Abstract

Laser speckle imaging (LSI) is a wide-field, noninvasive optical technique that allows researchers and clinicians to quantify blood flow in a variety of applications. However, traditional LSI devices are cart or tripod based mounted systems that are bulky and potentially difficult to maneuver in a clinical setting. We previously showed that the use of a handheld LSI device with the use of a fiducial marker (FM) to account for motion artifact is a viable alternative to mounted systems. Here we incorporated a handheld gimbal stabilizer (HGS) to produce a motion stabilized LSI (msLSI) device to further improve the quality of data acquired in handheld configurations. We evaluated the msLSI device in vitro using flow phantom experiments and in vivo using a dorsal window chamber model. For in vitro experiments, we quantified the speckle contrast of the FM (KFM) using the mounted data set and tested 80% and 85% of KFM as thresholds for useable images (KFM,Mounted,80% and KFM,Mounted,85%). Handheld data sets using the msLSI device (stabilized handheld) and handheld data sets without the HGS (handheld) were collected. Using KFM,Mounted,80% and KFM,Mounted,85% as the threshold, the number of images above the threshold for stabilized handheld (38 ± 7 and 10 ± 2) was significantly greater (p = 0.031) than for handheld operation (16 ± 2 and 4 ± 1). We quantified a region of interest within the flow region (KFLOW), which led to a percent difference of 8.5% ± 2.9% and 7.8% ± 3.1% between stabilized handheld and handheld configurations at each threshold. For in vivo experiments, we quantified the speckle contrast of the window chamber (KWC) using the mounted data set and tested 80% of KWC (KWC,Mounted,80%). Stabilized handheld operation provided 53 ± 24 images above KWC,Mounted,80%, while handheld operation provided only 23 ± 13 images. We quantified the speckle flow index (SFI) of the vessels and the background to calculate a signal-to-background ratio (SBR) of the window chamber. Stabilized handheld operation provided a greater SBR (2.32 ± 0.29) compared to handheld operation (1.83 ± 0.21). Both the number of images above threshold and SBR were statistically significantly greater in the stabilized handheld data sets (p = 0.0312). These results display the improved usability of handheld data acquired with an msLSI device.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Handheld optical palpation of turbid tissue with motion-artifact correction

Brooke Krajancich, Andrea Curatolo, Qi Fang, Renate Zilkens, Benjamin F. Dessauvagie, Christobel M. Saunders, and Brendan F. Kennedy
Biomed. Opt. Express 10(1) 226-241 (2019)

Real-time assessment of renal cortical microvascular perfusion heterogeneities using near-infrared laser speckle imaging

Rick Bezemer, Matthieu Legrand, Eva Klijn, Michal Heger, Ivo C. J. H. Post, Thomas M. van Gulik, Didier Payen, and Can Ince
Opt. Express 18(14) 15054-15061 (2010)

Correcting the detrimental effects of nonuniform intensity distribution on fiber-transmitting laser speckle imaging of blood flow

Hongyan Zhang, Pengcheng Li, Nengyun Feng, Jianjun Qiu, Bing Li, Weihua Luo, and Qingming Luo
Opt. Express 20(1) 508-517 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660 (2016).
    [Crossref]
  2. A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, “Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber,” Microvasc. Res. 82(3), 199–209 (2011).
    [Crossref]
  3. W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical In Vivo Evaluation of Npe6-Mediated Photodynamic Therapy on Normal Vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
    [Crossref]
  4. K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin Sodium-Mediated Photodynamic Therapy Alone and in Combination with Pulsed Dye Laser on Cutaneous Vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
    [Crossref]
  5. A. Ponticorvo, D. M. Burmeister, B. Yang, B. Choi, R. J. Christy, and A. J. Durkin, “Quantitative assessment of graded burn wounds isn a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI),” Biomed. Opt. Express 5(10), 3467–3481 (2014).
    [Crossref]
  6. A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
    [Crossref]
  7. S. Katsui, Y. Inoue, K. Igari, T. Toyofuku, and T. Kudo, “Novel Assessment Tool Based on Laser Speckle Contrast Imaging to Diagnose Severe Ischemia in the Lower Limb for patients with peripheral arterial disease,” Lasers Surg. Med. 49(7), 645–651 (2017).
    [Crossref]
  8. A. S. de M. Matheus, E. L. S. Clemente, M. de Lourdes Guimarães Rodrigues, D. C. Torres Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
    [Crossref]
  9. R. Mirdell, F. Iredahl, F. Sjöberg, S. Farnebo, and E. Tesselaar, “Microvascular blood flow in scalds in children and its relation to duration of wound healing: A study using laser speckle contrast imaging,” Burns 42(3), 648–654 (2016).
    [Crossref]
  10. R. Farraro, O. Fathi, and B. Choi, “Handheld, point-of-care laser speckle imaging,” J. Biomed. Opt. 21(9), 094001 (2016).
    [Crossref]
  11. B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(03), 1 (2018).
    [Crossref]
  12. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33(24), 2886–2888 (2008).
    [Crossref]
  13. “Quantiles.” [Online]. Available: https://www.statsdirect.com/help/nonparametric_methods/quantiles.htm . [Accessed: 23-Jan-2019].
  14. B. Choi, J. C. Ramirez-san-juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo,” J. Biomed. Opt. 11(4), 041129 (2006).
    [Crossref]
  15. S. M. White, M. Valdebran, K. M. Kelly, and B. Choi, “Simultaneous Blood Flow Measurement and Dermoscopy of Skin Lesions Using Dual-Mode Dermascope,” Sci. Rep. 8(1), 16941 (2018).
    [Crossref]
  16. B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
    [Crossref]
  17. O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett. 37(19), 3957–3959 (2012).
    [Crossref]
  18. C. E. Dunn, B. Lertsakdadet, C. Crouzet, A. Bahani, and B. Choi, “Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements,” Biomed. Opt. Express 9(9), 4306–4316 (2018).
    [Crossref]
  19. A. Rege, S. I. Cunningham, Y. Liu, K. Raje, S. Kalarn, J. Brooke, L. Schocket, S. Scott, A. Shafi, L. Toledo, and J. Osamah, “Noninvasive Assessment of Retinal Blood Flow Using a Novel Handheld Laser Speckle Contrast Imager,” Trans. Vis. Sci. Tech. 7(6), 7 (2018).
    [Crossref]

2018 (4)

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

S. M. White, M. Valdebran, K. M. Kelly, and B. Choi, “Simultaneous Blood Flow Measurement and Dermoscopy of Skin Lesions Using Dual-Mode Dermascope,” Sci. Rep. 8(1), 16941 (2018).
[Crossref]

A. Rege, S. I. Cunningham, Y. Liu, K. Raje, S. Kalarn, J. Brooke, L. Schocket, S. Scott, A. Shafi, L. Toledo, and J. Osamah, “Noninvasive Assessment of Retinal Blood Flow Using a Novel Handheld Laser Speckle Contrast Imager,” Trans. Vis. Sci. Tech. 7(6), 7 (2018).
[Crossref]

C. E. Dunn, B. Lertsakdadet, C. Crouzet, A. Bahani, and B. Choi, “Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements,” Biomed. Opt. Express 9(9), 4306–4316 (2018).
[Crossref]

2017 (3)

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

S. Katsui, Y. Inoue, K. Igari, T. Toyofuku, and T. Kudo, “Novel Assessment Tool Based on Laser Speckle Contrast Imaging to Diagnose Severe Ischemia in the Lower Limb for patients with peripheral arterial disease,” Lasers Surg. Med. 49(7), 645–651 (2017).
[Crossref]

A. S. de M. Matheus, E. L. S. Clemente, M. de Lourdes Guimarães Rodrigues, D. C. Torres Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

2016 (3)

R. Mirdell, F. Iredahl, F. Sjöberg, S. Farnebo, and E. Tesselaar, “Microvascular blood flow in scalds in children and its relation to duration of wound healing: A study using laser speckle contrast imaging,” Burns 42(3), 648–654 (2016).
[Crossref]

R. Farraro, O. Fathi, and B. Choi, “Handheld, point-of-care laser speckle imaging,” J. Biomed. Opt. 21(9), 094001 (2016).
[Crossref]

C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660 (2016).
[Crossref]

2015 (2)

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin Sodium-Mediated Photodynamic Therapy Alone and in Combination with Pulsed Dye Laser on Cutaneous Vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[Crossref]

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref]

2014 (1)

2012 (2)

O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett. 37(19), 3957–3959 (2012).
[Crossref]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical In Vivo Evaluation of Npe6-Mediated Photodynamic Therapy on Normal Vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref]

2011 (1)

A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, “Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber,” Microvasc. Res. 82(3), 199–209 (2011).
[Crossref]

2008 (1)

2006 (1)

B. Choi, J. C. Ramirez-san-juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo,” J. Biomed. Opt. 11(4), 041129 (2006).
[Crossref]

Agarwal, N.

A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, “Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber,” Microvasc. Res. 82(3), 199–209 (2011).
[Crossref]

Akbari, Y.

Alcocer, J.

Arora, R. P.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical In Vivo Evaluation of Npe6-Mediated Photodynamic Therapy on Normal Vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref]

Bahani, A.

Baldado, M.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

Bazrafkan, A.

Bernal, N.

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

Brooke, J.

A. Rege, S. I. Cunningham, Y. Liu, K. Raje, S. Kalarn, J. Brooke, L. Schocket, S. Scott, A. Shafi, L. Toledo, and J. Osamah, “Noninvasive Assessment of Retinal Blood Flow Using a Novel Handheld Laser Speckle Contrast Imager,” Trans. Vis. Sci. Tech. 7(6), 7 (2018).
[Crossref]

Burmeister, D. M.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

A. Ponticorvo, D. M. Burmeister, B. Yang, B. Choi, R. J. Christy, and A. J. Durkin, “Quantitative assessment of graded burn wounds isn a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI),” Biomed. Opt. Express 5(10), 3467–3481 (2014).
[Crossref]

Choi, B.

C. E. Dunn, B. Lertsakdadet, C. Crouzet, A. Bahani, and B. Choi, “Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements,” Biomed. Opt. Express 9(9), 4306–4316 (2018).
[Crossref]

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

S. M. White, M. Valdebran, K. M. Kelly, and B. Choi, “Simultaneous Blood Flow Measurement and Dermoscopy of Skin Lesions Using Dual-Mode Dermascope,” Sci. Rep. 8(1), 16941 (2018).
[Crossref]

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

R. Farraro, O. Fathi, and B. Choi, “Handheld, point-of-care laser speckle imaging,” J. Biomed. Opt. 21(9), 094001 (2016).
[Crossref]

C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660 (2016).
[Crossref]

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref]

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin Sodium-Mediated Photodynamic Therapy Alone and in Combination with Pulsed Dye Laser on Cutaneous Vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[Crossref]

A. Ponticorvo, D. M. Burmeister, B. Yang, B. Choi, R. J. Christy, and A. J. Durkin, “Quantitative assessment of graded burn wounds isn a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI),” Biomed. Opt. Express 5(10), 3467–3481 (2014).
[Crossref]

O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett. 37(19), 3957–3959 (2012).
[Crossref]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical In Vivo Evaluation of Npe6-Mediated Photodynamic Therapy on Normal Vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref]

A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, “Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber,” Microvasc. Res. 82(3), 199–209 (2011).
[Crossref]

B. Choi, J. C. Ramirez-san-juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo,” J. Biomed. Opt. 11(4), 041129 (2006).
[Crossref]

Christy, R. J.

Clemente, E. L. S.

A. S. de M. Matheus, E. L. S. Clemente, M. de Lourdes Guimarães Rodrigues, D. C. Torres Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

Costantini, S. J.

A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, “Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber,” Microvasc. Res. 82(3), 199–209 (2011).
[Crossref]

Crouzet, C.

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

C. E. Dunn, B. Lertsakdadet, C. Crouzet, A. Bahani, and B. Choi, “Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements,” Biomed. Opt. Express 9(9), 4306–4316 (2018).
[Crossref]

C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660 (2016).
[Crossref]

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref]

Cunningham, S. I.

A. Rege, S. I. Cunningham, Y. Liu, K. Raje, S. Kalarn, J. Brooke, L. Schocket, S. Scott, A. Shafi, L. Toledo, and J. Osamah, “Noninvasive Assessment of Retinal Blood Flow Using a Novel Handheld Laser Speckle Contrast Imager,” Trans. Vis. Sci. Tech. 7(6), 7 (2018).
[Crossref]

de Lourdes Guimarães Rodrigues, M.

A. S. de M. Matheus, E. L. S. Clemente, M. de Lourdes Guimarães Rodrigues, D. C. Torres Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

Duncan, D. D.

Dunn, C. E.

C. E. Dunn, B. Lertsakdadet, C. Crouzet, A. Bahani, and B. Choi, “Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements,” Biomed. Opt. Express 9(9), 4306–4316 (2018).
[Crossref]

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

Durkin, A. J.

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

A. Ponticorvo, D. M. Burmeister, B. Yang, B. Choi, R. J. Christy, and A. J. Durkin, “Quantitative assessment of graded burn wounds isn a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI),” Biomed. Opt. Express 5(10), 3467–3481 (2014).
[Crossref]

Farahabadi, M. H.

Farnebo, S.

R. Mirdell, F. Iredahl, F. Sjöberg, S. Farnebo, and E. Tesselaar, “Microvascular blood flow in scalds in children and its relation to duration of wound healing: A study using laser speckle contrast imaging,” Burns 42(3), 648–654 (2016).
[Crossref]

Farraro, R.

R. Farraro, O. Fathi, and B. Choi, “Handheld, point-of-care laser speckle imaging,” J. Biomed. Opt. 21(9), 094001 (2016).
[Crossref]

Fathi, O.

R. Farraro, O. Fathi, and B. Choi, “Handheld, point-of-care laser speckle imaging,” J. Biomed. Opt. 21(9), 094001 (2016).
[Crossref]

Gomes, M. B.

A. S. de M. Matheus, E. L. S. Clemente, M. de Lourdes Guimarães Rodrigues, D. C. Torres Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

Guzman, J.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref]

Igari, K.

S. Katsui, Y. Inoue, K. Igari, T. Toyofuku, and T. Kudo, “Novel Assessment Tool Based on Laser Speckle Contrast Imaging to Diagnose Severe Ischemia in the Lower Limb for patients with peripheral arterial disease,” Lasers Surg. Med. 49(7), 645–651 (2017).
[Crossref]

Indrawan, E. S.

A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, “Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber,” Microvasc. Res. 82(3), 199–209 (2011).
[Crossref]

Inoue, Y.

S. Katsui, Y. Inoue, K. Igari, T. Toyofuku, and T. Kudo, “Novel Assessment Tool Based on Laser Speckle Contrast Imaging to Diagnose Severe Ischemia in the Lower Limb for patients with peripheral arterial disease,” Lasers Surg. Med. 49(7), 645–651 (2017).
[Crossref]

Iredahl, F.

R. Mirdell, F. Iredahl, F. Sjöberg, S. Farnebo, and E. Tesselaar, “Microvascular blood flow in scalds in children and its relation to duration of wound healing: A study using laser speckle contrast imaging,” Burns 42(3), 648–654 (2016).
[Crossref]

Jia, W.

A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, “Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber,” Microvasc. Res. 82(3), 199–209 (2011).
[Crossref]

Kalarn, S.

A. Rege, S. I. Cunningham, Y. Liu, K. Raje, S. Kalarn, J. Brooke, L. Schocket, S. Scott, A. Shafi, L. Toledo, and J. Osamah, “Noninvasive Assessment of Retinal Blood Flow Using a Novel Handheld Laser Speckle Contrast Imager,” Trans. Vis. Sci. Tech. 7(6), 7 (2018).
[Crossref]

Katsui, S.

S. Katsui, Y. Inoue, K. Igari, T. Toyofuku, and T. Kudo, “Novel Assessment Tool Based on Laser Speckle Contrast Imaging to Diagnose Severe Ischemia in the Lower Limb for patients with peripheral arterial disease,” Lasers Surg. Med. 49(7), 645–651 (2017).
[Crossref]

Kelly, K. M.

S. M. White, M. Valdebran, K. M. Kelly, and B. Choi, “Simultaneous Blood Flow Measurement and Dermoscopy of Skin Lesions Using Dual-Mode Dermascope,” Sci. Rep. 8(1), 16941 (2018).
[Crossref]

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin Sodium-Mediated Photodynamic Therapy Alone and in Combination with Pulsed Dye Laser on Cutaneous Vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[Crossref]

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical In Vivo Evaluation of Npe6-Mediated Photodynamic Therapy on Normal Vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref]

A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, “Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber,” Microvasc. Res. 82(3), 199–209 (2011).
[Crossref]

Kennedy, G. T.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

Kirkpatrick, S. J.

Kudo, T.

S. Katsui, Y. Inoue, K. Igari, T. Toyofuku, and T. Kudo, “Novel Assessment Tool Based on Laser Speckle Contrast Imaging to Diagnose Severe Ischemia in the Lower Limb for patients with peripheral arterial disease,” Lasers Surg. Med. 49(7), 645–651 (2017).
[Crossref]

Lee, D.

Lertsakdadet, B.

C. E. Dunn, B. Lertsakdadet, C. Crouzet, A. Bahani, and B. Choi, “Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements,” Biomed. Opt. Express 9(9), 4306–4316 (2018).
[Crossref]

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

Lertsakdadet, B. S.

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin Sodium-Mediated Photodynamic Therapy Alone and in Combination with Pulsed Dye Laser on Cutaneous Vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[Crossref]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical In Vivo Evaluation of Npe6-Mediated Photodynamic Therapy on Normal Vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref]

Liu, Y.

A. Rege, S. I. Cunningham, Y. Liu, K. Raje, S. Kalarn, J. Brooke, L. Schocket, S. Scott, A. Shafi, L. Toledo, and J. Osamah, “Noninvasive Assessment of Retinal Blood Flow Using a Novel Handheld Laser Speckle Contrast Imager,” Trans. Vis. Sci. Tech. 7(6), 7 (2018).
[Crossref]

Lotfi, J.

A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, “Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber,” Microvasc. Res. 82(3), 199–209 (2011).
[Crossref]

B. Choi, J. C. Ramirez-san-juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo,” J. Biomed. Opt. 11(4), 041129 (2006).
[Crossref]

Matheus, A. S. de M.

A. S. de M. Matheus, E. L. S. Clemente, M. de Lourdes Guimarães Rodrigues, D. C. Torres Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

Mirdell, R.

R. Mirdell, F. Iredahl, F. Sjöberg, S. Farnebo, and E. Tesselaar, “Microvascular blood flow in scalds in children and its relation to duration of wound healing: A study using laser speckle contrast imaging,” Burns 42(3), 648–654 (2016).
[Crossref]

Moy, A. J.

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin Sodium-Mediated Photodynamic Therapy Alone and in Combination with Pulsed Dye Laser on Cutaneous Vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[Crossref]

A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, “Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber,” Microvasc. Res. 82(3), 199–209 (2011).
[Crossref]

Moy, J. J.

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin Sodium-Mediated Photodynamic Therapy Alone and in Combination with Pulsed Dye Laser on Cutaneous Vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[Crossref]

Moy, W. J.

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin Sodium-Mediated Photodynamic Therapy Alone and in Combination with Pulsed Dye Laser on Cutaneous Vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[Crossref]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical In Vivo Evaluation of Npe6-Mediated Photodynamic Therapy on Normal Vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref]

Nelson, J. S.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref]

B. Choi, J. C. Ramirez-san-juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo,” J. Biomed. Opt. 11(4), 041129 (2006).
[Crossref]

Nguyen, A.

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin Sodium-Mediated Photodynamic Therapy Alone and in Combination with Pulsed Dye Laser on Cutaneous Vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[Crossref]

Nguyen, E.

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin Sodium-Mediated Photodynamic Therapy Alone and in Combination with Pulsed Dye Laser on Cutaneous Vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[Crossref]

Nguyen, P.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref]

Nielsen, K. M.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical In Vivo Evaluation of Npe6-Mediated Photodynamic Therapy on Normal Vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref]

Nudelman, M. J.

A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, “Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber,” Microvasc. Res. 82(3), 199–209 (2011).
[Crossref]

Osamah, J.

A. Rege, S. I. Cunningham, Y. Liu, K. Raje, S. Kalarn, J. Brooke, L. Schocket, S. Scott, A. Shafi, L. Toledo, and J. Osamah, “Noninvasive Assessment of Retinal Blood Flow Using a Novel Handheld Laser Speckle Contrast Imager,” Trans. Vis. Sci. Tech. 7(6), 7 (2018).
[Crossref]

Osann, K. E.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref]

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin Sodium-Mediated Photodynamic Therapy Alone and in Combination with Pulsed Dye Laser on Cutaneous Vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[Crossref]

Patel, S. J.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical In Vivo Evaluation of Npe6-Mediated Photodynamic Therapy on Normal Vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref]

Ponticorvo, A.

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

A. Ponticorvo, D. M. Burmeister, B. Yang, B. Choi, R. J. Christy, and A. J. Durkin, “Quantitative assessment of graded burn wounds isn a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI),” Biomed. Opt. Express 5(10), 3467–3481 (2014).
[Crossref]

Raje, K.

A. Rege, S. I. Cunningham, Y. Liu, K. Raje, S. Kalarn, J. Brooke, L. Schocket, S. Scott, A. Shafi, L. Toledo, and J. Osamah, “Noninvasive Assessment of Retinal Blood Flow Using a Novel Handheld Laser Speckle Contrast Imager,” Trans. Vis. Sci. Tech. 7(6), 7 (2018).
[Crossref]

Ramirez-san-juan, J. C.

B. Choi, J. C. Ramirez-san-juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo,” J. Biomed. Opt. 11(4), 041129 (2006).
[Crossref]

Rege, A.

A. Rege, S. I. Cunningham, Y. Liu, K. Raje, S. Kalarn, J. Brooke, L. Schocket, S. Scott, A. Shafi, L. Toledo, and J. Osamah, “Noninvasive Assessment of Retinal Blood Flow Using a Novel Handheld Laser Speckle Contrast Imager,” Trans. Vis. Sci. Tech. 7(6), 7 (2018).
[Crossref]

Rowland, R.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

Saager, R.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

Schocket, L.

A. Rege, S. I. Cunningham, Y. Liu, K. Raje, S. Kalarn, J. Brooke, L. Schocket, S. Scott, A. Shafi, L. Toledo, and J. Osamah, “Noninvasive Assessment of Retinal Blood Flow Using a Novel Handheld Laser Speckle Contrast Imager,” Trans. Vis. Sci. Tech. 7(6), 7 (2018).
[Crossref]

Scott, S.

A. Rege, S. I. Cunningham, Y. Liu, K. Raje, S. Kalarn, J. Brooke, L. Schocket, S. Scott, A. Shafi, L. Toledo, and J. Osamah, “Noninvasive Assessment of Retinal Blood Flow Using a Novel Handheld Laser Speckle Contrast Imager,” Trans. Vis. Sci. Tech. 7(6), 7 (2018).
[Crossref]

Shafi, A.

A. Rege, S. I. Cunningham, Y. Liu, K. Raje, S. Kalarn, J. Brooke, L. Schocket, S. Scott, A. Shafi, L. Toledo, and J. Osamah, “Noninvasive Assessment of Retinal Blood Flow Using a Novel Handheld Laser Speckle Contrast Imager,” Trans. Vis. Sci. Tech. 7(6), 7 (2018).
[Crossref]

Sjöberg, F.

R. Mirdell, F. Iredahl, F. Sjöberg, S. Farnebo, and E. Tesselaar, “Microvascular blood flow in scalds in children and its relation to duration of wound healing: A study using laser speckle contrast imaging,” Burns 42(3), 648–654 (2016).
[Crossref]

Sorg, B. S.

A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, “Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber,” Microvasc. Res. 82(3), 199–209 (2011).
[Crossref]

Tesselaar, E.

R. Mirdell, F. Iredahl, F. Sjöberg, S. Farnebo, and E. Tesselaar, “Microvascular blood flow in scalds in children and its relation to duration of wound healing: A study using laser speckle contrast imaging,” Burns 42(3), 648–654 (2016).
[Crossref]

Toledo, L.

A. Rege, S. I. Cunningham, Y. Liu, K. Raje, S. Kalarn, J. Brooke, L. Schocket, S. Scott, A. Shafi, L. Toledo, and J. Osamah, “Noninvasive Assessment of Retinal Blood Flow Using a Novel Handheld Laser Speckle Contrast Imager,” Trans. Vis. Sci. Tech. 7(6), 7 (2018).
[Crossref]

Torres Valença, D. C.

A. S. de M. Matheus, E. L. S. Clemente, M. de Lourdes Guimarães Rodrigues, D. C. Torres Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

Toyofuku, T.

S. Katsui, Y. Inoue, K. Igari, T. Toyofuku, and T. Kudo, “Novel Assessment Tool Based on Laser Speckle Contrast Imaging to Diagnose Severe Ischemia in the Lower Limb for patients with peripheral arterial disease,” Lasers Surg. Med. 49(7), 645–651 (2017).
[Crossref]

Tromberg, B. J.

Valdebran, M.

S. M. White, M. Valdebran, K. M. Kelly, and B. Choi, “Simultaneous Blood Flow Measurement and Dermoscopy of Skin Lesions Using Dual-Mode Dermascope,” Sci. Rep. 8(1), 16941 (2018).
[Crossref]

Wells-Gray, E. M.

White, S. M.

S. M. White, M. Valdebran, K. M. Kelly, and B. Choi, “Simultaneous Blood Flow Measurement and Dermoscopy of Skin Lesions Using Dual-Mode Dermascope,” Sci. Rep. 8(1), 16941 (2018).
[Crossref]

A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, “Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber,” Microvasc. Res. 82(3), 199–209 (2011).
[Crossref]

Wilson, R. H.

Yang, B.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref]

A. Ponticorvo, D. M. Burmeister, B. Yang, B. Choi, R. J. Christy, and A. J. Durkin, “Quantitative assessment of graded burn wounds isn a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI),” Biomed. Opt. Express 5(10), 3467–3481 (2014).
[Crossref]

Yang, B. Y.

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

Yang, O.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref]

O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett. 37(19), 3957–3959 (2012).
[Crossref]

Biomed. Opt. Express (3)

Burns (1)

R. Mirdell, F. Iredahl, F. Sjöberg, S. Farnebo, and E. Tesselaar, “Microvascular blood flow in scalds in children and its relation to duration of wound healing: A study using laser speckle contrast imaging,” Burns 42(3), 648–654 (2016).
[Crossref]

J. Biomed. Opt. (3)

R. Farraro, O. Fathi, and B. Choi, “Handheld, point-of-care laser speckle imaging,” J. Biomed. Opt. 21(9), 094001 (2016).
[Crossref]

B. Lertsakdadet, B. Y. Yang, C. E. Dunn, A. Ponticorvo, C. Crouzet, N. Bernal, A. J. Durkin, and B. Choi, “Correcting for motion artifact in handheld laser speckle images,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

B. Choi, J. C. Ramirez-san-juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo,” J. Biomed. Opt. 11(4), 041129 (2006).
[Crossref]

J. Diabetes Complications (1)

A. S. de M. Matheus, E. L. S. Clemente, M. de Lourdes Guimarães Rodrigues, D. C. Torres Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

J. Invest. Dermatol. (1)

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin Sodium-Mediated Photodynamic Therapy Alone and in Combination with Pulsed Dye Laser on Cutaneous Vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[Crossref]

Lasers Surg. Med. (4)

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

S. Katsui, Y. Inoue, K. Igari, T. Toyofuku, and T. Kudo, “Novel Assessment Tool Based on Laser Speckle Contrast Imaging to Diagnose Severe Ischemia in the Lower Limb for patients with peripheral arterial disease,” Lasers Surg. Med. 49(7), 645–651 (2017).
[Crossref]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical In Vivo Evaluation of Npe6-Mediated Photodynamic Therapy on Normal Vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[Crossref]

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[Crossref]

Microvasc. Res. (1)

A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, “Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber,” Microvasc. Res. 82(3), 199–209 (2011).
[Crossref]

Opt. Lett. (2)

Sci. Rep. (1)

S. M. White, M. Valdebran, K. M. Kelly, and B. Choi, “Simultaneous Blood Flow Measurement and Dermoscopy of Skin Lesions Using Dual-Mode Dermascope,” Sci. Rep. 8(1), 16941 (2018).
[Crossref]

Trans. Vis. Sci. Tech. (1)

A. Rege, S. I. Cunningham, Y. Liu, K. Raje, S. Kalarn, J. Brooke, L. Schocket, S. Scott, A. Shafi, L. Toledo, and J. Osamah, “Noninvasive Assessment of Retinal Blood Flow Using a Novel Handheld Laser Speckle Contrast Imager,” Trans. Vis. Sci. Tech. 7(6), 7 (2018).
[Crossref]

Other (1)

“Quantiles.” [Online]. Available: https://www.statsdirect.com/help/nonparametric_methods/quantiles.htm . [Accessed: 23-Jan-2019].

Supplementary Material (2)

NameDescription
» Visualization 1       Loss of visualization of dorsal window chamber vasculature with handheld operation
» Visualization 2       Automated identification of the dorsal window chamber imaged with a handheld laser speckle imaging device

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Motion artifact during data acquired using laser speckle imaging (LSI) device in mounted and handheld configurations. An average speckle contrast (K) image (n = 150) from a mounted configuration data set of (a) an in vitro flow phantom measurement and (b) an in vivo window chamber measurement are shown. In comparison, a sample data set acquired in a handheld configuration in (c) an in vitro flow phantom measurement and (d) an in vivo window chamber measurements shows reduced K values affected by motion artifact during data acquisition. In (d), the loss of visualization of the blood vessels within the window chamber is due to motion artifact (See Visualization 1). (e, f) Even when using an average of 10 frames to create an average K image, there is a noticeable reduction in sharpness in the (e) flow tube in the flow phantom and (f) a loss of vascular visibility in the window chamber.
Fig. 2.
Fig. 2. Motion Stabilized Laser Speckle Imaging (msLSI) Device. Fully-assembled device utilizing a gimbal stabilizer with the LSI device.
Fig. 3.
Fig. 3. Workflow to co-register each speckle contrast (K) image contained within a sequence of images. (a) Representative raw speckle image. The fiducial marker (denoted by red box) in each raw image is identified and the mean K value of the marker (KFM) calculated. (b) False-color image showing degree of misalignment among raw images. Green and purple shading of pixels is used to highlight the co-registered and misaligned images, respectively. (c) After identifying the K images with KFM values above a threshold KFM value (see text for more details), the misaligned images are aligned and cropped to produce a final co-registered average K image. An ROI within the dynamic flow region was selected (in red) for further quantitative analysis.
Fig. 4.
Fig. 4. Automated identification of mouse dorsal window chamber from raw speckle image sequence. (a) Column-wise quantile speckle contrast (K) image (b) Row-wise quantile K image (c) Multiplied column-wise and row-wise K image (d) Binarization of multiplied K image (e) Inverted binarized image (f) Feature removal of smaller regions (g) Filled remaining feature (h) Circular geometric identification of tissue within window chamber (i) Masked image using identified circle (j) Masked K image showing the window chamber (see Visualization 2).
Fig. 5.
Fig. 5. A handheld gimbal stabilizer (HGS) significantly improves the performance of handheld LSI. The mounted speckle contrast of the fiducial marker (KFM) was quantified and used to set either an 80% and 85% threshold (KFM,Mounted,80% and KFM,Mounted,85%, respectively). We then determined the number of images in handheld and stabilized handheld data sets with KFM above these thresholds. (a, b) The number of images above KFM,Mounted,80% and KFM,Mounted,85% in the stabilized handheld data sets was significantly greater than for the handheld data sets (p = 0.031). With mounted and stabilized mounted configurations, the value of KFM for each image in the entire image sequence (150 images) was above 80% KFM. (c) The speckle contrast within the flow region (KFLOW) of the tissue phantom was greater with stabilized handheld than with handheld operation across all flow speeds when using both KFM,Mounted,80% and KFM,Mounted,85%, which resulted in a 8.5% ± 2.9% and 7.8% ± 3.1% percent differences, respectively. Error bars are not shown when the errors for each data point are smaller than the symbol used to represent that data.
Fig. 6.
Fig. 6. Use of a gimbal stabilizer improves the performance of handheld laser speckle imaging for imaging microvasculature within a small region of interest (ROI). (a) The number of handheld images with a window-chamber speckle contrast above 80% was determined. The mean and standard deviation of number of images above threshold in the handheld and stabilized handheld data sets were 23 ± 13 and 54 ± 24, respectively. The greater number of images above the threshold in the stabilized handheld data set was statistically significant (p = 0.0312). Representative mean speckle flow index (SFI) images from a single user for handheld (b) and stabilized handheld data (c) sets show that handheld operation leads to a higher SFI (i.e., noise) in the background. ROIs of the vessel (red) and background (black) are outlined. (d) The mean and standard deviation of the signal-to-background ratio for handheld and stabilized handheld data sets were 1.83 ± 0.21 and 2.32 ± 0.29. The greater SBR in stabilized handheld was also statistically significant. The different symbols indicate the different window chambers imaged.

Metrics