 11(4), 040503 (2006).
[Crossref] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
[Crossref] [PubMed]

Dauwels, J.

Deflores, L. P.

Dembo, M.

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophys. J. 79(1), 144–152 (2000).
[Crossref] [PubMed]

Deng, X.

J. Shao, Y. Wang, X. Deng, and S. Wang, “Sparse linear discriminant analysis by thresholding for high dimensional data,” Ann. Stat. 39(2), 1241–1265 (2011).
[Crossref]

Di, J.

Diez-Silva, M.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Dirksen, E. R.

M. J. Sanderson, A. C. Charles, S. Boitano, and E. R. Dirksen, “Mechanisms and function of intercellular calcium signaling,” Mol. Cell. Endocrinol. 98(2), 173–187 (1994).
[Crossref] [PubMed]

Discher, D. E.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell 126(4), 677–689 (2006).
[Crossref] [PubMed]

D. E. Discher, P. Janmey, and Y. L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
[Crossref] [PubMed]

Distante, C.

Do Heo, W.

Eckert, R.

Eguchi, Y.

Y. Eguchi, S. Shimizu, and Y. Tsujimoto, “Intracellular ATP levels determine cell death fate by apoptosis or necrosis,” Cancer Res. 57(10), 1835–1840 (1997).
[PubMed]

Engler, A. J.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell 126(4), 677–689 (2006).
[Crossref] [PubMed]

Evans, J.

J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
[Crossref] [PubMed]

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Faulkner, H.

J. Rodenburg and H. Faulkner, “phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004).
[Crossref]

Feld, M. S.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Observation of dynamic subdomains in red blood cells,” J. Biomed. Opt. 11(4), 040503 (2006).
[Crossref] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
[Crossref] [PubMed]

Ferraro, P.

T. Cacace, V. Bianco, M. Paturzo, P. Memmolo, M. Vassalli, M. Fraldi, G. Mensitieri, and P. Ferraro, “Retrieving acoustic energy densities and local pressure amplitudes in microfluidics by holographic time-lapse imaging,” Lab Chip 18(13), 1921–1927 (2018).
[Crossref] [PubMed]

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18(1), 126–131 (2018).
[Crossref] [PubMed]

P. Memmolo, C. Distante, M. Paturzo, A. Finizio, P. Ferraro, and B. Javidi, “Automatic focusing in digital holography and its application to stretched holograms,” Opt. Lett. 36(10), 1945–1947 (2011).
[Crossref] [PubMed]

Ferris, C. D.

C. D. Ferris, R. L. Huganir, and S. H. Snyder, “Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides,” Proc. Natl. Acad. Sci. U.S.A. 87(6), 2147–2151 (1990).
[Crossref] [PubMed]

Finizio, A.

Forsyth, A. M.

J. Wan, A. M. Forsyth, and H. A. Stone, “Red blood cell dynamics: from cell deformation to ATP release,” Integr. Biol. 3(10), 972–981 (2011).
[Crossref] [PubMed]

Fraldi, M.

T. Cacace, V. Bianco, M. Paturzo, P. Memmolo, M. Vassalli, M. Fraldi, G. Mensitieri, and P. Ferraro, “Retrieving acoustic energy densities and local pressure amplitudes in microfluidics by holographic time-lapse imaging,” Lab Chip 18(13), 1921–1927 (2018).
[Crossref] [PubMed]

Gao, L.

Gao, S.

J. Xu, X. Tian, X. Meng, Y. Kong, S. Gao, H. Cui, F. Liu, L. Xue, C. Liu, and S. Wang, “Wavefront-sensing-based autofocusing in microscopy,” J. Biomed. Opt. 22(8), 1–7 (2017).
[Crossref] [PubMed]

Ge, S.

K. Ghosh, Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. Clark, “Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties,” Biomaterials 28(4), 671–679 (2007).
[Crossref] [PubMed]

Ghosh, K.

K. Ghosh, Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. Clark, “Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties,” Biomaterials 28(4), 671–679 (2007).
[Crossref] [PubMed]

Gillette, M. U.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Gong, Q.

Q. Gong, Q. Wei, J. Xu, Y. Kong, Z. Jiang, W. Qian, Y. Zhu, L. Xue, F. Liu, C. Liu, and S. Wang, “Digital field of view correction combined dual-view transport of intensity equation method for real time quantitative imaging,” Opt. Eng. 57(06), 063102 (2018).
[Crossref]

Göröcs, Z.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Gov, N. S.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Gratzer, W.

J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
[Crossref] [PubMed]

Greenbaum, A.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Guan, E.

K. Ghosh, Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. Clark, “Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties,” Biomaterials 28(4), 671–679 (2007).
[Crossref] [PubMed]

Han, J. H.

He, X.

A. Sun, X. He, Y. Kong, H. Cui, X. Song, L. Xue, S. Wang, and C. Liu, “Ultra-high speed digital micro-mirror device based ptychographic iterative engine method,” Biomed. Opt. Express 8(7), 3155–3162 (2017).
[Crossref] [PubMed]

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

Henle, M. L.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Higgins, J. M.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Hillman, T. R.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Hu, C.

Hu, J.

Huang, H.

X. Meng, H. Huang, K. Yan, X. Tian, W. Yu, H. Cui, Y. Kong, L. Xue, C. Liu, and S. Wang, “Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method,” Lab Chip 17(1), 104–109 (2017).
[Crossref] [PubMed]

Huang, S.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Huganir, R. L.

C. D. Ferris, R. L. Huganir, and S. H. Snyder, “Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides,” Proc. Natl. Acad. Sci. U.S.A. 87(6), 2147–2151 (1990).
[Crossref] [PubMed]

Ingber, D. E.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Irvine, R. F.

M. J. Berridge and R. F. Irvine, “Inositol phosphates and cell signalling,” Nature 341(6239), 197–205 (1989).
[Crossref] [PubMed]

Isikman, S. O.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Iwai, H.

Iyer, R.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Jafarfard, M. R.

Janmey, P.

D. E. Discher, P. Janmey, and Y. L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
[Crossref] [PubMed]

Javidi, B.

Jiang, Z.

Jingshan, Z.

Joanny, J. F.

T. Betz, M. Lenz, J. F. Joanny, and C. Sykes, “ATP-dependent mechanics of red blood cells,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15320–15325 (2009).
[Crossref] [PubMed]

Johnson, D.

Kandel, M. E.

Kane, R. S.

A. Banerjee, M. Arha, S. Choudhary, R. S. Ashton, S. R. Bhatia, D. V. Schaffer, and R. S. Kane, “The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells,” Biomaterials 30(27), 4695–4699 (2009).
[Crossref] [PubMed]

Kim, D. Y.

Kim, K.

Kim, S.

Kim, T.

Kong, Y.

Z. Jiang, X. Pan, Y. Kong, W. Qian, S. Wang, and C. Liu, “Partial saturation-aided resolution enhancement for digital holography,” Appl. Opt. 57(14), 3884–3889 (2018).
[Crossref] [PubMed]

J. Hu, Y. Kong, Z. Jiang, L. Xue, F. Liu, C. Liu, and S. Wang, “Adaptive dual-exposure fusion-based transport of intensity phase microscopy,” Appl. Opt. 57(25), 7249–7258 (2018).
[Crossref] [PubMed]

Q. Gong, Q. Wei, J. Xu, Y. Kong, Z. Jiang, W. Qian, Y. Zhu, L. Xue, F. Liu, C. Liu, and S. Wang, “Digital field of view correction combined dual-view transport of intensity equation method for real time quantitative imaging,” Opt. Eng. 57(06), 063102 (2018).
[Crossref]

J. Xu, X. Tian, X. Meng, Y. Kong, S. Gao, H. Cui, F. Liu, L. Xue, C. Liu, and S. Wang, “Wavefront-sensing-based autofocusing in microscopy,” J. Biomed. Opt. 22(8), 1–7 (2017).
[Crossref] [PubMed]

X. Meng, H. Huang, K. Yan, X. Tian, W. Yu, H. Cui, Y. Kong, L. Xue, C. Liu, and S. Wang, “Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method,” Lab Chip 17(1), 104–109 (2017).
[Crossref] [PubMed]

A. Sun, X. He, Y. Kong, H. Cui, X. Song, L. Xue, S. Wang, and C. Liu, “Ultra-high speed digital micro-mirror device based ptychographic iterative engine method,” Biomed. Opt. Express 8(7), 3155–3162 (2017).
[Crossref] [PubMed]

Korenstein, R.

S. Tuvia, S. Levin, A. Bitler, and R. Korenstein, “Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes,” J. Cell Biol. 141(7), 1551–1561 (1998).
[Crossref] [PubMed]

Kou, S. S.

Kudrolli, H.

Kuriabova, T.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Lembong, J.

J. Lembong, B. Sabass, B. Sun, M. E. Rogers, and H. A. Stone, “Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells,” J. R. Soc. Interface 12(108), 20150140 (2015).
[Crossref] [PubMed]

Lenz, M.

T. Betz, M. Lenz, J. F. Joanny, and C. Sykes, “ATP-dependent mechanics of red blood cells,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15320–15325 (2009).
[Crossref] [PubMed]

Levin, S.

S. Tuvia, S. Levin, A. Bitler, and R. Korenstein, “Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes,” J. Cell Biol. 141(7), 1551–1561 (1998).
[Crossref] [PubMed]

Levine, A. J.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Li, P.

Li, Y.

Liu, C.

Z. Jiang, X. Pan, Y. Kong, W. Qian, S. Wang, and C. Liu, “Partial saturation-aided resolution enhancement for digital holography,” Appl. Opt. 57(14), 3884–3889 (2018).
[Crossref] [PubMed]

J. Hu, Y. Kong, Z. Jiang, L. Xue, F. Liu, C. Liu, and S. Wang, “Adaptive dual-exposure fusion-based transport of intensity phase microscopy,” Appl. Opt. 57(25), 7249–7258 (2018).
[Crossref] [PubMed]

Q. Gong, Q. Wei, J. Xu, Y. Kong, Z. Jiang, W. Qian, Y. Zhu, L. Xue, F. Liu, C. Liu, and S. Wang, “Digital field of view correction combined dual-view transport of intensity equation method for real time quantitative imaging,” Opt. Eng. 57(06), 063102 (2018).
[Crossref]

X. Meng, H. Huang, K. Yan, X. Tian, W. Yu, H. Cui, Y. Kong, L. Xue, C. Liu, and S. Wang, “Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method,” Lab Chip 17(1), 104–109 (2017).
[Crossref] [PubMed]

J. Xu, X. Tian, X. Meng, Y. Kong, S. Gao, H. Cui, F. Liu, L. Xue, C. Liu, and S. Wang, “Wavefront-sensing-based autofocusing in microscopy,” J. Biomed. Opt. 22(8), 1–7 (2017).
[Crossref] [PubMed]

A. Sun, X. He, Y. Kong, H. Cui, X. Song, L. Xue, S. Wang, and C. Liu, “Ultra-high speed digital micro-mirror device based ptychographic iterative engine method,” Biomed. Opt. Express 8(7), 3155–3162 (2017).
[Crossref] [PubMed]

X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
[Crossref] [PubMed]

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

Liu, F.

Q. Gong, Q. Wei, J. Xu, Y. Kong, Z. Jiang, W. Qian, Y. Zhu, L. Xue, F. Liu, C. Liu, and S. Wang, “Digital field of view correction combined dual-view transport of intensity equation method for real time quantitative imaging,” Opt. Eng. 57(06), 063102 (2018).
[Crossref]

J. Hu, Y. Kong, Z. Jiang, L. Xue, F. Liu, C. Liu, and S. Wang, “Adaptive dual-exposure fusion-based transport of intensity phase microscopy,” Appl. Opt. 57(25), 7249–7258 (2018).
[Crossref] [PubMed]

J. Xu, X. Tian, X. Meng, Y. Kong, S. Gao, H. Cui, F. Liu, L. Xue, C. Liu, and S. Wang, “Wavefront-sensing-based autofocusing in microscopy,” J. Biomed. Opt. 22(8), 1–7 (2017).
[Crossref] [PubMed]

Liu, Y.

K. Ghosh, Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. Clark, “Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties,” Biomaterials 28(4), 671–679 (2007).
[Crossref] [PubMed]

Lo, C. M.

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophys. J. 79(1), 144–152 (2000).
[Crossref] [PubMed]

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Luo, W.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Luo, Y.

Lykotrafitis, G.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Ma, C.

Ma, L.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Maffettone, P. L.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18(1), 126–131 (2018).
[Crossref] [PubMed]

Maiden, A.

Memmolo, P.

T. Cacace, V. Bianco, M. Paturzo, P. Memmolo, M. Vassalli, M. Fraldi, G. Mensitieri, and P. Ferraro, “Retrieving acoustic energy densities and local pressure amplitudes in microfluidics by holographic time-lapse imaging,” Lab Chip 18(13), 1921–1927 (2018).
[Crossref] [PubMed]

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18(1), 126–131 (2018).
[Crossref] [PubMed]

P. Memmolo, C. Distante, M. Paturzo, A. Finizio, P. Ferraro, and B. Javidi, “Automatic focusing in digital holography and its application to stretched holograms,” Opt. Lett. 36(10), 1945–1947 (2011).
[Crossref] [PubMed]

Meng, X.

J. Xu, X. Tian, X. Meng, Y. Kong, S. Gao, H. Cui, F. Liu, L. Xue, C. Liu, and S. Wang, “Wavefront-sensing-based autofocusing in microscopy,” J. Biomed. Opt. 22(8), 1–7 (2017).
[Crossref] [PubMed]

X. Meng, H. Huang, K. Yan, X. Tian, W. Yu, H. Cui, Y. Kong, L. Xue, C. Liu, and S. Wang, “Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method,” Lab Chip 17(1), 104–109 (2017).
[Crossref] [PubMed]

X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
[Crossref] [PubMed]

Mensitieri, G.

T. Cacace, V. Bianco, M. Paturzo, P. Memmolo, M. Vassalli, M. Fraldi, G. Mensitieri, and P. Ferraro, “Retrieving acoustic energy densities and local pressure amplitudes in microfluidics by holographic time-lapse imaging,” Lab Chip 18(13), 1921–1927 (2018).
[Crossref] [PubMed]

Merola, F.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18(1), 126–131 (2018).
[Crossref] [PubMed]

Miao, Q.

Miccio, L.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18(1), 126–131 (2018).
[Crossref] [PubMed]

Millet, L.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Mir, M.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Mohandas, N.

J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
[Crossref] [PubMed]

Mrksich, M.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Mudanyali, O.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Mugnano, M.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18(1), 126–131 (2018).
[Crossref] [PubMed]

Na, S.

Nagarkar, V.

Nakamura, T.

K. Ghosh, Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. Clark, “Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties,” Biomaterials 28(4), 671–679 (2007).
[Crossref] [PubMed]

Nativ, A.

Neureuther, A.

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Ozcan, A.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Pan, X.

Pan, Z.

K. Ghosh, Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. Clark, “Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties,” Biomaterials 28(4), 671–679 (2007).
[Crossref] [PubMed]

Park, W. S.

Park, Y.

K. Kim, W. S. Park, S. Na, S. Kim, T. Kim, W. Do Heo, and Y. Park, “Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging,” Biomed. Opt. Express 8(12), 5688–5697 (2017).
[Crossref] [PubMed]

K. Kim and Y. Park, “Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps,” Nat. Commun. 8, 15340 (2017).
[Crossref] [PubMed]

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Parker, K.

J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
[Crossref] [PubMed]

Paturzo, M.

T. Cacace, V. Bianco, M. Paturzo, P. Memmolo, M. Vassalli, M. Fraldi, G. Mensitieri, and P. Ferraro, “Retrieving acoustic energy densities and local pressure amplitudes in microfluidics by holographic time-lapse imaging,” Lab Chip 18(13), 1921–1927 (2018).
[Crossref] [PubMed]

P. Memmolo, C. Distante, M. Paturzo, A. Finizio, P. Ferraro, and B. Javidi, “Automatic focusing in digital holography and its application to stretched holograms,” Opt. Lett. 36(10), 1945–1947 (2011).
[Crossref] [PubMed]

Peng, Z.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Petruccelli, J. C.

Phillips, Z. F.

Popescu, G.

C. Hu, S. Zhu, L. Gao, and G. Popescu, “Endoscopic diffraction phase microscopy,” Opt. Lett. 43(14), 3373–3376 (2018).
[Crossref] [PubMed]

M. Shan, M. E. Kandel, and G. Popescu, “Refractive index variance of cells and tissues measured by quantitative phase imaging,” Opt. Express 25(2), 1573–1581 (2017).
[Crossref] [PubMed]

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Observation of dynamic subdomains in red blood cells,” J. Biomed. Opt. 11(4), 040503 (2006).
[Crossref] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
[Crossref] [PubMed]

Prasanth, S.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Qian, W.

Q. Gong, Q. Wei, J. Xu, Y. Kong, Z. Jiang, W. Qian, Y. Zhu, L. Xue, F. Liu, C. Liu, and S. Wang, “Digital field of view correction combined dual-view transport of intensity equation method for real time quantitative imaging,” Opt. Eng. 57(06), 063102 (2018).
[Crossref]

Z. Jiang, X. Pan, Y. Kong, W. Qian, S. Wang, and C. Liu, “Partial saturation-aided resolution enhancement for digital holography,” Appl. Opt. 57(14), 3884–3889 (2018).
[Crossref] [PubMed]

Qu, W.

Rafailovich, M.

K. Ghosh, Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. Clark, “Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties,” Biomaterials 28(4), 671–679 (2007).
[Crossref] [PubMed]

Rajshekhar, G.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Ren, X. D.

K. Ghosh, Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. Clark, “Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties,” Biomaterials 28(4), 671–679 (2007).
[Crossref] [PubMed]

Rodenburg, J.

J. Rodenburg and H. Faulkner, “phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004).
[Crossref]

Rogers, M. E.

J. Lembong, B. Sabass, B. Sun, M. E. Rogers, and H. A. Stone, “Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells,” J. R. Soc. Interface 12(108), 20150140 (2015).
[Crossref] [PubMed]

Sabass, B.

J. Lembong, B. Sabass, B. Sun, M. E. Rogers, and H. A. Stone, “Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells,” J. R. Soc. Interface 12(108), 20150140 (2015).
[Crossref] [PubMed]

Safran, S. A.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Sanderson, M. J.

M. J. Sanderson, A. C. Charles, S. Boitano, and E. R. Dirksen, “Mechanisms and function of intercellular calcium signaling,” Mol. Cell. Endocrinol. 98(2), 173–187 (1994).
[Crossref] [PubMed]

Schaffer, D. V.

A. Banerjee, M. Arha, S. Choudhary, R. S. Ashton, S. R. Bhatia, D. V. Schaffer, and R. S. Kane, “The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells,” Biomaterials 30(27), 4695–4699 (2009).
[Crossref] [PubMed]

Schoonover, R. W.

Sczyrba, M.

Sen, S.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell 126(4), 677–689 (2006).
[Crossref] [PubMed]

Shaked, N. T.

Shan, M.

Shanker, A.

Shao, J.

J. Shao, Y. Wang, X. Deng, and S. Wang, “Sparse linear discriminant analysis by thresholding for high dimensional data,” Ann. Stat. 39(2), 1241–1265 (2011).
[Crossref]

Sharif, F.

Sheppard, C. J.

Shimizu, S.

Y. Eguchi, S. Shimizu, and Y. Tsujimoto, “Intracellular ATP levels determine cell death fate by apoptosis or necrosis,” Cancer Res. 57(10), 1835–1840 (1997).
[PubMed]

Sleep, J.

J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
[Crossref] [PubMed]

Snyder, S. H.

C. D. Ferris, R. L. Huganir, and S. H. Snyder, “Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides,” Proc. Natl. Acad. Sci. U.S.A. 87(6), 2147–2151 (1990).
[Crossref] [PubMed]

Song, X.

A. Sun, X. He, Y. Kong, H. Cui, X. Song, L. Xue, S. Wang, and C. Liu, “Ultra-high speed digital micro-mirror device based ptychographic iterative engine method,” Biomed. Opt. Express 8(7), 3155–3162 (2017).
[Crossref] [PubMed]

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

Soto, M.

Sridharan, S.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Stone, H. A.

J. Lembong, B. Sabass, B. Sun, M. E. Rogers, and H. A. Stone, “Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells,” J. R. Soc. Interface 12(108), 20150140 (2015).
[Crossref] [PubMed]

J. Wan, A. M. Forsyth, and H. A. Stone, “Red blood cell dynamics: from cell deformation to ATP release,” Integr. Biol. 3(10), 972–981 (2011).
[Crossref] [PubMed]

Su, T. W.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Sun, A.

Sun, B.

J. Lembong, B. Sabass, B. Sun, M. E. Rogers, and H. A. Stone, “Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells,” J. R. Soc. Interface 12(108), 20150140 (2015).
[Crossref] [PubMed]

Suresh, S.

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Sweeney, H. L.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell 126(4), 677–689 (2006).
[Crossref] [PubMed]

Sykes, C.

T. Betz, M. Lenz, J. F. Joanny, and C. Sykes, “ATP-dependent mechanics of red blood cells,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15320–15325 (2009).
[Crossref] [PubMed]

Tayebi, B.

Tian, L.

Tian, X.

X. Meng, H. Huang, K. Yan, X. Tian, W. Yu, H. Cui, Y. Kong, L. Xue, C. Liu, and S. Wang, “Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method,” Lab Chip 17(1), 104–109 (2017).
[Crossref] [PubMed]

J. Xu, X. Tian, X. Meng, Y. Kong, S. Gao, H. Cui, F. Liu, L. Xue, C. Liu, and S. Wang, “Wavefront-sensing-based autofocusing in microscopy,” J. Biomed. Opt. 22(8), 1–7 (2017).
[Crossref] [PubMed]

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
[Crossref] [PubMed]

Titushkin, I.

I. Titushkin and M. Cho, “Regulation of Cell Cytoskeleton and Membrane Mechanics by Electric Field: Role of Linker Proteins,” Biophys. J. 96(2), 717–728 (2009).
[Crossref] [PubMed]

Tsujimoto, Y.

Y. Eguchi, S. Shimizu, and Y. Tsujimoto, “Intracellular ATP levels determine cell death fate by apoptosis or necrosis,” Cancer Res. 57(10), 1835–1840 (1997).
[PubMed]

Turko, N. A.

Tuvia, S.

S. Tuvia, S. Levin, A. Bitler, and R. Korenstein, “Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes,” J. Cell Biol. 141(7), 1551–1561 (1998).
[Crossref] [PubMed]

Vassalli, M.

T. Cacace, V. Bianco, M. Paturzo, P. Memmolo, M. Vassalli, M. Fraldi, G. Mensitieri, and P. Ferraro, “Retrieving acoustic energy densities and local pressure amplitudes in microfluidics by holographic time-lapse imaging,” Lab Chip 18(13), 1921–1927 (2018).
[Crossref] [PubMed]

Vaughan, J. C.

Villone, M. M.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18(1), 126–131 (2018).
[Crossref] [PubMed]

Waller, L.

Wan, J.

J. Wan, A. M. Forsyth, and H. A. Stone, “Red blood cell dynamics: from cell deformation to ATP release,” Integr. Biol. 3(10), 972–981 (2011).
[Crossref] [PubMed]

Wang, H. B.

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophys. J. 79(1), 144–152 (2000).
[Crossref] [PubMed]

Wang, K.

Wang, R.

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Wang, S.

Q. Gong, Q. Wei, J. Xu, Y. Kong, Z. Jiang, W. Qian, Y. Zhu, L. Xue, F. Liu, C. Liu, and S. Wang, “Digital field of view correction combined dual-view transport of intensity equation method for real time quantitative imaging,” Opt. Eng. 57(06), 063102 (2018).
[Crossref]

K. Yan, L. Xue, and S. Wang, “Field of view scanning based quantitative interferometric microscopic cytometers for cellular imaging and analysis,” Microsc. Res. Tech. 81(4), 397–407 (2018).
[Crossref] [PubMed]

Z. Jiang, X. Pan, Y. Kong, W. Qian, S. Wang, and C. Liu, “Partial saturation-aided resolution enhancement for digital holography,” Appl. Opt. 57(14), 3884–3889 (2018).
[Crossref] [PubMed]

J. Hu, Y. Kong, Z. Jiang, L. Xue, F. Liu, C. Liu, and S. Wang, “Adaptive dual-exposure fusion-based transport of intensity phase microscopy,” Appl. Opt. 57(25), 7249–7258 (2018).
[Crossref] [PubMed]

A. Sun, X. He, Y. Kong, H. Cui, X. Song, L. Xue, S. Wang, and C. Liu, “Ultra-high speed digital micro-mirror device based ptychographic iterative engine method,” Biomed. Opt. Express 8(7), 3155–3162 (2017).
[Crossref] [PubMed]

X. Meng, H. Huang, K. Yan, X. Tian, W. Yu, H. Cui, Y. Kong, L. Xue, C. Liu, and S. Wang, “Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method,” Lab Chip 17(1), 104–109 (2017).
[Crossref] [PubMed]

J. Xu, X. Tian, X. Meng, Y. Kong, S. Gao, H. Cui, F. Liu, L. Xue, C. Liu, and S. Wang, “Wavefront-sensing-based autofocusing in microscopy,” J. Biomed. Opt. 22(8), 1–7 (2017).
[Crossref] [PubMed]

S. Wang, L. Xue, and K. Yan, “Numerical calculation of light scattering from metal and dielectric randomly rough Gaussian surfaces using microfacet slope probability density function based method,” J. Quant. Spectrosc. Radiat. Transf. 196, 183–200 (2017).
[Crossref]

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
[Crossref] [PubMed]

J. Shao, Y. Wang, X. Deng, and S. Wang, “Sparse linear discriminant analysis by thresholding for high dimensional data,” Ann. Stat. 39(2), 1241–1265 (2011).
[Crossref]

Wang, Y.

J. Shao, Y. Wang, X. Deng, and S. Wang, “Sparse linear discriminant analysis by thresholding for high dimensional data,” Ann. Stat. 39(2), 1241–1265 (2011).
[Crossref]

Wang, Y. L.

D. E. Discher, P. Janmey, and Y. L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
[Crossref] [PubMed]

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophys. J. 79(1), 144–152 (2000).
[Crossref] [PubMed]

Wei, Q.

Q. Gong, Q. Wei, J. Xu, Y. Kong, Z. Jiang, W. Qian, Y. Zhu, L. Xue, F. Liu, C. Liu, and S. Wang, “Digital field of view correction combined dual-view transport of intensity equation method for real time quantitative imaging,” Opt. Eng. 57(06), 063102 (2018).
[Crossref]

Whitesides, G. M.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Wolbromsky, L.

Xi, T.

Xu, J.

Q. Gong, Q. Wei, J. Xu, Y. Kong, Z. Jiang, W. Qian, Y. Zhu, L. Xue, F. Liu, C. Liu, and S. Wang, “Digital field of view correction combined dual-view transport of intensity equation method for real time quantitative imaging,” Opt. Eng. 57(06), 063102 (2018).
[Crossref]

J. Xu, X. Tian, X. Meng, Y. Kong, S. Gao, H. Cui, F. Liu, L. Xue, C. Liu, and S. Wang, “Wavefront-sensing-based autofocusing in microscopy,” J. Biomed. Opt. 22(8), 1–7 (2017).
[Crossref] [PubMed]

Xue, B.

Xue, L.

Q. Gong, Q. Wei, J. Xu, Y. Kong, Z. Jiang, W. Qian, Y. Zhu, L. Xue, F. Liu, C. Liu, and S. Wang, “Digital field of view correction combined dual-view transport of intensity equation method for real time quantitative imaging,” Opt. Eng. 57(06), 063102 (2018).
[Crossref]

K. Yan, L. Xue, and S. Wang, “Field of view scanning based quantitative interferometric microscopic cytometers for cellular imaging and analysis,” Microsc. Res. Tech. 81(4), 397–407 (2018).
[Crossref] [PubMed]

J. Hu, Y. Kong, Z. Jiang, L. Xue, F. Liu, C. Liu, and S. Wang, “Adaptive dual-exposure fusion-based transport of intensity phase microscopy,” Appl. Opt. 57(25), 7249–7258 (2018).
[Crossref] [PubMed]

J. Xu, X. Tian, X. Meng, Y. Kong, S. Gao, H. Cui, F. Liu, L. Xue, C. Liu, and S. Wang, “Wavefront-sensing-based autofocusing in microscopy,” J. Biomed. Opt. 22(8), 1–7 (2017).
[Crossref] [PubMed]

X. Meng, H. Huang, K. Yan, X. Tian, W. Yu, H. Cui, Y. Kong, L. Xue, C. Liu, and S. Wang, “Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method,” Lab Chip 17(1), 104–109 (2017).
[Crossref] [PubMed]

S. Wang, L. Xue, and K. Yan, “Numerical calculation of light scattering from metal and dielectric randomly rough Gaussian surfaces using microfacet slope probability density function based method,” J. Quant. Spectrosc. Radiat. Transf. 196, 183–200 (2017).
[Crossref]

A. Sun, X. He, Y. Kong, H. Cui, X. Song, L. Xue, S. Wang, and C. Liu, “Ultra-high speed digital micro-mirror device based ptychographic iterative engine method,” Biomed. Opt. Express 8(7), 3155–3162 (2017).
[Crossref] [PubMed]

X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
[Crossref] [PubMed]

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Yan, K.

K. Yan, L. Xue, and S. Wang, “Field of view scanning based quantitative interferometric microscopic cytometers for cellular imaging and analysis,” Microsc. Res. Tech. 81(4), 397–407 (2018).
[Crossref] [PubMed]

X. Meng, H. Huang, K. Yan, X. Tian, W. Yu, H. Cui, Y. Kong, L. Xue, C. Liu, and S. Wang, “Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method,” Lab Chip 17(1), 104–109 (2017).
[Crossref] [PubMed]

S. Wang, L. Xue, and K. Yan, “Numerical calculation of light scattering from metal and dielectric randomly rough Gaussian surfaces using microfacet slope probability density function based method,” J. Quant. Spectrosc. Radiat. Transf. 196, 183–200 (2017).
[Crossref]

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Yang, S. Y.

Yang, Z.

Z. Yang and Q. Zhan, “Single-Shot Smartphone-Based Quantitative Phase Imaging Using a Distorted Grating,” PLoS One 11(7), e0159596 (2016).
[Crossref] [PubMed]

Yu, W.

X. Meng, H. Huang, K. Yan, X. Tian, W. Yu, H. Cui, Y. Kong, L. Xue, C. Liu, and S. Wang, “Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method,” Lab Chip 17(1), 104–109 (2017).
[Crossref] [PubMed]

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
[Crossref] [PubMed]

Zhan, Q.

Z. Yang and Q. Zhan, “Single-Shot Smartphone-Based Quantitative Phase Imaging Using a Distorted Grating,” PLoS One 11(7), e0159596 (2016).
[Crossref] [PubMed]

Zhang, J.

Zhao, J.

Zheng, G.

G. Zheng, “Breakthroughs in Photonics 2013: Fourier Ptychographic Imaging,” IEEE Photonics J. 6(2), 0701207 (2014).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Zheng, S.

Zhong, J.

Zhou, F.

Zhu, S.

Zhu, Y.

Q. Gong, Q. Wei, J. Xu, Y. Kong, Z. Jiang, W. Qian, Y. Zhu, L. Xue, F. Liu, C. Liu, and S. Wang, “Digital field of view correction combined dual-view transport of intensity equation method for real time quantitative imaging,” Opt. Eng. 57(06), 063102 (2018).
[Crossref]

Zuo, C.

Zysk, A. M.

Acta Biomater. (1)

H. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[Crossref] [PubMed]

Ann. Stat. (1)

J. Shao, Y. Wang, X. Deng, and S. Wang, “Sparse linear discriminant analysis by thresholding for high dimensional data,” Ann. Stat. 39(2), 1241–1265 (2011).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (2)

J. Rodenburg and H. Faulkner, “phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004).
[Crossref]

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

Biomaterials (2)

K. Ghosh, Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. Clark, “Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties,” Biomaterials 28(4), 671–679 (2007).
[Crossref] [PubMed]

A. Banerjee, M. Arha, S. Choudhary, R. S. Ashton, S. R. Bhatia, D. V. Schaffer, and R. S. Kane, “The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells,” Biomaterials 30(27), 4695–4699 (2009).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Biophys. J. (3)

I. Titushkin and M. Cho, “Regulation of Cell Cytoskeleton and Membrane Mechanics by Electric Field: Role of Linker Proteins,” Biophys. J. 96(2), 717–728 (2009).
[Crossref] [PubMed]

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophys. J. 79(1), 144–152 (2000).
[Crossref] [PubMed]

J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
[Crossref] [PubMed]

Cancer Res. (1)

Y. Eguchi, S. Shimizu, and Y. Tsujimoto, “Intracellular ATP levels determine cell death fate by apoptosis or necrosis,” Cancer Res. 57(10), 1835–1840 (1997).
[PubMed]

Cell (1)

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell 126(4), 677–689 (2006).
[Crossref] [PubMed]

IEEE Photonics J. (1)

G. Zheng, “Breakthroughs in Photonics 2013: Fourier Ptychographic Imaging,” IEEE Photonics J. 6(2), 0701207 (2014).
[Crossref]

Integr. Biol. (1)

J. Wan, A. M. Forsyth, and H. A. Stone, “Red blood cell dynamics: from cell deformation to ATP release,” Integr. Biol. 3(10), 972–981 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Observation of dynamic subdomains in red blood cells,” J. Biomed. Opt. 11(4), 040503 (2006).
[Crossref] [PubMed]

J. Xu, X. Tian, X. Meng, Y. Kong, S. Gao, H. Cui, F. Liu, L. Xue, C. Liu, and S. Wang, “Wavefront-sensing-based autofocusing in microscopy,” J. Biomed. Opt. 22(8), 1–7 (2017).
[Crossref] [PubMed]

J. Cell Biol. (1)

S. Tuvia, S. Levin, A. Bitler, and R. Korenstein, “Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes,” J. Cell Biol. 141(7), 1551–1561 (1998).
[Crossref] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (1)

S. Wang, L. Xue, and K. Yan, “Numerical calculation of light scattering from metal and dielectric randomly rough Gaussian surfaces using microfacet slope probability density function based method,” J. Quant. Spectrosc. Radiat. Transf. 196, 183–200 (2017).
[Crossref]

J. R. Soc. Interface (1)

J. Lembong, B. Sabass, B. Sun, M. E. Rogers, and H. A. Stone, “Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells,” J. R. Soc. Interface 12(108), 20150140 (2015).
[Crossref] [PubMed]

Lab Chip (3)

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18(1), 126–131 (2018).
[Crossref] [PubMed]

T. Cacace, V. Bianco, M. Paturzo, P. Memmolo, M. Vassalli, M. Fraldi, G. Mensitieri, and P. Ferraro, “Retrieving acoustic energy densities and local pressure amplitudes in microfluidics by holographic time-lapse imaging,” Lab Chip 18(13), 1921–1927 (2018).
[Crossref] [PubMed]

X. Meng, H. Huang, K. Yan, X. Tian, W. Yu, H. Cui, Y. Kong, L. Xue, C. Liu, and S. Wang, “Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method,” Lab Chip 17(1), 104–109 (2017).
[Crossref] [PubMed]

Microsc. Res. Tech. (1)

K. Yan, L. Xue, and S. Wang, “Field of view scanning based quantitative interferometric microscopic cytometers for cellular imaging and analysis,” Microsc. Res. Tech. 81(4), 397–407 (2018).
[Crossref] [PubMed]

Mol. Cell. Endocrinol. (1)

M. J. Sanderson, A. C. Charles, S. Boitano, and E. R. Dirksen, “Mechanisms and function of intercellular calcium signaling,” Mol. Cell. Endocrinol. 98(2), 173–187 (1994).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Kim and Y. Park, “Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps,” Nat. Commun. 8, 15340 (2017).
[Crossref] [PubMed]

Nat. Methods (2)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Nature (1)

M. J. Berridge and R. F. Irvine, “Inositol phosphates and cell signalling,” Nature 341(6239), 197–205 (1989).
[Crossref] [PubMed]

Opt. Eng. (1)

Q. Gong, Q. Wei, J. Xu, Y. Kong, Z. Jiang, W. Qian, Y. Zhu, L. Xue, F. Liu, C. Liu, and S. Wang, “Digital field of view correction combined dual-view transport of intensity equation method for real time quantitative imaging,” Opt. Eng. 57(06), 063102 (2018).
[Crossref]

Opt. Express (7)

Opt. Lett. (11)

C. Hu, S. Zhu, L. Gao, and G. Popescu, “Endoscopic diffraction phase microscopy,” Opt. Lett. 43(14), 3373–3376 (2018).
[Crossref] [PubMed]

L. Wolbromsky, N. A. Turko, and N. T. Shaked, “Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing,” Opt. Lett. 43(9), 2046–2049 (2018).
[Crossref] [PubMed]

A. Nativ and N. T. Shaked, “Compact interferometric module for full-field interferometric phase microscopy with low spatial coherence illumination,” Opt. Lett. 42(8), 1492–1495 (2017).
[Crossref] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
[Crossref] [PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38(18), 3538–3541 (2013).
[Crossref] [PubMed]

X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
[Crossref] [PubMed]

L. Tian, J. C. Petruccelli, and G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett. 37(19), 4131–4133 (2012).
[Crossref] [PubMed]

L. Tian, J. C. Petruccelli, Q. Miao, H. Kudrolli, V. Nagarkar, and G. Barbastathis, “Compressive x-ray phase tomography based on the transport of intensity equation,” Opt. Lett. 38(17), 3418–3421 (2013).
[Crossref] [PubMed]

L. Waller, Y. Luo, S. Y. Yang, and G. Barbastathis, “Transport of intensity phase imaging in a volume holographic microscope,” Opt. Lett. 35(17), 2961–2963 (2010).
[Crossref] [PubMed]

P. Memmolo, C. Distante, M. Paturzo, A. Finizio, P. Ferraro, and B. Javidi, “Automatic focusing in digital holography and its application to stretched holograms,” Opt. Lett. 36(10), 1945–1947 (2011).
[Crossref] [PubMed]

A. M. Zysk, R. W. Schoonover, P. S. Carney, and M. A. Anastasio, “Transport of intensity and spectrum for partially coherent fields,” Opt. Lett. 35(13), 2239–2241 (2010).
[Crossref] [PubMed]

Optica (1)

PLoS One (1)

Z. Yang and Q. Zhan, “Single-Shot Smartphone-Based Quantitative Phase Imaging Using a Distorted Grating,” PLoS One 11(7), e0159596 (2016).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (5)

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

T. Betz, M. Lenz, J. F. Joanny, and C. Sykes, “ATP-dependent mechanics of red blood cells,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15320–15325 (2009).
[Crossref] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

C. D. Ferris, R. L. Huganir, and S. H. Snyder, “Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides,” Proc. Natl. Acad. Sci. U.S.A. 87(6), 2147–2151 (1990).
[Crossref] [PubMed]

Sci. Rep. (1)

L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, and G. Popescu, “Phase correlation imaging of unlabeled cell dynamics,” Sci. Rep. 6(1), 32702 (2016).
[Crossref] [PubMed]

Science (2)

D. E. Discher, P. Janmey, and Y. L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
[Crossref] [PubMed]

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Flowchart of the dual view transport of intensity phase microscopy. (A) the dual view transport of intensity phase microscopy system; (B) simultaneously recorded under- and over-focus images; (C) FoV corrected under- and over-focus images; (D) retrieved in-focus intensity and phase.
Fig. 2
Fig. 2 Flowchart of cellular fluctuation analysis. (A) retrieved real-time phase distributions using dual view transport of intensity phase microscopy; (B) cell recognition according to the phase value; (C) the root-mean-square phase and the correlation time of a single cell; (D) statistical analysis on average root-mean-square phase and correlation time of multiple cells.
Fig. 3
Fig. 3 Quantitative certification on the dual view transport of intensity phase microscopic system using random phase plate. (A) and (B) simultaneously recorded under- and over-focus images after digital FoV correction; (C) retrieved phase from (A) and (B); (D) cross section phase distributions along the lines in (C); (E) part of under- and over-focus images in an observation period of 6 s with the acquisition rate of 20 fps; (F) retrieved phase distributions at 0 s, 3 s and 6 s; (G) phase distributions of 3 sampling points on the random phase plate in (C) during the observation period. The color bars in (C) and (F) indicate the phase with the unit of rad, and the white bar in (C) indicates 30 μm.
Fig. 4
Fig. 4 Quantitative certification on the dual view transport of intensity phase microscopic system using cells. (A) cell phases and corresponding cell occupied pixels during the observation time; (B) statistical cell occupied pixel changes in different conditions; (C) relative root-mean-square phase changes and correlation time changes in different conditions. The color bars in (A) indicate the phase with the unit of rad, and the white bar in (A) indicates 30 μm.
Fig. 5
Fig. 5 Cellular fluctuations of F81 cells with ATP and with ATP depletion. (A), (B) and (C) the retrieved phases of 2 representative cells in the DMEM with glucose, in the DMEM without glucose and with ATP adding, respectively. (D), (E) and (F) statistical analysis on the average root-mean-square phase and the correlation time of 60 cells in different conditions corresponding to (A), (B) and (C). (H) Comparisons on the statistical root-mean-square phase and correlation time in different conditions. There are statistically significant differences between the root-mean-square phase and the correlation time in (E) and (D/F) (t<0.01), but there are no statistically significant differences between the root-mean-square phase and the correlation time in (D) and (F). (G) Cell condition classification using linear discriminant analysis. The color bars in (A)-(C) indicate the phase with the unit of rad, and the white bar in (A) indicates 30 μm. The error bars in (H) indicates the standard deviation.
Fig. 6
Fig. 6 Cellular fluctuations of F81 cells with ATP and with ATP depletion. (A), (B) and (C) the retrieved phases of 2 representative cells in the DMEM with glucose, in the DMEM without glucose and with glucose adding, respectively. (D), (E) and (F) statistical analysis on the average root-mean-square phase and the correlation time of 60 cells in different conditions corresponding to (A), (B) and (C). (H) Comparisons on statistical root-mean-square phase and correlation time in different conditions. There are statistically significant differences between the root-mean-square phase and the correlation time in (E) and (D/F) (t<0.01), but there are no statistically significant differences between the root-mean-square phase and the correlation time in (D) and (F). (G) Cell condition classification using linear discriminant analysis. The color bars in (A)-(C) indicate the phase with the unit of rad, and the white bar in (A) indicates 30 μm. The error bars in (H) indicates the standard deviation.
Fig. 7
Fig. 7 Cellular fluctuations of BHK21 cells with ATP and with ATP depletion. (A), (B) and (C) the retrieved phases of 2 representative cells in the DMEM with glucose, in the DMEM without glucose and with ATP adding, respectively. (D), (E) and (F) statistical analysis on the average root-mean-square phase and the correlation time of 60 cells in different conditions corresponding to (A), (B) and (C). (H) Comparisons on the statistical root-mean-square phase and correlation time in different conditions. There are statistically significant differences between the root-mean-square phase and the correlation time in (E) and (D/F) (t<0.01), but there are no statistically significant differences between the root-mean-square phase and the correlation time in (D) and (F). (G) Cell condition classification using linear discriminant analysis. The color bars in (A)-(C) indicate the phase with the unit of rad, and the white bar in (A) indicates 30 μm. The error bars in (H) indicates the standard deviation.
Fig. 8
Fig. 8 Cellular fluctuations of BHK21 cells with ATP and with ATP depletion. (A), (B) and (C) the retrieved phases of 2 representative cells in the DMEM with glucose, in the DMEM without glucose and with glucose adding, respectively. (D), (E) and (F) statistical analysis on the average root-mean-square phase and the correlation time of 60 cells in different conditions corresponding to (A), (B) and (C). (H) Comparisons on the statistical root-mean-square phase and correlation time in different conditions. There are statistically significant differences between the root-mean-square phase and the correlation time in (E) and (D/F) (t<0.01), but there are no statistically significant differences between the root-mean-square phase and the correlation time in (D) and (F). (G) Cell condition classification using linear discriminant analysis. The color bars in (A)-(C) indicate the phase with the unit of rad, and the white bar in (A) indicates 30 μm. The error bars in (H) indicates the standard deviation.
Fig. 9
Fig. 9 Relation between the cellular fluctuations and ATP concentrations. Statistical analysis on root-mean-square phase and correlation time of (A) F81 cells and (B) BHK21 cells cultured in DMEM without glucose but with ATP concentrations of 0 mM, 0.5 mM, 1 mM, 2 mM and 4 mM.
Fig. 10
Fig. 10 Cellular fluctuations of F81 cells with AMP-PNP introduction. (A) and (B) the retrieved phases of 2 representative cells in DMEM with glucose and then with AMP-PNP introduction. (C) and (D) statistical analysis on the average root-mean-square phase and the correlation time of 60 cells in different conditions corresponding to (A) and (B). (E) Comparisons on the statistical root-mean-square phase and correlation time in different conditions. There are statistically significant differences between the root-mean-square phase and the correlation time in (C) and (D) (t<0.01). (F) Cell condition classification using linear discriminant analysis. The color bars in (A) and (B) indicate the phase with the unit of rad, and the white bar in (A) indicates 30 μm. The error bars in (E) indicates the standard deviation.
Fig. 11
Fig. 11 Cellular fluctuations of BHK21 cells with AMP-PNP introduction. (A) and (B) the retrieved phases of 2 representative cells in DMEM with glucose and then with AMP-PNP introduction. (C) and (D) statistical analysis on the average root-mean-square phase and the correlation time of 60 cells in different conditions corresponding to (A) and (B). (E) Comparisons on the statistical root-mean-square phase and correlation time in different conditions. There are statistically significant differences between the root-mean-square phase and the correlation time in (C) and (D) (t<0.01). (F) Cell condition classification using linear discriminant analysis. The color bars in (A) and (B) indicate the phase with the unit of rad, and the white bar in (A) indicates 30 μm. The error bars in (E) indicates the standard deviation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

φ rms (r)= 1 n1 i=1 n { φ(r, t i )N[φ(r)] } 2
ρ(Δt)= φ(t),φ(t+Δt) δ 2
ΔT= Δt| ρ(Δt)=1/e

Metrics