Abstract

Frequently, when imaging retinal vasculature with optical coherence tomography angiography (OCTA) in diseased eyes, there are unavoidable obstacles to the propagation of light such as vitreous floaters or the pupil boundary. These obstacles can block the optical coherence tomography (OCT) beam and impede the visualization of the underlying retinal microcirculation. Detecting these shadow artifacts is especially important in the quantification of metrics that assess retinal disease progression because they might masquerade as regional perfusion loss. In this work, we present an algorithm to identify shadowed areas in OCTA of healthy subjects as well as patients with diabetic retinopathy, uveitis and age-related macular degeneration. The aim is to exclude these areas from analysis so that the overall OCTA parameters are minimally affected by shadow artifacts.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
MEDnet, a neural network for automated detection of avascular area in OCT angiography

Yukun Guo, Acner Camino, Jie Wang, David Huang, Thomas S. Hwang, and Yali Jia
Biomed. Opt. Express 9(11) 5147-5158 (2018)

Development and validation of a deep learning algorithm for distinguishing the nonperfusion area from signal reduction artifacts on OCT angiography

Yukun Guo, Tristan T. Hormel, Honglian Xiong, Bingjie Wang, Acner Camino, Jie Wang, David Huang, Thomas S. Hwang, and Yali Jia
Biomed. Opt. Express 10(7) 3257-3268 (2019)

Robust non-perfusion area detection in three retinal plexuses using convolutional neural network in OCT angiography

Jie Wang, Tristan T. Hormel, Qisheng You, Yukun Guo, Xiaogang Wang, Liu Chen, Thomas S. Hwang, and Yali Jia
Biomed. Opt. Express 11(1) 330-345 (2020)

References

  • View by:
  • |
  • |
  • |

  1. Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
    [Crossref] [PubMed]
  2. S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T.S. Hwang, S.T. Bailey, and D. Huang, "Optical coherence tomography angiography," Investigative Ophthalmology & Visual Science,  57(9), 27–36 (2016).
  3. T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
    [Crossref] [PubMed]
  4. R. Mastropasqua, L. Toto, L. Di Antonio, E. Borrelli, A. Senatore, M. Di Nicola, G. Di Martino, M. Ciancaglini, and P. Carpineto, “Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions,” Sci. Rep. 7(1), 40763 (2017).
    [Crossref] [PubMed]
  5. J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
    [Crossref] [PubMed]
  6. Y. Jia, J. C. Morrison, J. Tokayer, O. Tan, L. Lombardi, B. Baumann, C. D. Lu, W. Choi, J. G. Fujimoto, and D. Huang, “Quantitative OCT angiography of optic nerve head blood flow,” Biomed. Opt. Express 3(12), 3127–3137 (2012).
    [Crossref] [PubMed]
  7. Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
    [Crossref] [PubMed]
  8. Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
    [Crossref] [PubMed]
  9. A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
    [Crossref] [PubMed]
  10. A. Tomlinson, B. Hasan, and B. J. Lujan, “Importance of Focus in OCT Angiography,” Ophthalmol. Retina 2(7), 748–749 (2018).
    [Crossref]
  11. S. S. Gao, Y. Jia, L. Liu, M. Zhang, H. L. Takusagawa, J. C. Morrison, and D. Huang, “Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(10), 4485–4492 (2016).
    [Crossref] [PubMed]
  12. A. Camino, Y. Jia, G. Liu, J. Wang, and D. Huang, “Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography,” Biomed. Opt. Express 8(6), 3053–3066 (2017).
    [Crossref] [PubMed]
  13. Q. Zhang, F. Zheng, E. H. Motulsky, G. Gregori, Z. Chu, C. L. Chen, C. Li, L. de Sisternes, M. Durbin, P. J. Rosenfeld, and R. K. Wang, “A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography,” Invest. Ophthalmol. Vis. Sci. 59(1), 203–211 (2018).
    [Crossref] [PubMed]
  14. I. Kelly-Pérez, N. C. Bruce, L. R. Berriel-Valdos, A. Werner, and J. A. Delgado Atencio, “Computational model of the effect of light scattering from cataracts in the human eye,” J. Opt. Soc. Am. A 30(12), 2585–2594 (2013).
    [Crossref] [PubMed]
  15. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref] [PubMed]
  16. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
    [Crossref] [PubMed]
  17. A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
    [Crossref] [PubMed]
  18. C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
    [Crossref] [PubMed]
  19. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
    [Crossref] [PubMed]
  20. S. S. Park, S. Thinda, D. Y. Kim, R. J. Zawadzki, and J. S. Werner, “Phase-Variance Optical Coherence Tomographic Angiography Imaging of Choroidal Perfusion Changes Associated With Acute Posterior Multifocal Placoid Pigment Epitheliopathy,” JAMA Ophthalmol. 134(8), 943–945 (2016).
    [Crossref] [PubMed]
  21. S. M. R. Motaghiannezam, D. Koos, and S. E. Fraser, “Differential phase-contrast, swept-source optical coherence tomography at 1060 nm for in vivo human retinal and choroidal vasculature visualization,” in (SPIE, 2012), 6.
  22. R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19(12), 126010 (2014).
    [Crossref] [PubMed]
  23. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [Crossref] [PubMed]
  24. A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
    [Crossref] [PubMed]
  25. R. Motaghiannezam and S. Fraser, “Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography,” Biomed. Opt. Express 3(3), 503–521 (2012).
    [Crossref] [PubMed]
  26. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22(4), 593–596 (2005).
    [Crossref] [PubMed]
  27. W. Shi, W. Gao, C. Chen, and V. X. D. Yang, “Differential standard deviation of log-scale intensity based optical coherence tomography angiography,” J. Biophotonics 10(12), 1597–1606 (2017).
    [Crossref] [PubMed]
  28. S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
    [Crossref] [PubMed]
  29. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref] [PubMed]
  30. M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
    [Crossref] [PubMed]
  31. A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced Quantification of Retinal Perfusion by Improved Discrimination of Blood Flow From Bulk Motion Signal in OCTA,” Transl. Vis. Sci. Technol. 7(6), 20 (2018).
    [Crossref] [PubMed]

2018 (3)

Q. Zhang, F. Zheng, E. H. Motulsky, G. Gregori, Z. Chu, C. L. Chen, C. Li, L. de Sisternes, M. Durbin, P. J. Rosenfeld, and R. K. Wang, “A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography,” Invest. Ophthalmol. Vis. Sci. 59(1), 203–211 (2018).
[Crossref] [PubMed]

A. Tomlinson, B. Hasan, and B. J. Lujan, “Importance of Focus in OCT Angiography,” Ophthalmol. Retina 2(7), 748–749 (2018).
[Crossref]

A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced Quantification of Retinal Perfusion by Improved Discrimination of Blood Flow From Bulk Motion Signal in OCTA,” Transl. Vis. Sci. Technol. 7(6), 20 (2018).
[Crossref] [PubMed]

2017 (5)

C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref] [PubMed]

W. Shi, W. Gao, C. Chen, and V. X. D. Yang, “Differential standard deviation of log-scale intensity based optical coherence tomography angiography,” J. Biophotonics 10(12), 1597–1606 (2017).
[Crossref] [PubMed]

A. Camino, Y. Jia, G. Liu, J. Wang, and D. Huang, “Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography,” Biomed. Opt. Express 8(6), 3053–3066 (2017).
[Crossref] [PubMed]

R. Mastropasqua, L. Toto, L. Di Antonio, E. Borrelli, A. Senatore, M. Di Nicola, G. Di Martino, M. Ciancaglini, and P. Carpineto, “Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions,” Sci. Rep. 7(1), 40763 (2017).
[Crossref] [PubMed]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

2016 (5)

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T.S. Hwang, S.T. Bailey, and D. Huang, "Optical coherence tomography angiography," Investigative Ophthalmology & Visual Science,  57(9), 27–36 (2016).

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref] [PubMed]

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref] [PubMed]

S. S. Gao, Y. Jia, L. Liu, M. Zhang, H. L. Takusagawa, J. C. Morrison, and D. Huang, “Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(10), 4485–4492 (2016).
[Crossref] [PubMed]

S. S. Park, S. Thinda, D. Y. Kim, R. J. Zawadzki, and J. S. Werner, “Phase-Variance Optical Coherence Tomographic Angiography Imaging of Choroidal Perfusion Changes Associated With Acute Posterior Multifocal Placoid Pigment Epitheliopathy,” JAMA Ophthalmol. 134(8), 943–945 (2016).
[Crossref] [PubMed]

2015 (5)

S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

2014 (2)

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19(12), 126010 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (5)

2010 (1)

2009 (1)

2008 (1)

2005 (1)

Bailey, S. T.

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Bailey, S.T.

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T.S. Hwang, S.T. Bailey, and D. Huang, "Optical coherence tomography angiography," Investigative Ophthalmology & Visual Science,  57(9), 27–36 (2016).

Baumann, B.

Berriel-Valdos, L. R.

Bhavsar, K.

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref] [PubMed]

Bock, R.

Borrelli, E.

R. Mastropasqua, L. Toto, L. Di Antonio, E. Borrelli, A. Senatore, M. Di Nicola, G. Di Martino, M. Ciancaglini, and P. Carpineto, “Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions,” Sci. Rep. 7(1), 40763 (2017).
[Crossref] [PubMed]

Bruce, N. C.

Cable, A.

Camino, A.

Campbell, J. P.

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref] [PubMed]

Carpineto, P.

R. Mastropasqua, L. Toto, L. Di Antonio, E. Borrelli, A. Senatore, M. Di Nicola, G. Di Martino, M. Ciancaglini, and P. Carpineto, “Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions,” Sci. Rep. 7(1), 40763 (2017).
[Crossref] [PubMed]

Chen, C.

W. Shi, W. Gao, C. Chen, and V. X. D. Yang, “Differential standard deviation of log-scale intensity based optical coherence tomography angiography,” J. Biophotonics 10(12), 1597–1606 (2017).
[Crossref] [PubMed]

Chen, C. L.

Q. Zhang, F. Zheng, E. H. Motulsky, G. Gregori, Z. Chu, C. L. Chen, C. Li, L. de Sisternes, M. Durbin, P. J. Rosenfeld, and R. K. Wang, “A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography,” Invest. Ophthalmol. Vis. Sci. 59(1), 203–211 (2018).
[Crossref] [PubMed]

Chen, C.-L.

C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref] [PubMed]

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Choi, W.

Chu, Z.

Q. Zhang, F. Zheng, E. H. Motulsky, G. Gregori, Z. Chu, C. L. Chen, C. Li, L. de Sisternes, M. Durbin, P. J. Rosenfeld, and R. K. Wang, “A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography,” Invest. Ophthalmol. Vis. Sci. 59(1), 203–211 (2018).
[Crossref] [PubMed]

Ciancaglini, M.

R. Mastropasqua, L. Toto, L. Di Antonio, E. Borrelli, A. Senatore, M. Di Nicola, G. Di Martino, M. Ciancaglini, and P. Carpineto, “Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions,” Sci. Rep. 7(1), 40763 (2017).
[Crossref] [PubMed]

de Sisternes, L.

Q. Zhang, F. Zheng, E. H. Motulsky, G. Gregori, Z. Chu, C. L. Chen, C. Li, L. de Sisternes, M. Durbin, P. J. Rosenfeld, and R. K. Wang, “A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography,” Invest. Ophthalmol. Vis. Sci. 59(1), 203–211 (2018).
[Crossref] [PubMed]

Delgado Atencio, J. A.

Di Antonio, L.

R. Mastropasqua, L. Toto, L. Di Antonio, E. Borrelli, A. Senatore, M. Di Nicola, G. Di Martino, M. Ciancaglini, and P. Carpineto, “Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions,” Sci. Rep. 7(1), 40763 (2017).
[Crossref] [PubMed]

Di Martino, G.

R. Mastropasqua, L. Toto, L. Di Antonio, E. Borrelli, A. Senatore, M. Di Nicola, G. Di Martino, M. Ciancaglini, and P. Carpineto, “Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions,” Sci. Rep. 7(1), 40763 (2017).
[Crossref] [PubMed]

Di Nicola, M.

R. Mastropasqua, L. Toto, L. Di Antonio, E. Borrelli, A. Senatore, M. Di Nicola, G. Di Martino, M. Ciancaglini, and P. Carpineto, “Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions,” Sci. Rep. 7(1), 40763 (2017).
[Crossref] [PubMed]

Durbin, M.

Q. Zhang, F. Zheng, E. H. Motulsky, G. Gregori, Z. Chu, C. L. Chen, C. Li, L. de Sisternes, M. Durbin, P. J. Rosenfeld, and R. K. Wang, “A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography,” Invest. Ophthalmol. Vis. Sci. 59(1), 203–211 (2018).
[Crossref] [PubMed]

Fingler, J.

Flaxel, C. J.

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Fraser, S.

Fraser, S. E.

Fujimoto, J. G.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Y. Jia, J. C. Morrison, J. Tokayer, O. Tan, L. Lombardi, B. Baumann, C. D. Lu, W. Choi, J. G. Fujimoto, and D. Huang, “Quantitative OCT angiography of optic nerve head blood flow,” Biomed. Opt. Express 3(12), 3127–3137 (2012).
[Crossref] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref] [PubMed]

Gao, S. S.

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref] [PubMed]

S. S. Gao, Y. Jia, L. Liu, M. Zhang, H. L. Takusagawa, J. C. Morrison, and D. Huang, “Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(10), 4485–4492 (2016).
[Crossref] [PubMed]

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T.S. Hwang, S.T. Bailey, and D. Huang, "Optical coherence tomography angiography," Investigative Ophthalmology & Visual Science,  57(9), 27–36 (2016).

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Gao, W.

W. Shi, W. Gao, C. Chen, and V. X. D. Yang, “Differential standard deviation of log-scale intensity based optical coherence tomography angiography,” J. Biophotonics 10(12), 1597–1606 (2017).
[Crossref] [PubMed]

Gregori, G.

Q. Zhang, F. Zheng, E. H. Motulsky, G. Gregori, Z. Chu, C. L. Chen, C. Li, L. de Sisternes, M. Durbin, P. J. Rosenfeld, and R. K. Wang, “A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography,” Invest. Ophthalmol. Vis. Sci. 59(1), 203–211 (2018).
[Crossref] [PubMed]

Hasan, B.

A. Tomlinson, B. Hasan, and B. J. Lujan, “Importance of Focus in OCT Angiography,” Ophthalmol. Retina 2(7), 748–749 (2018).
[Crossref]

Hassler, K.

Hornegger, J.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Huang, D.

A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced Quantification of Retinal Perfusion by Improved Discrimination of Blood Flow From Bulk Motion Signal in OCTA,” Transl. Vis. Sci. Technol. 7(6), 20 (2018).
[Crossref] [PubMed]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

A. Camino, Y. Jia, G. Liu, J. Wang, and D. Huang, “Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography,” Biomed. Opt. Express 8(6), 3053–3066 (2017).
[Crossref] [PubMed]

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref] [PubMed]

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T.S. Hwang, S.T. Bailey, and D. Huang, "Optical coherence tomography angiography," Investigative Ophthalmology & Visual Science,  57(9), 27–36 (2016).

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref] [PubMed]

S. S. Gao, Y. Jia, L. Liu, M. Zhang, H. L. Takusagawa, J. C. Morrison, and D. Huang, “Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(10), 4485–4492 (2016).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Y. Jia, J. C. Morrison, J. Tokayer, O. Tan, L. Lombardi, B. Baumann, C. D. Lu, W. Choi, J. G. Fujimoto, and D. Huang, “Quantitative OCT angiography of optic nerve head blood flow,” Biomed. Opt. Express 3(12), 3127–3137 (2012).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Hwang, T. S.

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref] [PubMed]

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Hwang, T.S.

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T.S. Hwang, S.T. Bailey, and D. Huang, "Optical coherence tomography angiography," Investigative Ophthalmology & Visual Science,  57(9), 27–36 (2016).

Jarvi, M.

Jia, Y.

A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced Quantification of Retinal Perfusion by Improved Discrimination of Blood Flow From Bulk Motion Signal in OCTA,” Transl. Vis. Sci. Technol. 7(6), 20 (2018).
[Crossref] [PubMed]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

A. Camino, Y. Jia, G. Liu, J. Wang, and D. Huang, “Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography,” Biomed. Opt. Express 8(6), 3053–3066 (2017).
[Crossref] [PubMed]

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref] [PubMed]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref] [PubMed]

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T.S. Hwang, S.T. Bailey, and D. Huang, "Optical coherence tomography angiography," Investigative Ophthalmology & Visual Science,  57(9), 27–36 (2016).

S. S. Gao, Y. Jia, L. Liu, M. Zhang, H. L. Takusagawa, J. C. Morrison, and D. Huang, “Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(10), 4485–4492 (2016).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Y. Jia, J. C. Morrison, J. Tokayer, O. Tan, L. Lombardi, B. Baumann, C. D. Lu, W. Choi, J. G. Fujimoto, and D. Huang, “Quantitative OCT angiography of optic nerve head blood flow,” Biomed. Opt. Express 3(12), 3127–3137 (2012).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Jiang, J.

Karamata, B.

Kelly-Pérez, I.

Khurana, M.

Kim, D. Y.

S. S. Park, S. Thinda, D. Y. Kim, R. J. Zawadzki, and J. S. Werner, “Phase-Variance Optical Coherence Tomographic Angiography Imaging of Choroidal Perfusion Changes Associated With Acute Posterior Multifocal Placoid Pigment Epitheliopathy,” JAMA Ophthalmol. 134(8), 943–945 (2016).
[Crossref] [PubMed]

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19(12), 126010 (2014).
[Crossref] [PubMed]

Klein, M. L.

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Kraus, M. F.

Lasser, T.

Laubscher, M.

Lauer, A. K.

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Lee, K.

Leung, M. K.

Li, C.

Q. Zhang, F. Zheng, E. H. Motulsky, G. Gregori, Z. Chu, C. L. Chen, C. Li, L. de Sisternes, M. Durbin, P. J. Rosenfeld, and R. K. Wang, “A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography,” Invest. Ophthalmol. Vis. Sci. 59(1), 203–211 (2018).
[Crossref] [PubMed]

Lin, P.

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref] [PubMed]

Liu, G.

Liu, J. J.

Liu, L.

A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced Quantification of Retinal Perfusion by Improved Discrimination of Blood Flow From Bulk Motion Signal in OCTA,” Transl. Vis. Sci. Technol. 7(6), 20 (2018).
[Crossref] [PubMed]

S. S. Gao, Y. Jia, L. Liu, M. Zhang, H. L. Takusagawa, J. C. Morrison, and D. Huang, “Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(10), 4485–4492 (2016).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Lombardi, L.

Lu, C. D.

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Y. Jia, J. C. Morrison, J. Tokayer, O. Tan, L. Lombardi, B. Baumann, C. D. Lu, W. Choi, J. G. Fujimoto, and D. Huang, “Quantitative OCT angiography of optic nerve head blood flow,” Biomed. Opt. Express 3(12), 3127–3137 (2012).
[Crossref] [PubMed]

Lujan, B. J.

A. Tomlinson, B. Hasan, and B. J. Lujan, “Importance of Focus in OCT Angiography,” Ophthalmol. Retina 2(7), 748–749 (2018).
[Crossref]

Mariampillai, A.

Mastropasqua, R.

R. Mastropasqua, L. Toto, L. Di Antonio, E. Borrelli, A. Senatore, M. Di Nicola, G. Di Martino, M. Ciancaglini, and P. Carpineto, “Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions,” Sci. Rep. 7(1), 40763 (2017).
[Crossref] [PubMed]

Mayer, M. A.

McClintic, S. M.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Moriyama, E. H.

Morrison, J. C.

S. S. Gao, Y. Jia, L. Liu, M. Zhang, H. L. Takusagawa, J. C. Morrison, and D. Huang, “Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(10), 4485–4492 (2016).
[Crossref] [PubMed]

Y. Jia, J. C. Morrison, J. Tokayer, O. Tan, L. Lombardi, B. Baumann, C. D. Lu, W. Choi, J. G. Fujimoto, and D. Huang, “Quantitative OCT angiography of optic nerve head blood flow,” Biomed. Opt. Express 3(12), 3127–3137 (2012).
[Crossref] [PubMed]

Motaghiannezam, R.

Motulsky, E. H.

Q. Zhang, F. Zheng, E. H. Motulsky, G. Gregori, Z. Chu, C. L. Chen, C. Li, L. de Sisternes, M. Durbin, P. J. Rosenfeld, and R. K. Wang, “A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography,” Invest. Ophthalmol. Vis. Sci. 59(1), 203–211 (2018).
[Crossref] [PubMed]

Munce, N. R.

Park, S. S.

S. S. Park, S. Thinda, D. Y. Kim, R. J. Zawadzki, and J. S. Werner, “Phase-Variance Optical Coherence Tomographic Angiography Imaging of Choroidal Perfusion Changes Associated With Acute Posterior Multifocal Placoid Pigment Epitheliopathy,” JAMA Ophthalmol. 134(8), 943–945 (2016).
[Crossref] [PubMed]

Pechauer, A. D.

Pennesi, M. E.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Poddar, R.

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19(12), 126010 (2014).
[Crossref] [PubMed]

Potsaid, B.

Rosenfeld, P. J.

Q. Zhang, F. Zheng, E. H. Motulsky, G. Gregori, Z. Chu, C. L. Chen, C. Li, L. de Sisternes, M. Durbin, P. J. Rosenfeld, and R. K. Wang, “A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography,” Invest. Ophthalmol. Vis. Sci. 59(1), 203–211 (2018).
[Crossref] [PubMed]

Schwartz, D.

Senatore, A.

R. Mastropasqua, L. Toto, L. Di Antonio, E. Borrelli, A. Senatore, M. Di Nicola, G. Di Martino, M. Ciancaglini, and P. Carpineto, “Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions,” Sci. Rep. 7(1), 40763 (2017).
[Crossref] [PubMed]

Sharma, U.

Shi, W.

W. Shi, W. Gao, C. Chen, and V. X. D. Yang, “Differential standard deviation of log-scale intensity based optical coherence tomography angiography,” J. Biophotonics 10(12), 1597–1606 (2017).
[Crossref] [PubMed]

Standish, B. A.

Su, J. P.

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T.S. Hwang, S.T. Bailey, and D. Huang, "Optical coherence tomography angiography," Investigative Ophthalmology & Visual Science,  57(9), 27–36 (2016).

Subhash, H.

Takusagawa, H. L.

S. S. Gao, Y. Jia, L. Liu, M. Zhang, H. L. Takusagawa, J. C. Morrison, and D. Huang, “Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(10), 4485–4492 (2016).
[Crossref] [PubMed]

Tan, O.

Thinda, S.

S. S. Park, S. Thinda, D. Y. Kim, R. J. Zawadzki, and J. S. Werner, “Phase-Variance Optical Coherence Tomographic Angiography Imaging of Choroidal Perfusion Changes Associated With Acute Posterior Multifocal Placoid Pigment Epitheliopathy,” JAMA Ophthalmol. 134(8), 943–945 (2016).
[Crossref] [PubMed]

Tokayer, J.

Tomlinson, A.

A. Tomlinson, B. Hasan, and B. J. Lujan, “Importance of Focus in OCT Angiography,” Ophthalmol. Retina 2(7), 748–749 (2018).
[Crossref]

Toto, L.

R. Mastropasqua, L. Toto, L. Di Antonio, E. Borrelli, A. Senatore, M. Di Nicola, G. Di Martino, M. Ciancaglini, and P. Carpineto, “Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions,” Sci. Rep. 7(1), 40763 (2017).
[Crossref] [PubMed]

Vitkin, A.

Vitkin, I. A.

Wang, J.

Wang, R. K.

Q. Zhang, F. Zheng, E. H. Motulsky, G. Gregori, Z. Chu, C. L. Chen, C. Li, L. de Sisternes, M. Durbin, P. J. Rosenfeld, and R. K. Wang, “A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography,” Invest. Ophthalmol. Vis. Sci. 59(1), 203–211 (2018).
[Crossref] [PubMed]

C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref] [PubMed]

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Wang, Y.

Werner, A.

Werner, J. S.

S. S. Park, S. Thinda, D. Y. Kim, R. J. Zawadzki, and J. S. Werner, “Phase-Variance Optical Coherence Tomographic Angiography Imaging of Choroidal Perfusion Changes Associated With Acute Posterior Multifocal Placoid Pigment Epitheliopathy,” JAMA Ophthalmol. 134(8), 943–945 (2016).
[Crossref] [PubMed]

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19(12), 126010 (2014).
[Crossref] [PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[Crossref] [PubMed]

Wilson, B. C.

Wilson, D. J.

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref] [PubMed]

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Yang, V. X.

Yang, V. X. D.

W. Shi, W. Gao, C. Chen, and V. X. D. Yang, “Differential standard deviation of log-scale intensity based optical coherence tomography angiography,” J. Biophotonics 10(12), 1597–1606 (2017).
[Crossref] [PubMed]

Zawadzki, R. J.

S. S. Park, S. Thinda, D. Y. Kim, R. J. Zawadzki, and J. S. Werner, “Phase-Variance Optical Coherence Tomographic Angiography Imaging of Choroidal Perfusion Changes Associated With Acute Posterior Multifocal Placoid Pigment Epitheliopathy,” JAMA Ophthalmol. 134(8), 943–945 (2016).
[Crossref] [PubMed]

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19(12), 126010 (2014).
[Crossref] [PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[Crossref] [PubMed]

Zhang, A.

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Zhang, M.

A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced Quantification of Retinal Perfusion by Improved Discrimination of Blood Flow From Bulk Motion Signal in OCTA,” Transl. Vis. Sci. Technol. 7(6), 20 (2018).
[Crossref] [PubMed]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T.S. Hwang, S.T. Bailey, and D. Huang, "Optical coherence tomography angiography," Investigative Ophthalmology & Visual Science,  57(9), 27–36 (2016).

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref] [PubMed]

S. S. Gao, Y. Jia, L. Liu, M. Zhang, H. L. Takusagawa, J. C. Morrison, and D. Huang, “Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(10), 4485–4492 (2016).
[Crossref] [PubMed]

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, F. Zheng, E. H. Motulsky, G. Gregori, Z. Chu, C. L. Chen, C. Li, L. de Sisternes, M. Durbin, P. J. Rosenfeld, and R. K. Wang, “A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography,” Invest. Ophthalmol. Vis. Sci. 59(1), 203–211 (2018).
[Crossref] [PubMed]

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Zhang, X.

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref] [PubMed]

Zheng, F.

Q. Zhang, F. Zheng, E. H. Motulsky, G. Gregori, Z. Chu, C. L. Chen, C. Li, L. de Sisternes, M. Durbin, P. J. Rosenfeld, and R. K. Wang, “A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography,” Invest. Ophthalmol. Vis. Sci. 59(1), 203–211 (2018).
[Crossref] [PubMed]

Biomed. Opt. Express (7)

Y. Jia, J. C. Morrison, J. Tokayer, O. Tan, L. Lombardi, B. Baumann, C. D. Lu, W. Choi, J. G. Fujimoto, and D. Huang, “Quantitative OCT angiography of optic nerve head blood flow,” Biomed. Opt. Express 3(12), 3127–3137 (2012).
[Crossref] [PubMed]

A. Camino, Y. Jia, G. Liu, J. Wang, and D. Huang, “Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography,” Biomed. Opt. Express 8(6), 3053–3066 (2017).
[Crossref] [PubMed]

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref] [PubMed]

C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref] [PubMed]

R. Motaghiannezam and S. Fraser, “Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography,” Biomed. Opt. Express 3(3), 503–521 (2012).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

S. S. Gao, Y. Jia, L. Liu, M. Zhang, H. L. Takusagawa, J. C. Morrison, and D. Huang, “Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(10), 4485–4492 (2016).
[Crossref] [PubMed]

Q. Zhang, F. Zheng, E. H. Motulsky, G. Gregori, Z. Chu, C. L. Chen, C. Li, L. de Sisternes, M. Durbin, P. J. Rosenfeld, and R. K. Wang, “A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography,” Invest. Ophthalmol. Vis. Sci. 59(1), 203–211 (2018).
[Crossref] [PubMed]

Investigative Ophthalmology & Visual Science (1)

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T.S. Hwang, S.T. Bailey, and D. Huang, "Optical coherence tomography angiography," Investigative Ophthalmology & Visual Science,  57(9), 27–36 (2016).

J. Biomed. Opt. (2)

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19(12), 126010 (2014).
[Crossref] [PubMed]

J. Biophotonics (1)

W. Shi, W. Gao, C. Chen, and V. X. D. Yang, “Differential standard deviation of log-scale intensity based optical coherence tomography angiography,” J. Biophotonics 10(12), 1597–1606 (2017).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

JAMA Ophthalmol. (2)

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref] [PubMed]

S. S. Park, S. Thinda, D. Y. Kim, R. J. Zawadzki, and J. S. Werner, “Phase-Variance Optical Coherence Tomographic Angiography Imaging of Choroidal Perfusion Changes Associated With Acute Posterior Multifocal Placoid Pigment Epitheliopathy,” JAMA Ophthalmol. 134(8), 943–945 (2016).
[Crossref] [PubMed]

Ophthalmol. Retina (1)

A. Tomlinson, B. Hasan, and B. J. Lujan, “Importance of Focus in OCT Angiography,” Ophthalmol. Retina 2(7), 748–749 (2018).
[Crossref]

Ophthalmology (1)

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. U.S.A. (2)

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Sci. Rep. (2)

R. Mastropasqua, L. Toto, L. Di Antonio, E. Borrelli, A. Senatore, M. Di Nicola, G. Di Martino, M. Ciancaglini, and P. Carpineto, “Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions,” Sci. Rep. 7(1), 40763 (2017).
[Crossref] [PubMed]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

Transl. Vis. Sci. Technol. (1)

A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced Quantification of Retinal Perfusion by Improved Discrimination of Blood Flow From Bulk Motion Signal in OCTA,” Transl. Vis. Sci. Technol. 7(6), 20 (2018).
[Crossref] [PubMed]

Other (1)

S. M. R. Motaghiannezam, D. Koos, and S. E. Fraser, “Differential phase-contrast, swept-source optical coherence tomography at 1060 nm for in vivo human retinal and choroidal vasculature visualization,” in (SPIE, 2012), 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Illustration of the image-processing problem while segmenting shadows caused by opacities anterior to the retina. (A) En face 3 × 3 mm2 OCT angiogram of the superficial vascular complex of a patient with diabetic retinopathy (DR) containing vitreous floaters. White arrows on the upper left corner represent areas of apparent normal perfusion. A green arrow represents the area of perfusion loss caused by the disease whereas blue arrows represent loss of OCTA signal in shadowed areas. Because many diseases such as DR manifest real loss of perfusion, the loss of OCTA signal in (A) alone is not enough to discriminate regions shadowed by vitreous floaters. (B) En face mean projection of the retinal slab of the equivalent 3 × 3 mm2 OCT reflectance image. A red arrow represents an example of intra-retinal fluid (see cross-sectional B-scan in (C)) that can cause dark areas in en face mean projections of OCT reflectance. A yellow arrow is an example of a dark area caused by a vitreous shadow (see cross-sectional B-scan in (D)). There is a need to distinguish true perfusion loss (green arrow) from shadowing (blue arrows) by analyzing tissue reflectance, but without falsely excluding areas of low tissue reflectivity such as fluid space (red arrow). An insight that we use in the rest of the article is that true shadowing affects reflectance signal throughout the entire image depth (yellow arrow in D), while low tissue reflectivity such as cysts are confined to a single layer (red arrow in C).
Fig. 2
Fig. 2 OCTA signal pre-processing. (A) Screenshot of the COOL ART user interface designed in MATLAB and used for retinal layer segmentation. The segmentation algorithm extracts the boundaries of eight retinal layers from B-scans in the leftmost panel. Four en face panels represent the en face projections of OCTA and OCT information to facilitate fast and reliable interpretation of scans. (B) Second pre-processing step. The thresholding scheme in the rb-BMS algorithm removes background noise whereas preserving vascular information as observed in en face projections before (left) and after (right) thresholding. White arrows indicate cleanup of the noise in the normal foveal avascular zone. No image filtering is applied in rb-BMS.
Fig. 3
Fig. 3 Illustration to support the rationale used in the selection of R norm (Eq. (3)) as a feature containing information of the positions of shadows. Columns represent scans from healthy (A1-C2); diabetic retinopathy (DR, A3-C4) with intra-retinal fluid; and age-related macular degeneration (AMD) with pigment epithelium detachment (PED) subjects (A5-C5). Mean projection of the OCT reflectance within the retinal slab (A1-A5) frequently shows inhomogeneous brightness, containing dark areas caused by low internal reflectance (white arrows) such as intra-retinal fluid (subjects #3 and 4) and PED (subject #5). These need to be distinguished from true shadows such as those caused by vitreous opacities (yellow arrows). (B) shows representative B-scans at the positions of arrows. The corresponding R norm images in (C1-C5) are dark only when all retinal layers are dark, which corresponds better to actual shadows.
Fig. 4
Fig. 4 Illustration of the standard deviation of reflectance in shadows ( R std_norm ). (A) OCTA of the superficial vascular complex (between ILM and 80% of the ganglion cell layer) of a patient with birdshot chorioretinopathy, a form of uveitis with characteristic abundance of vitreous floaters. (B) Mean reflectance of the retinal slab between inner limiting membrane (blue boundary in (D)) and Bruch’s membrane (orange boundary in (D)). (C) Standard deviation of the reflectance in each A-line between the inner limiting membrane and the lower boundary of the choriocapillaris, normalized to the control group. (D) Lower variation of the reflectance along the axial direction is appreciated (white arrows) in a cross-sectional visualization of a B-scan affected by a shadow (dashed line).
Fig. 5
Fig. 5 Illustration to support the rationale used in the definition of the F I focal feature. (A) OCTA of the superficial vascular complex of a patient with birdshot chorio-retinopathy. (B) Mean reflectance of the retinal slab between inner limiting membrane (blue boundary in (D)) and Bruch’s membrane (orange boundary in (D)). Shadows are evident in the lower right corner of the scan. (C) Normalized inner-retinal local flow index (FI) map, where FI in the shadowed area is reduced to about 40% of the normal flow index at the respective positions. (D) Cross-sectional visualization of a B-scan affected by a shadow (dashed line).
Fig. 6
Fig. 6 Shadows were manufactured on healthy eyes by partially blocking the scanning beam with PLA filaments of different diameters (A1-D1 and A2-D2) and used to mimic clinical shadows in the training set of an ensemble classifier. (A-C) show the en face projections of the superficial, intermediate and deep vascular plexuses found in the inner retina. (D) shows the en face projection of the OCT reflectance in the retinal slab.
Fig. 7
Fig. 7 Method based on statistical measures of healthy eye scans used to assign objective labels (shadow (1) vs non-shadow (0)) on the training data set. Three scans were acquired per eye, two under optimal imaging conditions (A, B) and one creating a manufactured shadow by partially blocking the scanning beam (C). Local vessel density maps VD(x,y) were generated from A, B and C. The position-dependent ΔV D focal(BA) =V D B (x,y)V D A (x,y)and ΔV D focal(BC) =V D B (x,y)V D C (x,y) were calculated taking B as reference. The corresponding ΔV D focal values were related to the features used by the RUS boost ensemble classifier ( ΔV D focal(BA) was set on ΔV D focal(BC) to label the shadow points (yellow area overlay in P). Maps derived from the reflectance image were represented in grayscale whereas maps derived from the OCTA image were represented in color.
Fig. 8
Fig. 8 Performance of the algorithm on 3 × 3 mm2 scans of 10 healthy subjects acquired by intentionally reducing the signal strength with different combinations of neutral density filters (NDF) placed between the eye and the instrument. (A) Shows that the vessel density of the scans acquired without NDF is independent from signal strength index (SSI) after being processed by the reflectance-adjusted thresholding scheme in the regression-based bulk motion subtraction (rb-BMS) algorithm. (B) Shows the vessel density of all scans acquired in this experiment, demonstrating that rb-BMS is not able to retrieve all signal after a certain level of attenuation. (C) is the vessel density of all scans in (B) by excluding the areas detected with the shadow segmentation algorithm. Note that by only considering the areas with reliable OCTA signal for quantification, the vessel density was again independent from SSI. (D) Inverse linear relationship between shadow area and SSI in the NDF attenuation experiment, R = −0.67, p<0.01.
Fig. 9
Fig. 9 Shadows from vitreous floaters on 3 × 3 mm2 (A1-B1) and 6 × 6 mm2 (A2-B2) macular OCTA scans of a healthy subject. Yellow areas overlapped onto en face projections of the superficial vascular complex represent the shadowed areas automatically detected by the algorithm. (C1-C2) represent 3 × 3 mm2 and 6 × 6 mm2 OCTA of the same subject after having the floaters removed in a vitrectomy. Floaters disappeared, revealing the intact vascular network on the superficial vascular complex. The vignette corner area in (C2) is due to partial blockage of the optical signal by the pupil.
Fig. 10
Fig. 10 Areas of vitreous floater shadows detected on two DR subjects (rows). Scans comprised an area of 3 × 3 mm2. The first column represents en face angiograms of the superficial vascular complex (SVC). The apparent loss of perfusion might be caused either by the disease or by the shadows cast by overlying vitreous floaters. The second column shows the cross-sectional view of the reflectance B-scans at the positions marked with dashed lines. White arrows represent non-shadowed areas with intra-retinal fluid, whereas blue arrows represents shadowed areas. The third column represents the shadow area detected by the algorithm (yellow), overlaid on the en face OCT angiogram. Regions with apparent loss of perfusion outside the yellow area can be confidently measured as avascular areas.
Fig. 11
Fig. 11 Areas of vitreous floater shadows detected on two uveitis subjects. En face angiograms and OCT reflectance represent an area of 6 × 6 mm2 projected over the superficial vascular complex (SVC). Blue arrows represent areas with apparent loss of perfusion that were caused by shadows from either vitreous floaters (subjects 1 and 2) or pupil vignetting (subject 2) and were successfully detected by the algorithm. Green arrows represent vitreous floaters that cast shadows on the reflectance projection but did not affect the angiograms and hence, were not detected. Loss of perfusion on the upper-left corner of the angiogram of subject 1 was not caused by corner vignetting and was not detected by the algorithm.
Fig. 12
Fig. 12 Representative scan with drusen and RPE dystrophy showing software performance on one age-related macular degeneration eye. This example addresses the question of whether shadows can be detected on regions of RPE dystrophy. (A) Shows regions of apparent loss of perfusion in en face view of the superficial vascular complex (center-left to lower-left corner). The white dashed line indicates the location of the cross-sectional view represented in (B). The blue arrow identifies the presence of a shadow from vitreous floaters. Red arrows indicate that the area exhibits increased optical signal penetration into the choroid caused by absence of retinal pigment epithelium. Shadows were nevertheless successfully detected in (C).
Fig. 13
Fig. 13 Effect of motion correction technology (MCT) in shadow signal retrieval on a 3 × 3 mm2 scan of a diabetic retinopathy subject. Dashed lines on en face OCTA and OCT views indicate the location of the cross-sectional B-scan represented in the third column. As shown in rows 1 and 2, the x-fast and y-fast scans exhibit completely loss of OCT signal under vitreous shadows. Owing to the mobility and small size of vitreous floaters, the OCTA signal could be completely retrieved by MCT in the third row.
Fig. 14
Fig. 14 Demonstration of software performance in clinical cases with retinal degeneration and no vitreous floaters. Defects in the retina should not conduce to erroneous detection of shadows. (A1-D1) show a scan from a patient with glaucoma exhibiting severe ganglion cell complex atrophy and (A2-D2) shows a scan from a patient with age-related macular degeneration (AMD) exhibiting severe outer-retina/choriocapillaris atrophy. (A1-A2) are the respective 6 × 6 mm2 and 3 × 3 mm2 OCTA en face projections of the superficial vascular complex, showing perfusion loss caused by the disease in glaucoma and intact vasculature in AMD, since the inner retina is not affected. (B1-B2) are the mean projection of the OCT reflectance within the retinal slab, showing dark areas in the atrophic areas. (C1-C2) show cross-sectional views of B-scans of interest at positions marked with the dashed line. Red arrows indicate regions of atrophy whereas white arrows indicate regions of non-degenerated or mildly affected retinal tissue. (D1-D2) show the Rnorm maps corresponding to each case, in which the reflectance values are more homogeneous and above level of Fig. 3 (C2-C3) preventing the misclassification of the atrophic areas as vitreous shadows.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D(x,z)=1 1 M1 m=1 M1 A 0 (x,z; t m ) A 0 (x,z; t m+1 ) 1 2 ( A 0 (x,z; t m ) 2 + A 0 (x,z; t m+1 ) 2 )
T(x,y,z)=mR(x,y,z)+n+2×Re s RMS
R norm =max( R scan (x,y,z) z )/ R control (x,y)
F I focal (x,y)= D(x,y,z) z ϖ(x,y) F I control (x,y)

Metrics