Abstract

The attenuated total reflection spectroscopy system with the Si container attached on the prism has been demonstrated as an efficient technique to obtain the dielectric properties of living cells in the THz range. We proposed a method to determine the dielectric responses of living cells based on the combination of the single-interface and two-interface ATR models without cell thickness. The experimental results for living glial-like cells (PC12, SVG P12 and HMO6) showed the dielectric responses in the THz region were related significantly to cell number, intracellular fluid, and cell structure. Moreover, the glioma cells (C6 and U87) exhibited different dielectric properties compared with the glial-like cells, which could be one reason for the glioma tissue diagnosis using THz wave.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy

Yi Zou, Qiao Liu, Xia Yang, Hua-Chuan Huang, Jiang Li, Liang-Hui Du, Ze-Ren Li, Jian-Heng Zhao, and Li-Guo Zhu
Biomed. Opt. Express 9(1) 14-24 (2018)

Label-free self-referenced sensing of living cells by terahertz metamaterial-based reflection spectroscopy

Xiang Zhao, Zhongquan Lin, Yunxia Wang, Xiang Yang, Ke Yang, Yang Zhang, Jia Peng, Marc Lamy de la Chapelle, Liqun Zhang, and Weiling Fu
Biomed. Opt. Express 10(3) 1196-1206 (2019)

Investigation of terahertz radiation influence on rat glial cells

Mariia Borovkova, Maria Serebriakova, Viacheslav Fedorov, Egor Sedykh, Vladimir Vaks, Alexander Lichutin, Alina Salnikova, and Mikhail Khodzitsky
Biomed. Opt. Express 8(1) 273-280 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. P. Wallace, A. J. Fitzgerald, E. Pickwell, R. J. Pye, P. F. Taday, N. Flanagan, and T. Ha, “Terahertz pulsed spectroscopy of human Basal cell carcinoma,” Appl. Spectrosc. 60(10), 1127–1133 (2006).
    [Crossref]
  2. M. K. Kuimova, K. L. Chan, and S. G. Kazarian, “Chemical imaging of live cancer cells in the natural aqueous environment,” Appl. Spectrosc. 63(2), 164–171 (2009).
    [Crossref]
  3. J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
    [Crossref]
  4. C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, “Terahertz Time-Domain Spectroscopy of Human Blood,” IEEE Trans. Terahertz Sci. Technol. 3(4), 363–367 (2013).
    [Crossref]
  5. S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
    [Crossref]
  6. X. Yang, X. Zhao, K. Yang, Y. P. Liu, Y. Liu, W. L. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
    [Crossref]
  7. L. Shi, P. Shumyatsky, A. Rodríguez-Contreras, and R. Alfano, “Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer’s disease,” J. Biomed. Opt. 21(1), 015014 (2016).
    [Crossref]
  8. G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
    [Crossref]
  9. C. M. Hough, D. N. Purschke, C. Huang, L. V. Titova, O. Kovalchuk, and B. J. Warkentin, “Biological effects of intense THz pulses on human skin tissue models,” IRMMW-THz, 1–3 (2017).
  10. J. S. Olshevskaya, A. S. Ratushnyak, A. K. Petrov, A. K. Kozlov, and T. A. Zapara, “Effect of terahertz electromagnetic waves on neurons systems,” In Computational Technologies in Electrical and Electronics Engineering, 2008. SIBIRCON 2008. IEEE Region 8 International Conference on. IEEE, 210–211 (2008).
  11. M. V. Duka, L. N. Dvoretskaya, N. S. Babelkin, M. K. Khodzitskii, S. A. Chivilikhin, and O. A. Smolyanskaya, “Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells,” Quantum Electron. 44(8), 707–712 (2014).
    [Crossref]
  12. J. B. Masson, M. P. Sauviat, J. L. Martin, and G. Gallot, “Ionic contrast terahertz near-field imaging of axonal water fluxes,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 4808–4812 (2006).
    [Crossref]
  13. A. Araque and M. Navarrete, “Glial cells in neuronal network function,” Philos. Trans. R. Soc., B 365(1551), 2375–2381 (2010).
    [Crossref]
  14. M. Hanani, “Satellite glial cells in sensory ganglia: from form to function,” Brain Res. Rev. 48(3), 457–476 (2005).
    [Crossref]
  15. M. Borovkova, M. Serebriakova, V. Fedorov, E. Sedykh, V. Vaks, A. Lichutin, A. Salnikova, and M. Khodzitsky, “Investigation of terahertz radiation influence on rat glial cells,” Biomed. Opt. Express 8(1), 273 (2017).
    [Crossref]
  16. P. Weightman, “Prospects for the study of biological systems with high power sources of terahertz radiation,” Phys. Biol. 9(5), 053001 (2012).
    [Crossref]
  17. H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
    [Crossref]
  18. K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Determination of the complex dielectric constant of an epithelial cell monolayer in the terahertz region,” Appl. Phys. Lett. 102(5), 053702 (2013).
    [Crossref]
  19. K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared, Millimeter, Terahertz Waves 35(5), 493–502 (2014).
    [Crossref]
  20. M. Grognot and G. Gallot, “Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection,” Appl. Phys. Lett. 107(10), 103702 (2015).
    [Crossref]
  21. K. Shiraga, T. Suzuki, N. Kondo, K. Tanaka, and Y. Ogawa, “Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy,” Appl. Phys. Lett. 106(25), 253701 (2015).
    [Crossref]
  22. Y. Zou, Q. Liu, X. Yang, H. C. Huang, J. Li, L. H. Du, Z. R. Li, J. H. Zhao, and L. G. Zhu, “Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy,” Biomed. Opt. Express 9(1), 14–24 (2018).
    [Crossref]
  23. J. Wang, R. I. Stantchev, S. Sun, T. W. Chiu, A. T. Ahuja, and E. Pickwell-MacPherson, “THz in vivo measurements: the effects of pressure on skin reflectivity,” Biomed. Opt. Express 9(12), 6467–6476 (2018).
    [Crossref]
  24. Y. Peng, W. Chen, and Y. Zhu, “Identification of Biomarker (L-2HG) in Real Human Brain Glioma by Terahertz Spectroscopy,” CLEO: Applications and Technology, (2018).
  25. Z. R. Li, K. Meng, T. N. Chen, T. Chen, L. G. Zhu, Q. Liu, Z. Li, and F. Li, “Identify paraffin-embedded brain glioma using terahertz pulsed spectroscopy,” Proc. SPIE 9444, 94440P (2015).
    [Crossref]

2018 (2)

2017 (2)

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

M. Borovkova, M. Serebriakova, V. Fedorov, E. Sedykh, V. Vaks, A. Lichutin, A. Salnikova, and M. Khodzitsky, “Investigation of terahertz radiation influence on rat glial cells,” Biomed. Opt. Express 8(1), 273 (2017).
[Crossref]

2016 (2)

X. Yang, X. Zhao, K. Yang, Y. P. Liu, Y. Liu, W. L. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

L. Shi, P. Shumyatsky, A. Rodríguez-Contreras, and R. Alfano, “Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer’s disease,” J. Biomed. Opt. 21(1), 015014 (2016).
[Crossref]

2015 (4)

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref]

M. Grognot and G. Gallot, “Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection,” Appl. Phys. Lett. 107(10), 103702 (2015).
[Crossref]

K. Shiraga, T. Suzuki, N. Kondo, K. Tanaka, and Y. Ogawa, “Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy,” Appl. Phys. Lett. 106(25), 253701 (2015).
[Crossref]

Z. R. Li, K. Meng, T. N. Chen, T. Chen, L. G. Zhu, Q. Liu, Z. Li, and F. Li, “Identify paraffin-embedded brain glioma using terahertz pulsed spectroscopy,” Proc. SPIE 9444, 94440P (2015).
[Crossref]

2014 (2)

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared, Millimeter, Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

M. V. Duka, L. N. Dvoretskaya, N. S. Babelkin, M. K. Khodzitskii, S. A. Chivilikhin, and O. A. Smolyanskaya, “Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells,” Quantum Electron. 44(8), 707–712 (2014).
[Crossref]

2013 (2)

C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, “Terahertz Time-Domain Spectroscopy of Human Blood,” IEEE Trans. Terahertz Sci. Technol. 3(4), 363–367 (2013).
[Crossref]

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Determination of the complex dielectric constant of an epithelial cell monolayer in the terahertz region,” Appl. Phys. Lett. 102(5), 053702 (2013).
[Crossref]

2012 (1)

P. Weightman, “Prospects for the study of biological systems with high power sources of terahertz radiation,” Phys. Biol. 9(5), 053001 (2012).
[Crossref]

2010 (2)

A. Araque and M. Navarrete, “Glial cells in neuronal network function,” Philos. Trans. R. Soc., B 365(1551), 2375–2381 (2010).
[Crossref]

J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
[Crossref]

2009 (1)

2007 (1)

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

2006 (2)

V. P. Wallace, A. J. Fitzgerald, E. Pickwell, R. J. Pye, P. F. Taday, N. Flanagan, and T. Ha, “Terahertz pulsed spectroscopy of human Basal cell carcinoma,” Appl. Spectrosc. 60(10), 1127–1133 (2006).
[Crossref]

J. B. Masson, M. P. Sauviat, J. L. Martin, and G. Gallot, “Ionic contrast terahertz near-field imaging of axonal water fluxes,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 4808–4812 (2006).
[Crossref]

2005 (1)

M. Hanani, “Satellite glial cells in sensory ganglia: from form to function,” Brain Res. Rev. 48(3), 457–476 (2005).
[Crossref]

Ahn, Y. H.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref]

Ahuja, A. T.

Alexandrov, B. S.

J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
[Crossref]

Alexandrov, L. B.

J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
[Crossref]

Alfano, R.

L. Shi, P. Shumyatsky, A. Rodríguez-Contreras, and R. Alfano, “Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer’s disease,” J. Biomed. Opt. 21(1), 015014 (2016).
[Crossref]

Alfaro-Gomez, M.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Araque, A.

A. Araque and M. Navarrete, “Glial cells in neuronal network function,” Philos. Trans. R. Soc., B 365(1551), 2375–2381 (2010).
[Crossref]

Babelkin, N. S.

M. V. Duka, L. N. Dvoretskaya, N. S. Babelkin, M. K. Khodzitskii, S. A. Chivilikhin, and O. A. Smolyanskaya, “Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells,” Quantum Electron. 44(8), 707–712 (2014).
[Crossref]

Bishop, A. R.

J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
[Crossref]

Bock, J.

J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
[Crossref]

Borovkova, M.

Castillo-Guzman, A. R.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Castro-Camus, E.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Chan, K. L.

Chen, H. T.

J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
[Crossref]

Chen, T.

Z. R. Li, K. Meng, T. N. Chen, T. Chen, L. G. Zhu, Q. Liu, Z. Li, and F. Li, “Identify paraffin-embedded brain glioma using terahertz pulsed spectroscopy,” Proc. SPIE 9444, 94440P (2015).
[Crossref]

Chen, T. N.

Z. R. Li, K. Meng, T. N. Chen, T. Chen, L. G. Zhu, Q. Liu, Z. Li, and F. Li, “Identify paraffin-embedded brain glioma using terahertz pulsed spectroscopy,” Proc. SPIE 9444, 94440P (2015).
[Crossref]

Chen, W.

Y. Peng, W. Chen, and Y. Zhu, “Identification of Biomarker (L-2HG) in Real Human Brain Glioma by Terahertz Spectroscopy,” CLEO: Applications and Technology, (2018).

Chen, Y.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

Chiu, T. W.

Chivilikhin, S. A.

M. V. Duka, L. N. Dvoretskaya, N. S. Babelkin, M. K. Khodzitskii, S. A. Chivilikhin, and O. A. Smolyanskaya, “Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells,” Quantum Electron. 44(8), 707–712 (2014).
[Crossref]

Choi, S. J.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref]

Du, L. H.

Duka, M. V.

M. V. Duka, L. N. Dvoretskaya, N. S. Babelkin, M. K. Khodzitskii, S. A. Chivilikhin, and O. A. Smolyanskaya, “Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells,” Quantum Electron. 44(8), 707–712 (2014).
[Crossref]

Dvoretskaya, L. N.

M. V. Duka, L. N. Dvoretskaya, N. S. Babelkin, M. K. Khodzitskii, S. A. Chivilikhin, and O. A. Smolyanskaya, “Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells,” Quantum Electron. 44(8), 707–712 (2014).
[Crossref]

Earley, S.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

Fedorov, V.

Ferguson, B.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

Fitzgerald, A. J.

Flanagan, N.

Fu, W. L.

X. Yang, X. Zhao, K. Yang, Y. P. Liu, Y. Liu, W. L. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Fukuyo, Y.

J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
[Crossref]

Gallot, G.

M. Grognot and G. Gallot, “Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection,” Appl. Phys. Lett. 107(10), 103702 (2015).
[Crossref]

J. B. Masson, M. P. Sauviat, J. L. Martin, and G. Gallot, “Ionic contrast terahertz near-field imaging of axonal water fluxes,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 4808–4812 (2006).
[Crossref]

Gibson, A. P.

C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, “Terahertz Time-Domain Spectroscopy of Human Blood,” IEEE Trans. Terahertz Sci. Technol. 3(4), 363–367 (2013).
[Crossref]

Grognot, M.

M. Grognot and G. Gallot, “Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection,” Appl. Phys. Lett. 107(10), 103702 (2015).
[Crossref]

Ha, T.

Han, S. T.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref]

Hanani, M.

M. Hanani, “Satellite glial cells in sensory ganglia: from form to function,” Brain Res. Rev. 48(3), 457–476 (2005).
[Crossref]

Hernandez-Cardoso, G. G.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Hernandez-Serrano, A. I.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Hong, J. T.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref]

Hough, C. M.

C. M. Hough, D. N. Purschke, C. Huang, L. V. Titova, O. Kovalchuk, and B. J. Warkentin, “Biological effects of intense THz pulses on human skin tissue models,” IRMMW-THz, 1–3 (2017).

Huang, C.

C. M. Hough, D. N. Purschke, C. Huang, L. V. Titova, O. Kovalchuk, and B. J. Warkentin, “Biological effects of intense THz pulses on human skin tissue models,” IRMMW-THz, 1–3 (2017).

Huang, H. C.

Imamura, M.

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared, Millimeter, Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Determination of the complex dielectric constant of an epithelial cell monolayer in the terahertz region,” Appl. Phys. Lett. 102(5), 053702 (2013).
[Crossref]

Irisawa, A.

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared, Millimeter, Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Determination of the complex dielectric constant of an epithelial cell monolayer in the terahertz region,” Appl. Phys. Lett. 102(5), 053702 (2013).
[Crossref]

Kang, S.

J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
[Crossref]

Kazarian, S. G.

Khodzitskii, M. K.

M. V. Duka, L. N. Dvoretskaya, N. S. Babelkin, M. K. Khodzitskii, S. A. Chivilikhin, and O. A. Smolyanskaya, “Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells,” Quantum Electron. 44(8), 707–712 (2014).
[Crossref]

Khodzitsky, M.

Kim, D. S.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref]

Kim, H. S.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref]

Kondo, N.

K. Shiraga, T. Suzuki, N. Kondo, K. Tanaka, and Y. Ogawa, “Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy,” Appl. Phys. Lett. 106(25), 253701 (2015).
[Crossref]

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared, Millimeter, Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Determination of the complex dielectric constant of an epithelial cell monolayer in the terahertz region,” Appl. Phys. Lett. 102(5), 053702 (2013).
[Crossref]

Kovalchuk, O.

C. M. Hough, D. N. Purschke, C. Huang, L. V. Titova, O. Kovalchuk, and B. J. Warkentin, “Biological effects of intense THz pulses on human skin tissue models,” IRMMW-THz, 1–3 (2017).

Kozlov, A. K.

J. S. Olshevskaya, A. S. Ratushnyak, A. K. Petrov, A. K. Kozlov, and T. A. Zapara, “Effect of terahertz electromagnetic waves on neurons systems,” In Computational Technologies in Electrical and Electronics Engineering, 2008. SIBIRCON 2008. IEEE Region 8 International Conference on. IEEE, 210–211 (2008).

Kuimova, M. K.

Lee, S.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref]

Lemus-Bedolla, E.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Li, F.

Z. R. Li, K. Meng, T. N. Chen, T. Chen, L. G. Zhu, Q. Liu, Z. Li, and F. Li, “Identify paraffin-embedded brain glioma using terahertz pulsed spectroscopy,” Proc. SPIE 9444, 94440P (2015).
[Crossref]

Li, J.

Li, Z.

Z. R. Li, K. Meng, T. N. Chen, T. Chen, L. G. Zhu, Q. Liu, Z. Li, and F. Li, “Identify paraffin-embedded brain glioma using terahertz pulsed spectroscopy,” Proc. SPIE 9444, 94440P (2015).
[Crossref]

Li, Z. R.

Y. Zou, Q. Liu, X. Yang, H. C. Huang, J. Li, L. H. Du, Z. R. Li, J. H. Zhao, and L. G. Zhu, “Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy,” Biomed. Opt. Express 9(1), 14–24 (2018).
[Crossref]

Z. R. Li, K. Meng, T. N. Chen, T. Chen, L. G. Zhu, Q. Liu, Z. Li, and F. Li, “Identify paraffin-embedded brain glioma using terahertz pulsed spectroscopy,” Proc. SPIE 9444, 94440P (2015).
[Crossref]

Lichutin, A.

Liu, H. B.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

Liu, Q.

Y. Zou, Q. Liu, X. Yang, H. C. Huang, J. Li, L. H. Du, Z. R. Li, J. H. Zhao, and L. G. Zhu, “Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy,” Biomed. Opt. Express 9(1), 14–24 (2018).
[Crossref]

Z. R. Li, K. Meng, T. N. Chen, T. Chen, L. G. Zhu, Q. Liu, Z. Li, and F. Li, “Identify paraffin-embedded brain glioma using terahertz pulsed spectroscopy,” Proc. SPIE 9444, 94440P (2015).
[Crossref]

Liu, Y.

X. Yang, X. Zhao, K. Yang, Y. P. Liu, Y. Liu, W. L. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Liu, Y. P.

X. Yang, X. Zhao, K. Yang, Y. P. Liu, Y. Liu, W. L. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Lopez-Lemus, H. L.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Luo, Y.

X. Yang, X. Zhao, K. Yang, Y. P. Liu, Y. Liu, W. L. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Martin, J. L.

J. B. Masson, M. P. Sauviat, J. L. Martin, and G. Gallot, “Ionic contrast terahertz near-field imaging of axonal water fluxes,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 4808–4812 (2006).
[Crossref]

Martinez, J. S.

J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
[Crossref]

Masson, J. B.

J. B. Masson, M. P. Sauviat, J. L. Martin, and G. Gallot, “Ionic contrast terahertz near-field imaging of axonal water fluxes,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 4808–4812 (2006).
[Crossref]

Meng, K.

Z. R. Li, K. Meng, T. N. Chen, T. Chen, L. G. Zhu, Q. Liu, Z. Li, and F. Li, “Identify paraffin-embedded brain glioma using terahertz pulsed spectroscopy,” Proc. SPIE 9444, 94440P (2015).
[Crossref]

Navarrete, M.

A. Araque and M. Navarrete, “Glial cells in neuronal network function,” Philos. Trans. R. Soc., B 365(1551), 2375–2381 (2010).
[Crossref]

Ogawa, Y.

K. Shiraga, T. Suzuki, N. Kondo, K. Tanaka, and Y. Ogawa, “Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy,” Appl. Phys. Lett. 106(25), 253701 (2015).
[Crossref]

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared, Millimeter, Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Determination of the complex dielectric constant of an epithelial cell monolayer in the terahertz region,” Appl. Phys. Lett. 102(5), 053702 (2013).
[Crossref]

Olshevskaya, J. S.

J. S. Olshevskaya, A. S. Ratushnyak, A. K. Petrov, A. K. Kozlov, and T. A. Zapara, “Effect of terahertz electromagnetic waves on neurons systems,” In Computational Technologies in Electrical and Electronics Engineering, 2008. SIBIRCON 2008. IEEE Region 8 International Conference on. IEEE, 210–211 (2008).

Park, J. Y.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref]

Park, S. J.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref]

Park, W. K.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref]

Peng, Y.

Y. Peng, W. Chen, and Y. Zhu, “Identification of Biomarker (L-2HG) in Real Human Brain Glioma by Terahertz Spectroscopy,” CLEO: Applications and Technology, (2018).

Petrov, A. K.

J. S. Olshevskaya, A. S. Ratushnyak, A. K. Petrov, A. K. Kozlov, and T. A. Zapara, “Effect of terahertz electromagnetic waves on neurons systems,” In Computational Technologies in Electrical and Electronics Engineering, 2008. SIBIRCON 2008. IEEE Region 8 International Conference on. IEEE, 210–211 (2008).

Phipps, M. L.

J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
[Crossref]

Pickwell, E.

Pickwell-MacPherson, E.

Plopper, G.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

Purschke, D. N.

C. M. Hough, D. N. Purschke, C. Huang, L. V. Titova, O. Kovalchuk, and B. J. Warkentin, “Biological effects of intense THz pulses on human skin tissue models,” IRMMW-THz, 1–3 (2017).

Pye, R. J.

Rasmussen, K.

J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
[Crossref]

Ratushnyak, A. S.

J. S. Olshevskaya, A. S. Ratushnyak, A. K. Petrov, A. K. Kozlov, and T. A. Zapara, “Effect of terahertz electromagnetic waves on neurons systems,” In Computational Technologies in Electrical and Electronics Engineering, 2008. SIBIRCON 2008. IEEE Region 8 International Conference on. IEEE, 210–211 (2008).

Reese, G.

C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, “Terahertz Time-Domain Spectroscopy of Human Blood,” IEEE Trans. Terahertz Sci. Technol. 3(4), 363–367 (2013).
[Crossref]

Reid, C. B.

C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, “Terahertz Time-Domain Spectroscopy of Human Blood,” IEEE Trans. Terahertz Sci. Technol. 3(4), 363–367 (2013).
[Crossref]

Rodriguez, G.

J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
[Crossref]

Rodríguez-Contreras, A.

L. Shi, P. Shumyatsky, A. Rodríguez-Contreras, and R. Alfano, “Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer’s disease,” J. Biomed. Opt. 21(1), 015014 (2016).
[Crossref]

Rojas-Landeros, S. C.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Rosen, E. D.

J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
[Crossref]

Salas-Gutierrez, I.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Salnikova, A.

Sauviat, M. P.

J. B. Masson, M. P. Sauviat, J. L. Martin, and G. Gallot, “Ionic contrast terahertz near-field imaging of axonal water fluxes,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 4808–4812 (2006).
[Crossref]

Sedykh, E.

Serebriakova, M.

Shi, L.

L. Shi, P. Shumyatsky, A. Rodríguez-Contreras, and R. Alfano, “Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer’s disease,” J. Biomed. Opt. 21(1), 015014 (2016).
[Crossref]

Shiraga, K.

K. Shiraga, T. Suzuki, N. Kondo, K. Tanaka, and Y. Ogawa, “Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy,” Appl. Phys. Lett. 106(25), 253701 (2015).
[Crossref]

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared, Millimeter, Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Determination of the complex dielectric constant of an epithelial cell monolayer in the terahertz region,” Appl. Phys. Lett. 102(5), 053702 (2013).
[Crossref]

Shumyatsky, P.

L. Shi, P. Shumyatsky, A. Rodríguez-Contreras, and R. Alfano, “Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer’s disease,” J. Biomed. Opt. 21(1), 015014 (2016).
[Crossref]

Smolyanskaya, O. A.

M. V. Duka, L. N. Dvoretskaya, N. S. Babelkin, M. K. Khodzitskii, S. A. Chivilikhin, and O. A. Smolyanskaya, “Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells,” Quantum Electron. 44(8), 707–712 (2014).
[Crossref]

Stantchev, R. I.

Sun, S.

Suzuki, T.

K. Shiraga, T. Suzuki, N. Kondo, K. Tanaka, and Y. Ogawa, “Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy,” Appl. Phys. Lett. 106(25), 253701 (2015).
[Crossref]

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared, Millimeter, Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Determination of the complex dielectric constant of an epithelial cell monolayer in the terahertz region,” Appl. Phys. Lett. 102(5), 053702 (2013).
[Crossref]

Taday, P. F.

Tanaka, K.

K. Shiraga, T. Suzuki, N. Kondo, K. Tanaka, and Y. Ogawa, “Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy,” Appl. Phys. Lett. 106(25), 253701 (2015).
[Crossref]

Titova, L. V.

C. M. Hough, D. N. Purschke, C. Huang, L. V. Titova, O. Kovalchuk, and B. J. Warkentin, “Biological effects of intense THz pulses on human skin tissue models,” IRMMW-THz, 1–3 (2017).

Usheva, A.

J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
[Crossref]

Vaks, V.

Wallace, V. P.

C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, “Terahertz Time-Domain Spectroscopy of Human Blood,” IEEE Trans. Terahertz Sci. Technol. 3(4), 363–367 (2013).
[Crossref]

V. P. Wallace, A. J. Fitzgerald, E. Pickwell, R. J. Pye, P. F. Taday, N. Flanagan, and T. Ha, “Terahertz pulsed spectroscopy of human Basal cell carcinoma,” Appl. Spectrosc. 60(10), 1127–1133 (2006).
[Crossref]

Wang, J.

Warkentin, B. J.

C. M. Hough, D. N. Purschke, C. Huang, L. V. Titova, O. Kovalchuk, and B. J. Warkentin, “Biological effects of intense THz pulses on human skin tissue models,” IRMMW-THz, 1–3 (2017).

Weightman, P.

P. Weightman, “Prospects for the study of biological systems with high power sources of terahertz radiation,” Phys. Biol. 9(5), 053001 (2012).
[Crossref]

Yang, K.

X. Yang, X. Zhao, K. Yang, Y. P. Liu, Y. Liu, W. L. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Yang, X.

Zapara, T. A.

J. S. Olshevskaya, A. S. Ratushnyak, A. K. Petrov, A. K. Kozlov, and T. A. Zapara, “Effect of terahertz electromagnetic waves on neurons systems,” In Computational Technologies in Electrical and Electronics Engineering, 2008. SIBIRCON 2008. IEEE Region 8 International Conference on. IEEE, 210–211 (2008).

Zhang, X. C.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

Zhao, J. H.

Zhao, X.

X. Yang, X. Zhao, K. Yang, Y. P. Liu, Y. Liu, W. L. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Zhu, L. G.

Y. Zou, Q. Liu, X. Yang, H. C. Huang, J. Li, L. H. Du, Z. R. Li, J. H. Zhao, and L. G. Zhu, “Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy,” Biomed. Opt. Express 9(1), 14–24 (2018).
[Crossref]

Z. R. Li, K. Meng, T. N. Chen, T. Chen, L. G. Zhu, Q. Liu, Z. Li, and F. Li, “Identify paraffin-embedded brain glioma using terahertz pulsed spectroscopy,” Proc. SPIE 9444, 94440P (2015).
[Crossref]

Zhu, Y.

Y. Peng, W. Chen, and Y. Zhu, “Identification of Biomarker (L-2HG) in Real Human Brain Glioma by Terahertz Spectroscopy,” CLEO: Applications and Technology, (2018).

Zou, Y.

Appl. Phys. Lett. (3)

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Determination of the complex dielectric constant of an epithelial cell monolayer in the terahertz region,” Appl. Phys. Lett. 102(5), 053702 (2013).
[Crossref]

M. Grognot and G. Gallot, “Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection,” Appl. Phys. Lett. 107(10), 103702 (2015).
[Crossref]

K. Shiraga, T. Suzuki, N. Kondo, K. Tanaka, and Y. Ogawa, “Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy,” Appl. Phys. Lett. 106(25), 253701 (2015).
[Crossref]

Appl. Spectrosc. (2)

Biomed. Opt. Express (3)

Biosens. Bioelectron. (1)

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

Brain Res. Rev. (1)

M. Hanani, “Satellite glial cells in sensory ganglia: from form to function,” Brain Res. Rev. 48(3), 457–476 (2005).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, “Terahertz Time-Domain Spectroscopy of Human Blood,” IEEE Trans. Terahertz Sci. Technol. 3(4), 363–367 (2013).
[Crossref]

J. Biomed. Opt. (1)

L. Shi, P. Shumyatsky, A. Rodríguez-Contreras, and R. Alfano, “Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer’s disease,” J. Biomed. Opt. 21(1), 015014 (2016).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared, Millimeter, Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

Philos. Trans. R. Soc., B (1)

A. Araque and M. Navarrete, “Glial cells in neuronal network function,” Philos. Trans. R. Soc., B 365(1551), 2375–2381 (2010).
[Crossref]

Phys. Biol. (1)

P. Weightman, “Prospects for the study of biological systems with high power sources of terahertz radiation,” Phys. Biol. 9(5), 053001 (2012).
[Crossref]

PLoS One (1)

J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H. T. Chen, G. Rodriguez, B. S. Alexandrov, and A. Usheva, “Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation,” PLoS One 5(12), e15806 (2010).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

J. B. Masson, M. P. Sauviat, J. L. Martin, and G. Gallot, “Ionic contrast terahertz near-field imaging of axonal water fluxes,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 4808–4812 (2006).
[Crossref]

Proc. SPIE (1)

Z. R. Li, K. Meng, T. N. Chen, T. Chen, L. G. Zhu, Q. Liu, Z. Li, and F. Li, “Identify paraffin-embedded brain glioma using terahertz pulsed spectroscopy,” Proc. SPIE 9444, 94440P (2015).
[Crossref]

Quantum Electron. (1)

M. V. Duka, L. N. Dvoretskaya, N. S. Babelkin, M. K. Khodzitskii, S. A. Chivilikhin, and O. A. Smolyanskaya, “Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells,” Quantum Electron. 44(8), 707–712 (2014).
[Crossref]

Sci. Rep. (2)

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref]

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Trends Biotechnol. (1)

X. Yang, X. Zhao, K. Yang, Y. P. Liu, Y. Liu, W. L. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Other (3)

C. M. Hough, D. N. Purschke, C. Huang, L. V. Titova, O. Kovalchuk, and B. J. Warkentin, “Biological effects of intense THz pulses on human skin tissue models,” IRMMW-THz, 1–3 (2017).

J. S. Olshevskaya, A. S. Ratushnyak, A. K. Petrov, A. K. Kozlov, and T. A. Zapara, “Effect of terahertz electromagnetic waves on neurons systems,” In Computational Technologies in Electrical and Electronics Engineering, 2008. SIBIRCON 2008. IEEE Region 8 International Conference on. IEEE, 210–211 (2008).

Y. Peng, W. Chen, and Y. Zhu, “Identification of Biomarker (L-2HG) in Real Human Brain Glioma by Terahertz Spectroscopy,” CLEO: Applications and Technology, (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The schematic illustration of the THz ATR spectroscopy system.
Fig. 2.
Fig. 2. Microscopy photograph of PC12 cell monolayer with different number. (a) 2.0×105 (b) 3.0×105 (c) 4.0×105.
Fig. 3.
Fig. 3. (a) ‘Si-cell-medium’ two-interface model; (b) ‘Si-cell’ single-interface model.
Fig. 4.
Fig. 4. (a) The time-domain signal of RPMI 1640 culture medium (blue solid line) and reference (red solid line) with Si container. (b) The absorption coefficients of RPMI 1640 cell culture medium measured with Si container (black solid line) and measured without Si container (red solid line).
Fig. 5.
Fig. 5. The complex refractive index of living PC12 cell monolayer from rats. (a) refractive index, (b) extinction coefficient. The red solid lines showed the dielectric properties based on two-interface ‘Si-cell-medium’ model. The blue dashed lines showed the dielectric properties of PC12 cell monolayer based on Eq. (7). The black solid lines showed the dielectric properties of sample composed of the dehydrated PC12 cell monolayer and the air medium. The pink, purple, wine, green solid lines showed the the complex refractive index based on the single-interface ‘Si-cell’ model in 10seconds, 20seconds, 30seconds and 60seconds, respectively.
Fig. 6.
Fig. 6. The complex refractive index for different numbers of living PC12 cells from rats (a) Refractive index, (b) extinction coefficient. The solid lines showed the dielectric properties based on two-interface ‘Si-cell-medium’ model. The dashed lines showed the dielectric responses of PC12 cell monolayer based on Eq. (7). The red, blue, pink curves were the dielectric responses for the cell number of 2×105, 3×105 and 4×105, respectively.
Fig. 7.
Fig. 7. The complex refractive index for PC12 and C6 cells from rats. (a) Refractive index, (b) extinction coefficient. The blue solid line was the dielectric properties of two-interface medium composed of living C6 cell monolayer and culture medium. The blue dashed line and the red dashed line were the dielectric properties of C6 and PC12 cell monolayers based on Eq. (7), respectively. The insets showed the dielectric properties of RPMI 1640 culture medium and DMEM medium.
Fig. 8.
Fig. 8. The complex refractive index for SVG P12 cells, HMO6 cells, and U87 cells. (a) Refractive index, (b) extinction coefficient. The solid lines showed the dielectric responses based on two-interface ‘Si-cell-medium’ model, the dash lines showed the dielectric responses for human cells based on Eq. (7). The red, blue, purple cures showed the dielectric responses for SVG P12 cells, HMO6 cells and U87 cells, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r 12 = 1 e ± κ d 0
d p = λ 2 π n 1 sin 2 θ ( n 2 n 1 ) 2
M = [ cos δ 1 i η 1 sin δ 1 i η 1 sin δ 1 cos δ 1 ]
Y cell + medium = i η 1 sin δ 1  +  η medium cos δ 1 cos δ 1  +  i η medium η 1 sin δ 1
Y cell + air = i η 1 sin δ 1  +  η air cos δ 1 cos δ 1  +  i η air η 1 sin δ 1
η 1 = η air Y cell + air ( η medium Y cell + medium ) η medium Y cell + medium ( η air Y cell + air ) ( η medium Y cell + medium ) ( η air Y cell + air )
η j = N j / cos θ = ( n + i k ) / cos θ

Metrics