Abstract

Optical coherence tomography (OCT) has been gaining acceptance in image-guided microsurgery as a noninvasive imaging technique. However, when using B-mode OCT imaging, it is difficult to continuously keep the surgical tool in the imaging field, and the image of the tissue beneath the tool is corrupted by shadow effects. The alternative using C-mode OCT imaging is either too slow in imaging speed when operating in a high-resolution mode, or provides a poor image resolution in a high-speed mode, with the sweep rate less than one million hertz. Moreover, the 3-dimensional rendering of C-mode OCT image makes it difficult to visualize the tissue structure and track the surgical tool beneath the tissue surface. To solve these problems, we propose a BC-mode OCT image visualization method. This method uses a sparse C-scanning scheme, which provides a set of high-resolution B-mode OCT images at sparsely spaced cross sections. The final BC-mode OCT image is obtained by averaging the image set, with inter frame variance processing to enhance the signal of the surgical tool and tissue layers. The performance of BC-mode OCT images, such as image resolution, signal to noise ratio (SNR), imaging speed, and surgical tool tracking accuracy, is analyzed theoretically and verified experimentally. The feasibility of the proposed method is evaluated by guiding the insertion of a 30-gauge needle into the cornea of an ex-vivo human eye freehand. The results show that this provides better visualization of both the surgical tool and the tissue structure than the conventional B- or C- mode OCT image.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps

Haoran Yu, Jin-Hui Shen, Rohan J. Shah, Nabil Simaan, and Karen M. Joos
Biomed. Opt. Express 6(2) 457-472 (2015)

Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system

Boon Y. Yeo, Robert A. McLaughlin, Rodney W. Kirk, and David D. Sampson
Biomed. Opt. Express 3(7) 1565-1578 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. K. Daniel, “Microsurgery: through the looking glass,” N. Engl. J. Med. 300(22), 1251–1257 (1979).
    [Crossref]
  2. M. Singh and A. Saxena, “Microsurgery: A useful and versatile tool in surgical field,” Surg. Curr. Res 4(4), 9–11 (2014).
    [Crossref]
  3. H. Neshat, D. W. Cool, K. Barker, L. Gardi, N. Kakani, and A. Fenster, “A 3D ultrasound scanning system for image guided liver interventions,” Med. Phys. 40(11), 112903 (2013).
    [Crossref]
  4. D. J. Brenner and E. J. Hall, “Computed tomography—an increasing source of radiation exposure,” N. Engl. J. Med. 357(22), 2277–2284 (2007).
    [Crossref]
  5. V. M. Tronnier, C. R. Wirtz, M. Knauth, G. Lenz, O. Pastyr, M. M. Bonsanto, F. K. Albert, R. Kuth, A. Staubert, and W. Schlegel, “Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery,” Neurosurgery 40(5), 891–902 (1997).
    [Crossref]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  7. J. U. Kang, Y. Huang, J. Cha, K. Zhang, Z. Ibrahim, W. A. Lee, G. Brandacher, and P. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
    [Crossref]
  8. O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications,” Biomed. Opt. Express 8(3), 1607–1637 (2017).
    [Crossref]
  9. Y. Huang, Z. Ibrahim, D. Tong, S. Zhu, Q. Mao, J. Pang, W. P. A. Lee, G. Brandacher, and J. U. Kang, “Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 111404 (2013).
    [Crossref]
  10. J. U. Kang and G. Cheon, “Demonstration of Subretinal Injection Using Common-Path Swept Source OCT Guided Microinjector,” Appl. Sci. 8(8), 1287 (2018).
    [Crossref]
  11. S. Shin, J. K. Bae, Y. Ahn, H. Kim, G. Choi, Y.-S. Yoo, C.-K. Joo, S. Moon, and W. Jung, “Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography,” J. Biomed. Opt. 22(12), 125005 (2017).
    [Crossref]
  12. H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Calibration and integration of b-mode optical coherence tomography for assistive control in robotic microsurgery,” Transactions on Mechatronics 21(6), 2613–2623 (2016).
    [Crossref]
  13. C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7(5), 1815–1829 (2016).
    [Crossref]
  14. B. Keller, M. Draelos, G. Tang, S. Farsiu, A. N. Kuo, K. Hauser, and J. A. Izatt, “Real-time corneal segmentation and 3D needle tracking in intrasurgical OCT,” Biomed. Opt. Express 9(6), 2716–2732 (2018).
    [Crossref]
  15. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18(11), 11772–11784 (2010).
    [Crossref]
  16. K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express 2(4), 764–770 (2011).
    [Crossref]
  17. M. Draelos, B. Keller, C. Viehland, O. M. Carrasco-Zevallos, A. Kuo, and J. Izatt, “Real-time visualization and interaction with static and live optical coherence tomography volumes in immersive virtual reality,” Biomed. Opt. Express 9(6), 2825–2843 (2018).
    [Crossref]
  18. O. M. Carrasco-Zevallos, C. Viehland, B. Keller, R. P. McNabb, A. N. Kuo, and J. A. Izatt, “Constant linear velocity spiral scanning for near video rate 4D OCT ophthalmic and surgical imaging with isotropic transverse sampling,” Biomed. Opt. Express 9(10), 5052–5070 (2018).
    [Crossref]
  19. I. D. Bleicher, M. Jackson-Atogi, C. Viehland, H. Gabr, J. A. Izatt, and C. A. Toth, “Depth-Based, Motion-Stabilized Colorization of Microscope-Integrated Optical Coherence Tomography Volumes for Microscope-Independent Microsurgery,” Trans. Vis. Sci. Tech. 7(6), 1 (2018).
    [Crossref]
  20. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
    [Crossref]
  21. T. Klein, W. Wieser, R. André, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI, (International Society for Optics and Photonics, 2012), 82131E.
  22. Y. Huang, X. Liu, and J. U. Kang, “Real-time 3D and 4D Fourier domain Doppler optical coherence tomography based on dual graphics processing units,” Biomed. Opt. Express 3(9), 2162–2174 (2012).
    [Crossref]
  23. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in Optical Coherence Tomography,” Opt. Express 20(2), 1337–1359 (2012).
    [Crossref]
  24. M. Szkulmowski and M. Wojtkowski, “Averaging techniques for OCT imaging,” Opt. Express 21(8), 9757–9773 (2013).
    [Crossref]
  25. Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Visualization of vitreoretinal surgical manipulations using intraoperative spectral domain optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XV, (International Society for Optics and Photonics, 2011), 78890F.
  26. J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
    [Crossref]
  27. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  28. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–174 (1996).
    [Crossref]
  29. J. G. Fujimoto and W. Drexler, “Introduction to OCT,” Optical Coherence Tomography: Technology and Applications, 3–64 (2015).
  30. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
    [Crossref]
  31. D. P. Popescu, M. D. Hewko, and M. G. Sowa, “Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample,” Opt. Commun. 269(1), 247–251 (2007).
    [Crossref]
  32. G. Gong, H. Zhang, and M. Yao, “Speckle noise reduction algorithm with total variation regularization in optical coherence tomography,” Opt. Express 23(19), 24699–24712 (2015).
    [Crossref]
  33. M. Li, R. Idoughi, B. Choudhury, and W. Heidrich, “Statistical model for OCT image denoising,” Biomed. Opt. Express 8(9), 3903–3917 (2017).
    [Crossref]
  34. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
    [Crossref]
  35. B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, and E. Mallon, “Swept light sources,” Optical Coherence Tomography: Technology and Applications, 639–658 (2015).
  36. G. Zack, W. Rogers, and S. Latt, “Automatic measurement of sister chromatid exchange frequency,” J. Histochem. Cytochem. 25(7), 741–753 (1977).
    [Crossref]

2018 (5)

2017 (3)

2016 (2)

H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Calibration and integration of b-mode optical coherence tomography for assistive control in robotic microsurgery,” Transactions on Mechatronics 21(6), 2613–2623 (2016).
[Crossref]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7(5), 1815–1829 (2016).
[Crossref]

2015 (1)

2014 (2)

2013 (4)

H. Neshat, D. W. Cool, K. Barker, L. Gardi, N. Kakani, and A. Fenster, “A 3D ultrasound scanning system for image guided liver interventions,” Med. Phys. 40(11), 112903 (2013).
[Crossref]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref]

M. Szkulmowski and M. Wojtkowski, “Averaging techniques for OCT imaging,” Opt. Express 21(8), 9757–9773 (2013).
[Crossref]

Y. Huang, Z. Ibrahim, D. Tong, S. Zhu, Q. Mao, J. Pang, W. P. A. Lee, G. Brandacher, and J. U. Kang, “Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 111404 (2013).
[Crossref]

2012 (3)

2011 (1)

2010 (2)

2007 (2)

D. P. Popescu, M. D. Hewko, and M. G. Sowa, “Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample,” Opt. Commun. 269(1), 247–251 (2007).
[Crossref]

D. J. Brenner and E. J. Hall, “Computed tomography—an increasing source of radiation exposure,” N. Engl. J. Med. 357(22), 2277–2284 (2007).
[Crossref]

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

1997 (1)

V. M. Tronnier, C. R. Wirtz, M. Knauth, G. Lenz, O. Pastyr, M. M. Bonsanto, F. K. Albert, R. Kuth, A. Staubert, and W. Schlegel, “Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery,” Neurosurgery 40(5), 891–902 (1997).
[Crossref]

1996 (1)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–174 (1996).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

1979 (1)

R. K. Daniel, “Microsurgery: through the looking glass,” N. Engl. J. Med. 300(22), 1251–1257 (1979).
[Crossref]

1978 (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
[Crossref]

1977 (1)

G. Zack, W. Rogers, and S. Latt, “Automatic measurement of sister chromatid exchange frequency,” J. Histochem. Cytochem. 25(7), 741–753 (1977).
[Crossref]

Ahn, Y.

S. Shin, J. K. Bae, Y. Ahn, H. Kim, G. Choi, Y.-S. Yoo, C.-K. Joo, S. Moon, and W. Jung, “Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography,” J. Biomed. Opt. 22(12), 125005 (2017).
[Crossref]

Albert, F. K.

V. M. Tronnier, C. R. Wirtz, M. Knauth, G. Lenz, O. Pastyr, M. M. Bonsanto, F. K. Albert, R. Kuth, A. Staubert, and W. Schlegel, “Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery,” Neurosurgery 40(5), 891–902 (1997).
[Crossref]

André, R.

T. Klein, W. Wieser, R. André, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI, (International Society for Optics and Photonics, 2012), 82131E.

Atia, W.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, and E. Mallon, “Swept light sources,” Optical Coherence Tomography: Technology and Applications, 639–658 (2015).

Bae, J. K.

S. Shin, J. K. Bae, Y. Ahn, H. Kim, G. Choi, Y.-S. Yoo, C.-K. Joo, S. Moon, and W. Jung, “Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography,” J. Biomed. Opt. 22(12), 125005 (2017).
[Crossref]

Barker, K.

H. Neshat, D. W. Cool, K. Barker, L. Gardi, N. Kakani, and A. Fenster, “A 3D ultrasound scanning system for image guided liver interventions,” Med. Phys. 40(11), 112903 (2013).
[Crossref]

Bleicher, I. D.

I. D. Bleicher, M. Jackson-Atogi, C. Viehland, H. Gabr, J. A. Izatt, and C. A. Toth, “Depth-Based, Motion-Stabilized Colorization of Microscope-Integrated Optical Coherence Tomography Volumes for Microscope-Independent Microsurgery,” Trans. Vis. Sci. Tech. 7(6), 1 (2018).
[Crossref]

Bonsanto, M. M.

V. M. Tronnier, C. R. Wirtz, M. Knauth, G. Lenz, O. Pastyr, M. M. Bonsanto, F. K. Albert, R. Kuth, A. Staubert, and W. Schlegel, “Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery,” Neurosurgery 40(5), 891–902 (1997).
[Crossref]

Brandacher, G.

Y. Huang, Z. Ibrahim, D. Tong, S. Zhu, Q. Mao, J. Pang, W. P. A. Lee, G. Brandacher, and J. U. Kang, “Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 111404 (2013).
[Crossref]

J. U. Kang, Y. Huang, J. Cha, K. Zhang, Z. Ibrahim, W. A. Lee, G. Brandacher, and P. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Brenner, D. J.

D. J. Brenner and E. J. Hall, “Computed tomography—an increasing source of radiation exposure,” N. Engl. J. Med. 357(22), 2277–2284 (2007).
[Crossref]

Carrasco-Zevallos, O. M.

Cha, J.

J. U. Kang, Y. Huang, J. Cha, K. Zhang, Z. Ibrahim, W. A. Lee, G. Brandacher, and P. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Cheon, G.

J. U. Kang and G. Cheon, “Demonstration of Subretinal Injection Using Common-Path Swept Source OCT Guided Microinjector,” Appl. Sci. 8(8), 1287 (2018).
[Crossref]

Chiu, S. J.

Choi, G.

S. Shin, J. K. Bae, Y. Ahn, H. Kim, G. Choi, Y.-S. Yoo, C.-K. Joo, S. Moon, and W. Jung, “Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography,” J. Biomed. Opt. 22(12), 125005 (2017).
[Crossref]

Choudhury, B.

Cook, C.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, and E. Mallon, “Swept light sources,” Optical Coherence Tomography: Technology and Applications, 639–658 (2015).

Cool, D. W.

H. Neshat, D. W. Cool, K. Barker, L. Gardi, N. Kakani, and A. Fenster, “A 3D ultrasound scanning system for image guided liver interventions,” Med. Phys. 40(11), 112903 (2013).
[Crossref]

Daniel, R. K.

R. K. Daniel, “Microsurgery: through the looking glass,” N. Engl. J. Med. 300(22), 1251–1257 (1979).
[Crossref]

Draelos, M.

Draxinger, W.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

J. G. Fujimoto and W. Drexler, “Introduction to OCT,” Optical Coherence Tomography: Technology and Applications, 3–64 (2015).

Ehlers, J. P.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Visualization of vitreoretinal surgical manipulations using intraoperative spectral domain optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XV, (International Society for Optics and Photonics, 2011), 78890F.

Eigenwillig, C. M.

T. Klein, W. Wieser, R. André, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI, (International Society for Optics and Photonics, 2012), 82131E.

Farsiu, S.

Fenster, A.

H. Neshat, D. W. Cool, K. Barker, L. Gardi, N. Kakani, and A. Fenster, “A 3D ultrasound scanning system for image guided liver interventions,” Med. Phys. 40(11), 112903 (2013).
[Crossref]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–174 (1996).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

J. G. Fujimoto and W. Drexler, “Introduction to OCT,” Optical Coherence Tomography: Technology and Applications, 3–64 (2015).

Gabr, H.

I. D. Bleicher, M. Jackson-Atogi, C. Viehland, H. Gabr, J. A. Izatt, and C. A. Toth, “Depth-Based, Motion-Stabilized Colorization of Microscope-Integrated Optical Coherence Tomography Volumes for Microscope-Independent Microsurgery,” Trans. Vis. Sci. Tech. 7(6), 1 (2018).
[Crossref]

Gardi, L.

H. Neshat, D. W. Cool, K. Barker, L. Gardi, N. Kakani, and A. Fenster, “A 3D ultrasound scanning system for image guided liver interventions,” Med. Phys. 40(11), 112903 (2013).
[Crossref]

Gehlbach, P.

J. U. Kang, Y. Huang, J. Cha, K. Zhang, Z. Ibrahim, W. A. Lee, G. Brandacher, and P. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Goldberg, B.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, and E. Mallon, “Swept light sources,” Optical Coherence Tomography: Technology and Applications, 639–658 (2015).

Gong, G.

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hall, E. J.

D. J. Brenner and E. J. Hall, “Computed tomography—an increasing source of radiation exposure,” N. Engl. J. Med. 357(22), 2277–2284 (2007).
[Crossref]

Harris, F. J.

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
[Crossref]

Hauser, K.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Heidrich, W.

Hewko, M. D.

D. P. Popescu, M. D. Hewko, and M. G. Sowa, “Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample,” Opt. Commun. 269(1), 247–251 (2007).
[Crossref]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Huang, Y.

Y. Huang, Z. Ibrahim, D. Tong, S. Zhu, Q. Mao, J. Pang, W. P. A. Lee, G. Brandacher, and J. U. Kang, “Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 111404 (2013).
[Crossref]

J. U. Kang, Y. Huang, J. Cha, K. Zhang, Z. Ibrahim, W. A. Lee, G. Brandacher, and P. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Y. Huang, X. Liu, and J. U. Kang, “Real-time 3D and 4D Fourier domain Doppler optical coherence tomography based on dual graphics processing units,” Biomed. Opt. Express 3(9), 2162–2174 (2012).
[Crossref]

Huber, R.

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref]

T. Klein, W. Wieser, R. André, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI, (International Society for Optics and Photonics, 2012), 82131E.

Ibrahim, Z.

Y. Huang, Z. Ibrahim, D. Tong, S. Zhu, Q. Mao, J. Pang, W. P. A. Lee, G. Brandacher, and J. U. Kang, “Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 111404 (2013).
[Crossref]

J. U. Kang, Y. Huang, J. Cha, K. Zhang, Z. Ibrahim, W. A. Lee, G. Brandacher, and P. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Idoughi, R.

Izatt, J.

Izatt, J. A.

B. Keller, M. Draelos, G. Tang, S. Farsiu, A. N. Kuo, K. Hauser, and J. A. Izatt, “Real-time corneal segmentation and 3D needle tracking in intrasurgical OCT,” Biomed. Opt. Express 9(6), 2716–2732 (2018).
[Crossref]

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, R. P. McNabb, A. N. Kuo, and J. A. Izatt, “Constant linear velocity spiral scanning for near video rate 4D OCT ophthalmic and surgical imaging with isotropic transverse sampling,” Biomed. Opt. Express 9(10), 5052–5070 (2018).
[Crossref]

I. D. Bleicher, M. Jackson-Atogi, C. Viehland, H. Gabr, J. A. Izatt, and C. A. Toth, “Depth-Based, Motion-Stabilized Colorization of Microscope-Integrated Optical Coherence Tomography Volumes for Microscope-Independent Microsurgery,” Trans. Vis. Sci. Tech. 7(6), 1 (2018).
[Crossref]

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications,” Biomed. Opt. Express 8(3), 1607–1637 (2017).
[Crossref]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7(5), 1815–1829 (2016).
[Crossref]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Visualization of vitreoretinal surgical manipulations using intraoperative spectral domain optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XV, (International Society for Optics and Photonics, 2011), 78890F.

Jackson-Atogi, M.

I. D. Bleicher, M. Jackson-Atogi, C. Viehland, H. Gabr, J. A. Izatt, and C. A. Toth, “Depth-Based, Motion-Stabilized Colorization of Microscope-Integrated Optical Coherence Tomography Volumes for Microscope-Independent Microsurgery,” Trans. Vis. Sci. Tech. 7(6), 1 (2018).
[Crossref]

Johnson, B.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, and E. Mallon, “Swept light sources,” Optical Coherence Tomography: Technology and Applications, 639–658 (2015).

Joo, C.-K.

S. Shin, J. K. Bae, Y. Ahn, H. Kim, G. Choi, Y.-S. Yoo, C.-K. Joo, S. Moon, and W. Jung, “Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography,” J. Biomed. Opt. 22(12), 125005 (2017).
[Crossref]

Joos, K. M.

H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Calibration and integration of b-mode optical coherence tomography for assistive control in robotic microsurgery,” Transactions on Mechatronics 21(6), 2613–2623 (2016).
[Crossref]

Jung, W.

S. Shin, J. K. Bae, Y. Ahn, H. Kim, G. Choi, Y.-S. Yoo, C.-K. Joo, S. Moon, and W. Jung, “Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography,” J. Biomed. Opt. 22(12), 125005 (2017).
[Crossref]

Kakani, N.

H. Neshat, D. W. Cool, K. Barker, L. Gardi, N. Kakani, and A. Fenster, “A 3D ultrasound scanning system for image guided liver interventions,” Med. Phys. 40(11), 112903 (2013).
[Crossref]

Kang, J. U.

J. U. Kang and G. Cheon, “Demonstration of Subretinal Injection Using Common-Path Swept Source OCT Guided Microinjector,” Appl. Sci. 8(8), 1287 (2018).
[Crossref]

Y. Huang, Z. Ibrahim, D. Tong, S. Zhu, Q. Mao, J. Pang, W. P. A. Lee, G. Brandacher, and J. U. Kang, “Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 111404 (2013).
[Crossref]

J. U. Kang, Y. Huang, J. Cha, K. Zhang, Z. Ibrahim, W. A. Lee, G. Brandacher, and P. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Y. Huang, X. Liu, and J. U. Kang, “Real-time 3D and 4D Fourier domain Doppler optical coherence tomography based on dual graphics processing units,” Biomed. Opt. Express 3(9), 2162–2174 (2012).
[Crossref]

K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express 2(4), 764–770 (2011).
[Crossref]

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18(11), 11772–11784 (2010).
[Crossref]

Karpf, S.

Keller, B.

Kim, H.

S. Shin, J. K. Bae, Y. Ahn, H. Kim, G. Choi, Y.-S. Yoo, C.-K. Joo, S. Moon, and W. Jung, “Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography,” J. Biomed. Opt. 22(12), 125005 (2017).
[Crossref]

Klein, T.

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref]

T. Klein, W. Wieser, R. André, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI, (International Society for Optics and Photonics, 2012), 82131E.

Knauth, M.

V. M. Tronnier, C. R. Wirtz, M. Knauth, G. Lenz, O. Pastyr, M. M. Bonsanto, F. K. Albert, R. Kuth, A. Staubert, and W. Schlegel, “Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery,” Neurosurgery 40(5), 891–902 (1997).
[Crossref]

Kowalczyk, A.

Kuo, A.

Kuo, A. N.

Kuth, R.

V. M. Tronnier, C. R. Wirtz, M. Knauth, G. Lenz, O. Pastyr, M. M. Bonsanto, F. K. Albert, R. Kuth, A. Staubert, and W. Schlegel, “Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery,” Neurosurgery 40(5), 891–902 (1997).
[Crossref]

Kuznetsov, M.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, and E. Mallon, “Swept light sources,” Optical Coherence Tomography: Technology and Applications, 639–658 (2015).

Larson, N.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, and E. Mallon, “Swept light sources,” Optical Coherence Tomography: Technology and Applications, 639–658 (2015).

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Latt, S.

G. Zack, W. Rogers, and S. Latt, “Automatic measurement of sister chromatid exchange frequency,” J. Histochem. Cytochem. 25(7), 741–753 (1977).
[Crossref]

Lee, W. A.

J. U. Kang, Y. Huang, J. Cha, K. Zhang, Z. Ibrahim, W. A. Lee, G. Brandacher, and P. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Lee, W. P. A.

Y. Huang, Z. Ibrahim, D. Tong, S. Zhu, Q. Mao, J. Pang, W. P. A. Lee, G. Brandacher, and J. U. Kang, “Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 111404 (2013).
[Crossref]

Lenz, G.

V. M. Tronnier, C. R. Wirtz, M. Knauth, G. Lenz, O. Pastyr, M. M. Bonsanto, F. K. Albert, R. Kuth, A. Staubert, and W. Schlegel, “Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery,” Neurosurgery 40(5), 891–902 (1997).
[Crossref]

Li, M.

Li, X. T.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Liu, X.

Maldonado, R.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref]

Mallon, E.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, and E. Mallon, “Swept light sources,” Optical Coherence Tomography: Technology and Applications, 639–658 (2015).

Mangalesh, S.

Mao, Q.

Y. Huang, Z. Ibrahim, D. Tong, S. Zhu, Q. Mao, J. Pang, W. P. A. Lee, G. Brandacher, and J. U. Kang, “Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 111404 (2013).
[Crossref]

McKenzie, E.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, and E. Mallon, “Swept light sources,” Optical Coherence Tomography: Technology and Applications, 639–658 (2015).

McNabb, R. P.

Melendez, C.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, and E. Mallon, “Swept light sources,” Optical Coherence Tomography: Technology and Applications, 639–658 (2015).

Moon, S.

S. Shin, J. K. Bae, Y. Ahn, H. Kim, G. Choi, Y.-S. Yoo, C.-K. Joo, S. Moon, and W. Jung, “Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography,” J. Biomed. Opt. 22(12), 125005 (2017).
[Crossref]

Nankivil, D.

Neshat, H.

H. Neshat, D. W. Cool, K. Barker, L. Gardi, N. Kakani, and A. Fenster, “A 3D ultrasound scanning system for image guided liver interventions,” Med. Phys. 40(11), 112903 (2013).
[Crossref]

Nicholas, P.

Pang, J.

Y. Huang, Z. Ibrahim, D. Tong, S. Zhu, Q. Mao, J. Pang, W. P. A. Lee, G. Brandacher, and J. U. Kang, “Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 111404 (2013).
[Crossref]

Pastyr, O.

V. M. Tronnier, C. R. Wirtz, M. Knauth, G. Lenz, O. Pastyr, M. M. Bonsanto, F. K. Albert, R. Kuth, A. Staubert, and W. Schlegel, “Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery,” Neurosurgery 40(5), 891–902 (1997).
[Crossref]

Pfeiffer, T.

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref]

T. Klein, W. Wieser, R. André, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI, (International Society for Optics and Photonics, 2012), 82131E.

Popescu, D. P.

D. P. Popescu, M. D. Hewko, and M. G. Sowa, “Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample,” Opt. Commun. 269(1), 247–251 (2007).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Rogers, W.

G. Zack, W. Rogers, and S. Latt, “Automatic measurement of sister chromatid exchange frequency,” J. Histochem. Cytochem. 25(7), 741–753 (1977).
[Crossref]

Saxena, A.

M. Singh and A. Saxena, “Microsurgery: A useful and versatile tool in surgical field,” Surg. Curr. Res 4(4), 9–11 (2014).
[Crossref]

Schlegel, W.

V. M. Tronnier, C. R. Wirtz, M. Knauth, G. Lenz, O. Pastyr, M. M. Bonsanto, F. K. Albert, R. Kuth, A. Staubert, and W. Schlegel, “Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery,” Neurosurgery 40(5), 891–902 (1997).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Shen, J.-H.

H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Calibration and integration of b-mode optical coherence tomography for assistive control in robotic microsurgery,” Transactions on Mechatronics 21(6), 2613–2623 (2016).
[Crossref]

Shen, L.

Shin, S.

S. Shin, J. K. Bae, Y. Ahn, H. Kim, G. Choi, Y.-S. Yoo, C.-K. Joo, S. Moon, and W. Jung, “Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography,” J. Biomed. Opt. 22(12), 125005 (2017).
[Crossref]

Simaan, N.

H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Calibration and integration of b-mode optical coherence tomography for assistive control in robotic microsurgery,” Transactions on Mechatronics 21(6), 2613–2623 (2016).
[Crossref]

Singh, M.

M. Singh and A. Saxena, “Microsurgery: A useful and versatile tool in surgical field,” Surg. Curr. Res 4(4), 9–11 (2014).
[Crossref]

Sowa, M. G.

D. P. Popescu, M. D. Hewko, and M. G. Sowa, “Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample,” Opt. Commun. 269(1), 247–251 (2007).
[Crossref]

Staubert, A.

V. M. Tronnier, C. R. Wirtz, M. Knauth, G. Lenz, O. Pastyr, M. M. Bonsanto, F. K. Albert, R. Kuth, A. Staubert, and W. Schlegel, “Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery,” Neurosurgery 40(5), 891–902 (1997).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Sylwestrzak, M.

Szkulmowski, M.

Szlag, D.

Tang, G.

Tao, Y. K.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Visualization of vitreoretinal surgical manipulations using intraoperative spectral domain optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XV, (International Society for Optics and Photonics, 2011), 78890F.

Tong, D.

Y. Huang, Z. Ibrahim, D. Tong, S. Zhu, Q. Mao, J. Pang, W. P. A. Lee, G. Brandacher, and J. U. Kang, “Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 111404 (2013).
[Crossref]

Toth, C. A.

I. D. Bleicher, M. Jackson-Atogi, C. Viehland, H. Gabr, J. A. Izatt, and C. A. Toth, “Depth-Based, Motion-Stabilized Colorization of Microscope-Integrated Optical Coherence Tomography Volumes for Microscope-Independent Microsurgery,” Trans. Vis. Sci. Tech. 7(6), 1 (2018).
[Crossref]

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications,” Biomed. Opt. Express 8(3), 1607–1637 (2017).
[Crossref]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7(5), 1815–1829 (2016).
[Crossref]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Visualization of vitreoretinal surgical manipulations using intraoperative spectral domain optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XV, (International Society for Optics and Photonics, 2011), 78890F.

Tronnier, V. M.

V. M. Tronnier, C. R. Wirtz, M. Knauth, G. Lenz, O. Pastyr, M. M. Bonsanto, F. K. Albert, R. Kuth, A. Staubert, and W. Schlegel, “Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery,” Neurosurgery 40(5), 891–902 (1997).
[Crossref]

Viehland, C.

Wells, B.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, and E. Mallon, “Swept light sources,” Optical Coherence Tomography: Technology and Applications, 639–658 (2015).

Wieser, W.

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref]

T. Klein, W. Wieser, R. André, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI, (International Society for Optics and Photonics, 2012), 82131E.

Wirtz, C. R.

V. M. Tronnier, C. R. Wirtz, M. Knauth, G. Lenz, O. Pastyr, M. M. Bonsanto, F. K. Albert, R. Kuth, A. Staubert, and W. Schlegel, “Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery,” Neurosurgery 40(5), 891–902 (1997).
[Crossref]

Wojtkowski, M.

Yao, M.

Yoo, Y.-S.

S. Shin, J. K. Bae, Y. Ahn, H. Kim, G. Choi, Y.-S. Yoo, C.-K. Joo, S. Moon, and W. Jung, “Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography,” J. Biomed. Opt. 22(12), 125005 (2017).
[Crossref]

Yu, H.

H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Calibration and integration of b-mode optical coherence tomography for assistive control in robotic microsurgery,” Transactions on Mechatronics 21(6), 2613–2623 (2016).
[Crossref]

Zack, G.

G. Zack, W. Rogers, and S. Latt, “Automatic measurement of sister chromatid exchange frequency,” J. Histochem. Cytochem. 25(7), 741–753 (1977).
[Crossref]

Zhang, H.

Zhang, K.

Zhu, S.

Y. Huang, Z. Ibrahim, D. Tong, S. Zhu, Q. Mao, J. Pang, W. P. A. Lee, G. Brandacher, and J. U. Kang, “Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 111404 (2013).
[Crossref]

Appl. Sci. (1)

J. U. Kang and G. Cheon, “Demonstration of Subretinal Injection Using Common-Path Swept Source OCT Guided Microinjector,” Appl. Sci. 8(8), 1287 (2018).
[Crossref]

Biomed. Opt. Express (9)

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7(5), 1815–1829 (2016).
[Crossref]

B. Keller, M. Draelos, G. Tang, S. Farsiu, A. N. Kuo, K. Hauser, and J. A. Izatt, “Real-time corneal segmentation and 3D needle tracking in intrasurgical OCT,” Biomed. Opt. Express 9(6), 2716–2732 (2018).
[Crossref]

K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express 2(4), 764–770 (2011).
[Crossref]

M. Draelos, B. Keller, C. Viehland, O. M. Carrasco-Zevallos, A. Kuo, and J. Izatt, “Real-time visualization and interaction with static and live optical coherence tomography volumes in immersive virtual reality,” Biomed. Opt. Express 9(6), 2825–2843 (2018).
[Crossref]

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, R. P. McNabb, A. N. Kuo, and J. A. Izatt, “Constant linear velocity spiral scanning for near video rate 4D OCT ophthalmic and surgical imaging with isotropic transverse sampling,” Biomed. Opt. Express 9(10), 5052–5070 (2018).
[Crossref]

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications,” Biomed. Opt. Express 8(3), 1607–1637 (2017).
[Crossref]

Y. Huang, X. Liu, and J. U. Kang, “Real-time 3D and 4D Fourier domain Doppler optical coherence tomography based on dual graphics processing units,” Biomed. Opt. Express 3(9), 2162–2174 (2012).
[Crossref]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref]

M. Li, R. Idoughi, B. Choudhury, and W. Heidrich, “Statistical model for OCT image denoising,” Biomed. Opt. Express 8(9), 3903–3917 (2017).
[Crossref]

J. Biomed. Opt. (4)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–174 (1996).
[Crossref]

J. U. Kang, Y. Huang, J. Cha, K. Zhang, Z. Ibrahim, W. A. Lee, G. Brandacher, and P. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Y. Huang, Z. Ibrahim, D. Tong, S. Zhu, Q. Mao, J. Pang, W. P. A. Lee, G. Brandacher, and J. U. Kang, “Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 111404 (2013).
[Crossref]

S. Shin, J. K. Bae, Y. Ahn, H. Kim, G. Choi, Y.-S. Yoo, C.-K. Joo, S. Moon, and W. Jung, “Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography,” J. Biomed. Opt. 22(12), 125005 (2017).
[Crossref]

J. Histochem. Cytochem. (1)

G. Zack, W. Rogers, and S. Latt, “Automatic measurement of sister chromatid exchange frequency,” J. Histochem. Cytochem. 25(7), 741–753 (1977).
[Crossref]

Med. Phys. (1)

H. Neshat, D. W. Cool, K. Barker, L. Gardi, N. Kakani, and A. Fenster, “A 3D ultrasound scanning system for image guided liver interventions,” Med. Phys. 40(11), 112903 (2013).
[Crossref]

N. Engl. J. Med. (2)

D. J. Brenner and E. J. Hall, “Computed tomography—an increasing source of radiation exposure,” N. Engl. J. Med. 357(22), 2277–2284 (2007).
[Crossref]

R. K. Daniel, “Microsurgery: through the looking glass,” N. Engl. J. Med. 300(22), 1251–1257 (1979).
[Crossref]

Neurosurgery (1)

V. M. Tronnier, C. R. Wirtz, M. Knauth, G. Lenz, O. Pastyr, M. M. Bonsanto, F. K. Albert, R. Kuth, A. Staubert, and W. Schlegel, “Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery,” Neurosurgery 40(5), 891–902 (1997).
[Crossref]

Opt. Commun. (1)

D. P. Popescu, M. D. Hewko, and M. G. Sowa, “Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample,” Opt. Commun. 269(1), 247–251 (2007).
[Crossref]

Opt. Express (5)

Proc. IEEE (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Retina (1)

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Surg. Curr. Res (1)

M. Singh and A. Saxena, “Microsurgery: A useful and versatile tool in surgical field,” Surg. Curr. Res 4(4), 9–11 (2014).
[Crossref]

Trans. Vis. Sci. Tech. (1)

I. D. Bleicher, M. Jackson-Atogi, C. Viehland, H. Gabr, J. A. Izatt, and C. A. Toth, “Depth-Based, Motion-Stabilized Colorization of Microscope-Integrated Optical Coherence Tomography Volumes for Microscope-Independent Microsurgery,” Trans. Vis. Sci. Tech. 7(6), 1 (2018).
[Crossref]

Transactions on Mechatronics (1)

H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Calibration and integration of b-mode optical coherence tomography for assistive control in robotic microsurgery,” Transactions on Mechatronics 21(6), 2613–2623 (2016).
[Crossref]

Other (4)

T. Klein, W. Wieser, R. André, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI, (International Society for Optics and Photonics, 2012), 82131E.

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Visualization of vitreoretinal surgical manipulations using intraoperative spectral domain optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XV, (International Society for Optics and Photonics, 2011), 78890F.

J. G. Fujimoto and W. Drexler, “Introduction to OCT,” Optical Coherence Tomography: Technology and Applications, 3–64 (2015).

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, and E. Mallon, “Swept light sources,” Optical Coherence Tomography: Technology and Applications, 639–658 (2015).

Supplementary Material (1)

NameDescription
» Visualization 1       The video results of guiding a 30-gauge needle into the ex-vivo human cornea as well as pulling the needle out from the cornea freehand by using BC-mode OCT image visualization.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. (a) The system setup. FC, fiber coupler. PC, polarization controller. AC, achromatic collimator. GVS, galvanometer scanners which contain two scanning mirrors. OL, objective lens. DCL, dispersion compensation lens. BD+, BD-, balanced detector. DAQ, data acquisition board. (b) The scanning scheme.
Fig. 2.
Fig. 2. B-mode OCT images showing the 30-gauge needle inside the cornea of the ex-vivo human eye. (a) One slice from the image set. (b) The adjacent slice from the image set.
Fig. 3.
Fig. 3. The angle relationship. $\vec{n}$, unit tangential vector. $\alpha $, azimuth angle. $\beta $, polar angle.
Fig. 4.
Fig. 4. Human cornea model.
Fig. 5.
Fig. 5. (a) ROI-1. (b) ROI-2. (c) ROI-3. (d) ∼ (f) Theoretical curves and experimental measurements of BC-mode OCT image resolution in ROI-1, ROI-2, ROI-3, respectively.
Fig. 6.
Fig. 6. (a) Three ROIs in the BC-mode OCT images. (b) The comparison between the theoretically predicted SNR and the experimentally calculated SNR for both the shaded and the unshaded area.
Fig. 7.
Fig. 7. The model for needle tracking accuracy calculations. (a) The top view. (b) The 3-dimensional diagram.
Fig. 8.
Fig. 8. The vertical tracking accuracy.
Fig. 9.
Fig. 9. (a) The saturation reduced B-mode OCT image after decreasing the optical coupling in the reference arm and applying the Hanning window to the spectrum data. (b) The saturation free B-mode OCT image after the saturation elimination.
Fig. 10.
Fig. 10. The image processing scheme.
Fig. 11.
Fig. 11. (a) The histogram of the BC-mode OCT image. (b) The original BC-mode OCT image ${I_{BC}}$. (c) The processed BC-mode OCT image ${\bar{I}_{BC}}$. (d) The histogram of the variance image. (e) The processed variance image $\bar{V}$. (f) The final enhanced BC-mode OCT image ${\tilde{I}_{BC}}$. In (a) and (d), the black solid line is the histogram; the blue dotted line indicates the auto triangle threshold method; the red dashed line shows the auto rescale method.
Fig. 12.
Fig. 12. (a) The conventional B-mode OCT image just before the needle was inserted into the cornea. (b) The conventional B-mode OCT image when the needle just entered the cornea. (c) The conventional B-mode OCT image when the needle was deep inside the cornea. (d) The BC-mode OCT image just before the needle was inserted into the cornea. (e) The BC-mode OCT image when the needle just entered the cornea. (f) The BC-mode OCT image when the needle was deep inside the cornea.

Tables (1)

Tables Icon

Table 1. System scanning configuration

Equations (52)

Equations on this page are rendered with MathJax. Learn more.

I B C ( i , j ) = 1 N k = 1 N S k ( i , j ) ,
σ x = 0.61 λ 0 N A ,
σ y = 0.44 λ 0 2 Δ λ ,
h B ( x , y ) = exp ( 4 ln 2 x 2 σ x 2 ) exp ( 4 ln 2 y 2 σ y 2 ) ,
I B C ( x , y ) = 1 t t 2 t 2 d z f ( x , y , z 0 + z ) ,
I B C ( x , y ) = 1 t t 2 t 2 d z ( f ( x , y , z 0 ) + f z z ) .
f ( x ( z ) , y ( z ) , z ) = c o n s t .
f x d x d z + f y d y d z + f z = 0.
I B C ( x , y ) = 1 t t 2 t 2 d z f ( x d x d z z , y d y d z z , z 0 ) .
n = ( sin β cos α , sin β sin α , cos β ) .
d x d z = tan β cos α ,
d y d z = tan β sin α .
I B C ( x , y ) = 1 t t 2 t 2 d z f ( x tan β z cos α , y tan β z sin α , z 0 ) .
h B C ( x , y ) = 1 t t 2 t 2 d z h B ( x tan β z cos α , y tan β z sin α ) ,
h B C ( x , y ) = + d z exp ( 4 ln 2 ( x tan β z cos α ) 2 σ x 2 ) exp ( 4 ln 2 ( y tan β z sin α ) 2 σ y 2 ) 1 t R e c t ( 2 z t ) ,
1 t Re c t ( 2 z t ) 1 2 π σ t exp ( z 2 2 σ t 2 ) ,
h B C ( x , y ) = 1 1 + 1 12 ( t σ 0 ) 2 exp ( 4 ln 2 ( x y ) A ( x y ) T σ x 2 σ y 2 + 2 ln 2 3 tan 2 β ( σ x 2 sin 2 α + σ y 2 cos 2 α ) t 2 ) ,
A = ( σ y 2 + 2 ln 2 3 tan 2 β sin 2 α t 2 ln 2 3 tan 2 β sin 2 α t 2 ln 2 3 tan 2 β sin 2 α t 2 σ x 2 + 2 ln 2 3 tan 2 β cos 2 α t 2 ) .
λ 1 = σ x 2 + σ y 2 2 , where n 1 = ( cos α , sin α ) ,
λ 2 = σ x 2 + σ y 2 2 + 2 ln 2 3 tan 2 β t 2 , where n 2 = ( sin α , cos α ) ,
σ max = σ x 2 + σ y 2 2 + 2 ln 2 3 tan 2 β t 2 .
σ min = σ x 2 + σ y 2 2 .
h B C ( x , y ) = 4 π t 2 0 t 2 d z 0 2 π z d α h B ( x tan β z cos α , y tan β z sin α ) ,
h B C ( x , y ) = + d x 0 + d y 0 h B ( x tan β x 0 , y tan β y 0 ) 4 π t 2 C i r c l e ( x 0 2 + y 0 2 ( t 2 ) 2 ) ,
4 π t 2 C i r c l e ( x 0 2 + y 0 2 ( t 2 ) 2 ) 1 2 π σ t 2 exp ( x 0 2 + y 0 2 2 σ t 2 ) ,
h B C ( x , y ) = 1 1 + ln 2 8 tan 2 β ( t σ x ) 2 exp ( 4 ln 2 x 2 σ x 2 + ln 2 8 tan 2 β t 2 ) 1 1 + ln 2 8 tan 2 β ( t σ y ) 2 exp ( 4 ln 2 y 2 σ y 2 + ln 2 8 tan 2 β t 2 ) .
σ ¯ x = σ x 2 + ln 2 8 tan 2 β t 2 ,
σ ¯ y = σ y 2 + ln 2 8 tan 2 β t 2 ,
β = tan 1 t 4 r .
S N R = 10 log 10 μ s 2 σ n 2 ,
μ B ( z 0 ) = 1 S S d x d y f ( x , y , z 0 ) ,
μ B C ( z 0 ) = 1 S S d x d y 1 t t 2 t 2 d z f ( x , y , z 0 + z ) ,
μ B C ( z 0 ) = 1 t t 2 t 2 d z 1 S S d x d y f ( x , y , z 0 + z ) = 1 t t 2 t 2 d z μ B ( z 0 + z ) .
μ B C = μ B ,
X ¯ = 1 N i = 1 N X i .
σ B C 2 = V ( X ¯ ) = V ( 1 N i = 1 N X i ) = 1 N 2 i = 1 N V ( X i ) = σ B 2 N .
S N R B C u n s h a d e d = 10 log 10 μ B C 2 σ B C 2 = 10 log 10 ( μ B 2 σ B 2 N ) = S N R B + 10 log 10 N ,
μ B C ( z 0 ) = 1 t ( t 2 t 2 d z μ B ( z 0 + z ) + a t 0 2 a + t 0 2 d z ( μ n ( z 0 + z ) μ B ( z 0 + z ) ) ) ,
μ B C = μ B t t 0 t + μ n t 0 t .
S N R B C s h a d e d = 10 log 10 μ B C 2 σ B C 2 = 10 log 10 ( μ B 2 σ B 2 N ( 1 μ B μ n μ B t 0 N s ) 2 ) .
S N R B C s h a d e d = S N R B + 10 log 10 1 N ( N 1 + μ n μ B ) 2 ,
S N R B C s h a d e d m a x = S N R B + 10 log 10 N ,
S N R B C s h a d e d m i n = S N R B + 10 log 10 ( N + 1 N 2 ) ,
f r a m e r a t e = R A N B C .
θ = 2 tan 1 ( tan α 2 cos β ) .
e v = x tan θ 2 tan β = sin β tan α 2 x .
μ e v = 2 s 0 s 2 d x e v = sin β tan α 2 s 4 .
σ e v = 2 s 0 s 2 d x ( e v μ e v ) 2 = sin β tan α 2 s 4 3 .
σ d 2 = 2 s 0 s 2 d x ( e v d ) 2 = 2 s 0 s 2 d x ( ( e v μ e v ) ( d μ e v ) ) 2 = σ e v 2 + ( d μ e v ) 2 .
I ~ ( k ) = I ( k ) 1 2 ( 1 cos ( 2 π k K 1 ) ) ,
V ( i , j ) = 1 N k = 1 N ( S k ( i , j ) I B C ( i , j ) ) 2 ,
I ~ B C ( i , j ) = I ¯ B C ( i , j ) + V ¯ ( i , j ) ,

Metrics