Abstract

Programmed death ligand-1 (PD-L1) plays an important role in tumor evasion from the host immune system. The level of soluble PD-L1 (sPD-L1) in serum is closely related to tumor aggressiveness and outcomes. This study aimed to propose a localized surface Plasmon resonance (LSPR) biosensor based on excessively tilted fiber grating (ExTFG) coated with large-sized (∼160 nm) gold nanoshells for label-free and specific detection of sPD-L1. The experimental results showed that the limit of detection (LOD) of the immunosensor for sPD-L1 in buffer solutions was ∼1 pg/mL due to the enhanced LSPR effect resulting from the interaction between sPD-L1 molecules and anti-sPD-L1 monoclonal antibodies. The detection of sPD-L1 in complex serum media, such as fetal bovine serum, confirmed that the label-free immunosensor was extremely specific to sPD-L1 and could identify it at a concentration as low as 5 pg/mL. Therefore, it can be potentially applied in clinic for the fast and early diagnosis of cancer.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Immunosensing platform with large detection range using an excessively tilted fiber grating coated with graphene oxide

Binbin Luo, Huafeng Lu, Shenghui Shi, Jiao Lu, Mingfu Zhao, Shengxi Wu, Lingchen Li, Xin Wang, and Yajie Wang
Appl. Opt. 57(30) 8805-8810 (2018)

Human heart failure biomarker immunosensor based on excessively tilted fiber gratings

Binbin Luo, Shengxi Wu, Zhonghao Zhang, Wengen Zou, Shenghui Shi, Mingfu Zhao, Nianbing Zhong, Yong Liu, Xue Zou, Lingling Wang, Weina Chai, Chuanmin Hu, and Lin Zhang
Biomed. Opt. Express 8(1) 57-67 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Wu, S. Powers, W. Zhu, and Y. A. Hannun, “Substantial contribution of extrinsic risk factors to cancer development,” Nature 529(7584), 43–47 (2016).
    [Crossref]
  2. Y. Chen, Q. Wang, B. Shi, P. Xu, Z. Hu, L. Bai, and X. Zhang, “Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines,” Cytokine+ 56(2), 231–238 (2011).
    [Crossref]
  3. K. M. Mahoney, G. J. Freeman, and D. F. McDermott, “The Next Immune-Checkpoint Inhibitors:PD-1/PD-L1 Blockade in Melanoma,” Clin. Ther. 37(4), 764–782 (2015).
    [Crossref]
  4. H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
    [Crossref]
  5. Y. Okuma, Y. Hosomi, Y. Nakahara, K. Watanabe, Y. Sagawa, S. Homma, and J. Lung, “High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer,” Cancer 104, 1–6 (2017).
    [Crossref]
  6. L. Wang, H. Wang, H. Chen, W. D. Wang, X. Q. Chen, Q. R. Geng, Z. J. Xia, and Y. Lu, “Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma,” Oncotarget 6(38), 41228–41236 (2015).
    [Crossref]
  7. H. Wang, L. Wang, W. J. Liu, Z. J. Xia, H. Q. Huang, W. Q. Jiang, Z. M. Li, and Y. Lu, “High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients,” Oncotarget 7(22), 33035–33045 (2016).
    [Crossref]
  8. H. J. Kim, S. Park, K. J. Kim, and J. Seong, “Clinical significance of soluble programmed cell death ligand-1 (sPD-L1) in hepatocellular treated with radiotherapy,” Radiother. Oncol. 129(1), 130–135 (2018).
    [Crossref]
  9. Q. F. Manson, N. D. Ter Hoeve, H. Buerger, C. B. Moelans, and P. J. Van Diest, “PD-1 and PD-L1 Expression in Male Breast Cancer in Comparison with Female Breast Cancer,” Targ. Oncol. 13(6), 769–777 (2018).
    [Crossref]
  10. F. Finkelmeier, Ö. Canli, A. Tal, T. Pleli, J. Trojan, M. Schmidt, B. Kronenberger, S. Zeuzem, A. Piiper, F. R. Greten, and O. Waidmann, “Eur. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis,” Eur. J. Cancer 59, 152–159 (2016).
    [Crossref]
  11. D. Tan, L. Sheng, and Q. H. Yi, “Correlation of PD-1/PD-L1 polymorphisms and expressions with clinicopathologic features and prognosis of ovarian cancer,” Cancer Biomarkers 21(2), 287–297 (2018).
    [Crossref]
  12. H. Taz, R. Ruther, A. Malasi, S. Yadavali, C. Carr, J. Nanda, and R. Kalyanaraman, “In situ localized surface plasmon resonance (LSPR) spectroscopy to investigate kinetics of chemical bath deposition of cds thin films,” J. Phys. Chem. C 119(9), 5033–5039 (2015).
    [Crossref]
  13. L. Xie, X. Yan, and Y. Du, “An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules,” Biosens. Bioelectron. 53(9), 58–64 (2014).
    [Crossref]
  14. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. Luong, “Properties and sensing characteristics of surface Plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20(8), 1644–1650 (2003).
    [Crossref]
  15. K. Lodewijks, R. W. Van, G. Borghs, and D. P. Van, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12(3), 1655–1659 (2012).
    [Crossref]
  16. S. Kaye, Z. Zeng, M. Sanders, K. Chittur, P. M. Koelle, and R. Lindquist, “Label-free detection of DNA hybridization with a compact LSPR-based fiber-optic sensor,” Analyst 142(11), 1974–1981 (2017).
    [Crossref]
  17. E. Petryayeva and U. J. Krull, “Localized surface Plasmon resonance: nanostructures, bioassays and biosensing–a review,” Anal. Chim. Acta 706(1), 8–24 (2011).
    [Crossref]
  18. J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface Plasmon resonance optical fiber biosensor,” Sens. Actuators, B 181(5), 611–619 (2013).
    [Crossref]
  19. M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61(20), 95–101 (2014).
    [Crossref]
  20. S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52(4), 337–344 (2014).
    [Crossref]
  21. T. Guo, “Fiber grating-assisted surface Plasmon resonance for biochemical and electrochemical sensing,” J. Lightwave Technol. 35(16), 3323–3333 (2017).
    [Crossref]
  22. J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators, B 119(1), 105–109 (2006).
    [Crossref]
  23. Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface Plasmon resonance biosensors,” Sensors 12(3), 2729–2741 (2012).
    [Crossref]
  24. S. F. Cheng and L. K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75(1), 16–21 (2003).
    [Crossref]
  25. D. Paul, S. Dutta, D. Saha, and R. Biswas, “LSPR based ultra-sensitive low cost U-bent optical fiber for volatile liquid sensing,” Sens. Actuators, B 250, 198–207 (2017).
    [Crossref]
  26. Y. J. He, “Novel D-shape LSPR fiber sensor based on nano-metal strips,” Opt. Express 21(20), 23498–23510 (2013).
    [Crossref]
  27. F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell Plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
    [Crossref]
  28. Y. Tao, Z. Guo, A. Zhang, J. Zhang, B. Wang, and S. Qu, “Gold nanoshells with gain-assisted silica core for ultra-sensitive bio-molecular sensors,” Opt. Commun. 349, 193–197 (2015).
    [Crossref]
  29. J. Burgmeier, A. Feizpour, W. Schade, and B. M. Reinhard, “Plasmonic nanoshell functionalized etched fiber Bragg gratings for highly sensitive refractive index measurements,” Opt. Lett. 40(4), 546–549 (2015).
    [Crossref]
  30. B. B. Luo, H. F. Lu, S. H. Shi, M. F. Zhao, J. Lu, Y. J. Wang, and X. Wang, “Plasmonic gold nanoshell induced spectral effects and refractive index sensing properties of excessively tilted fiber grating,” Chin. Opt. Lett. 16(10), 100603 (2018).
    [Crossref]
  31. Z. Yan, H. Wang, C. L. Wang, Z. Y. Sun, G. L. Yin, K. M. Zhou, Y. S. Wang, W. Zhao, and L. Zhang, “Theoretical and experimental analysis of excessively tilted fiber gratings,” Opt. Express 24(11), 12107–12115 (2016).
    [Crossref]
  32. Z. Yan, Q. Sun, C. L. Wang, Z. Y. Sun, C. B. Mou, K. M. Zhou, D. Liu, and L. Zhang, “Refractive index and temperature sensitivity characterization of excessively tilted fiber grating,” Opt. Express 25(4), 3336–3346 (2017).
    [Crossref]
  33. B. B. Luo, Y. F. Xu, S. X. Wu, M. F. Zhao, P. J. Jiang, S. H. Shi, Z. H. Zhang, Y. Wang, L. L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
    [Crossref]
  34. K. S. Chang, C. J. Sun, P. L. Chiang, A. C. Chou, M. C. Lin, and C. Liang, “Monitoring extracellular K + flux with a valinomycin-coated silicon nanowire field-effect transistor,” Biosens. Bioelectron. 31(1), 137–143 (2012).
    [Crossref]
  35. B. R. Li, C. W. Chen, W. L. Yang, T. Y. Lin, C. Y. Pan, and Y. T. Chen, “Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor,” Biosens. Bioelectron. 45(2), 252–259 (2013).
    [Crossref]
  36. C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
    [Crossref]
  37. J. K. Nayak, P. Parhi, and R. Jha, “Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor,” Sens. Actuators, B 221, 835–841 (2015).
    [Crossref]

2018 (5)

H. J. Kim, S. Park, K. J. Kim, and J. Seong, “Clinical significance of soluble programmed cell death ligand-1 (sPD-L1) in hepatocellular treated with radiotherapy,” Radiother. Oncol. 129(1), 130–135 (2018).
[Crossref]

Q. F. Manson, N. D. Ter Hoeve, H. Buerger, C. B. Moelans, and P. J. Van Diest, “PD-1 and PD-L1 Expression in Male Breast Cancer in Comparison with Female Breast Cancer,” Targ. Oncol. 13(6), 769–777 (2018).
[Crossref]

D. Tan, L. Sheng, and Q. H. Yi, “Correlation of PD-1/PD-L1 polymorphisms and expressions with clinicopathologic features and prognosis of ovarian cancer,” Cancer Biomarkers 21(2), 287–297 (2018).
[Crossref]

B. B. Luo, H. F. Lu, S. H. Shi, M. F. Zhao, J. Lu, Y. J. Wang, and X. Wang, “Plasmonic gold nanoshell induced spectral effects and refractive index sensing properties of excessively tilted fiber grating,” Chin. Opt. Lett. 16(10), 100603 (2018).
[Crossref]

B. B. Luo, Y. F. Xu, S. X. Wu, M. F. Zhao, P. J. Jiang, S. H. Shi, Z. H. Zhang, Y. Wang, L. L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

2017 (5)

Z. Yan, Q. Sun, C. L. Wang, Z. Y. Sun, C. B. Mou, K. M. Zhou, D. Liu, and L. Zhang, “Refractive index and temperature sensitivity characterization of excessively tilted fiber grating,” Opt. Express 25(4), 3336–3346 (2017).
[Crossref]

T. Guo, “Fiber grating-assisted surface Plasmon resonance for biochemical and electrochemical sensing,” J. Lightwave Technol. 35(16), 3323–3333 (2017).
[Crossref]

D. Paul, S. Dutta, D. Saha, and R. Biswas, “LSPR based ultra-sensitive low cost U-bent optical fiber for volatile liquid sensing,” Sens. Actuators, B 250, 198–207 (2017).
[Crossref]

S. Kaye, Z. Zeng, M. Sanders, K. Chittur, P. M. Koelle, and R. Lindquist, “Label-free detection of DNA hybridization with a compact LSPR-based fiber-optic sensor,” Analyst 142(11), 1974–1981 (2017).
[Crossref]

Y. Okuma, Y. Hosomi, Y. Nakahara, K. Watanabe, Y. Sagawa, S. Homma, and J. Lung, “High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer,” Cancer 104, 1–6 (2017).
[Crossref]

2016 (5)

F. Finkelmeier, Ö. Canli, A. Tal, T. Pleli, J. Trojan, M. Schmidt, B. Kronenberger, S. Zeuzem, A. Piiper, F. R. Greten, and O. Waidmann, “Eur. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis,” Eur. J. Cancer 59, 152–159 (2016).
[Crossref]

S. Wu, S. Powers, W. Zhu, and Y. A. Hannun, “Substantial contribution of extrinsic risk factors to cancer development,” Nature 529(7584), 43–47 (2016).
[Crossref]

H. Wang, L. Wang, W. J. Liu, Z. J. Xia, H. Q. Huang, W. Q. Jiang, Z. M. Li, and Y. Lu, “High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients,” Oncotarget 7(22), 33035–33045 (2016).
[Crossref]

Z. Yan, H. Wang, C. L. Wang, Z. Y. Sun, G. L. Yin, K. M. Zhou, Y. S. Wang, W. Zhao, and L. Zhang, “Theoretical and experimental analysis of excessively tilted fiber gratings,” Opt. Express 24(11), 12107–12115 (2016).
[Crossref]

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref]

2015 (6)

J. K. Nayak, P. Parhi, and R. Jha, “Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor,” Sens. Actuators, B 221, 835–841 (2015).
[Crossref]

Y. Tao, Z. Guo, A. Zhang, J. Zhang, B. Wang, and S. Qu, “Gold nanoshells with gain-assisted silica core for ultra-sensitive bio-molecular sensors,” Opt. Commun. 349, 193–197 (2015).
[Crossref]

J. Burgmeier, A. Feizpour, W. Schade, and B. M. Reinhard, “Plasmonic nanoshell functionalized etched fiber Bragg gratings for highly sensitive refractive index measurements,” Opt. Lett. 40(4), 546–549 (2015).
[Crossref]

H. Taz, R. Ruther, A. Malasi, S. Yadavali, C. Carr, J. Nanda, and R. Kalyanaraman, “In situ localized surface plasmon resonance (LSPR) spectroscopy to investigate kinetics of chemical bath deposition of cds thin films,” J. Phys. Chem. C 119(9), 5033–5039 (2015).
[Crossref]

K. M. Mahoney, G. J. Freeman, and D. F. McDermott, “The Next Immune-Checkpoint Inhibitors:PD-1/PD-L1 Blockade in Melanoma,” Clin. Ther. 37(4), 764–782 (2015).
[Crossref]

L. Wang, H. Wang, H. Chen, W. D. Wang, X. Q. Chen, Q. R. Geng, Z. J. Xia, and Y. Lu, “Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma,” Oncotarget 6(38), 41228–41236 (2015).
[Crossref]

2014 (3)

L. Xie, X. Yan, and Y. Du, “An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules,” Biosens. Bioelectron. 53(9), 58–64 (2014).
[Crossref]

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61(20), 95–101 (2014).
[Crossref]

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52(4), 337–344 (2014).
[Crossref]

2013 (3)

Y. J. He, “Novel D-shape LSPR fiber sensor based on nano-metal strips,” Opt. Express 21(20), 23498–23510 (2013).
[Crossref]

J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface Plasmon resonance optical fiber biosensor,” Sens. Actuators, B 181(5), 611–619 (2013).
[Crossref]

B. R. Li, C. W. Chen, W. L. Yang, T. Y. Lin, C. Y. Pan, and Y. T. Chen, “Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor,” Biosens. Bioelectron. 45(2), 252–259 (2013).
[Crossref]

2012 (3)

K. S. Chang, C. J. Sun, P. L. Chiang, A. C. Chou, M. C. Lin, and C. Liang, “Monitoring extracellular K + flux with a valinomycin-coated silicon nanowire field-effect transistor,” Biosens. Bioelectron. 31(1), 137–143 (2012).
[Crossref]

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface Plasmon resonance biosensors,” Sensors 12(3), 2729–2741 (2012).
[Crossref]

K. Lodewijks, R. W. Van, G. Borghs, and D. P. Van, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12(3), 1655–1659 (2012).
[Crossref]

2011 (2)

E. Petryayeva and U. J. Krull, “Localized surface Plasmon resonance: nanostructures, bioassays and biosensing–a review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref]

Y. Chen, Q. Wang, B. Shi, P. Xu, Z. Hu, L. Bai, and X. Zhang, “Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines,” Cytokine+ 56(2), 231–238 (2011).
[Crossref]

2006 (1)

J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators, B 119(1), 105–109 (2006).
[Crossref]

2004 (1)

F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell Plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[Crossref]

2003 (2)

S. F. Cheng and L. K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75(1), 16–21 (2003).
[Crossref]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. Luong, “Properties and sensing characteristics of surface Plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20(8), 1644–1650 (2003).
[Crossref]

2002 (1)

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
[Crossref]

Albert, J.

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52(4), 337–344 (2014).
[Crossref]

Bai, L.

Y. Chen, Q. Wang, B. Shi, P. Xu, Z. Hu, L. Bai, and X. Zhang, “Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines,” Cytokine+ 56(2), 231–238 (2011).
[Crossref]

Biswas, R.

D. Paul, S. Dutta, D. Saha, and R. Biswas, “LSPR based ultra-sensitive low cost U-bent optical fiber for volatile liquid sensing,” Sens. Actuators, B 250, 198–207 (2017).
[Crossref]

Bono, T.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61(20), 95–101 (2014).
[Crossref]

Borghs, G.

K. Lodewijks, R. W. Van, G. Borghs, and D. P. Van, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12(3), 1655–1659 (2012).
[Crossref]

Buerger, H.

Q. F. Manson, N. D. Ter Hoeve, H. Buerger, C. B. Moelans, and P. J. Van Diest, “PD-1 and PD-L1 Expression in Male Breast Cancer in Comparison with Female Breast Cancer,” Targ. Oncol. 13(6), 769–777 (2018).
[Crossref]

Burgmeier, J.

Canli, Ö.

F. Finkelmeier, Ö. Canli, A. Tal, T. Pleli, J. Trojan, M. Schmidt, B. Kronenberger, S. Zeuzem, A. Piiper, F. R. Greten, and O. Waidmann, “Eur. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis,” Eur. J. Cancer 59, 152–159 (2016).
[Crossref]

Cao, J.

J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface Plasmon resonance optical fiber biosensor,” Sens. Actuators, B 181(5), 611–619 (2013).
[Crossref]

Carr, C.

H. Taz, R. Ruther, A. Malasi, S. Yadavali, C. Carr, J. Nanda, and R. Kalyanaraman, “In situ localized surface plasmon resonance (LSPR) spectroscopy to investigate kinetics of chemical bath deposition of cds thin films,” J. Phys. Chem. C 119(9), 5033–5039 (2015).
[Crossref]

Caucheteur, C.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref]

Celis, E.

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
[Crossref]

Chang, K. S.

K. S. Chang, C. J. Sun, P. L. Chiang, A. C. Chou, M. C. Lin, and C. Liang, “Monitoring extracellular K + flux with a valinomycin-coated silicon nanowire field-effect transistor,” Biosens. Bioelectron. 31(1), 137–143 (2012).
[Crossref]

Chau, L. K.

J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators, B 119(1), 105–109 (2006).
[Crossref]

S. F. Cheng and L. K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75(1), 16–21 (2003).
[Crossref]

Chen, C. W.

B. R. Li, C. W. Chen, W. L. Yang, T. Y. Lin, C. Y. Pan, and Y. T. Chen, “Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor,” Biosens. Bioelectron. 45(2), 252–259 (2013).
[Crossref]

Chen, H.

L. Wang, H. Wang, H. Chen, W. D. Wang, X. Q. Chen, Q. R. Geng, Z. J. Xia, and Y. Lu, “Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma,” Oncotarget 6(38), 41228–41236 (2015).
[Crossref]

Chen, L.

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
[Crossref]

Chen, X. Q.

L. Wang, H. Wang, H. Chen, W. D. Wang, X. Q. Chen, Q. R. Geng, Z. J. Xia, and Y. Lu, “Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma,” Oncotarget 6(38), 41228–41236 (2015).
[Crossref]

Chen, Y.

Y. Chen, Q. Wang, B. Shi, P. Xu, Z. Hu, L. Bai, and X. Zhang, “Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines,” Cytokine+ 56(2), 231–238 (2011).
[Crossref]

Chen, Y. T.

B. R. Li, C. W. Chen, W. L. Yang, T. Y. Lin, C. Y. Pan, and Y. T. Chen, “Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor,” Biosens. Bioelectron. 45(2), 252–259 (2013).
[Crossref]

Cheng, S. F.

J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators, B 119(1), 105–109 (2006).
[Crossref]

S. F. Cheng and L. K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75(1), 16–21 (2003).
[Crossref]

Chiang, P. L.

K. S. Chang, C. J. Sun, P. L. Chiang, A. C. Chou, M. C. Lin, and C. Liang, “Monitoring extracellular K + flux with a valinomycin-coated silicon nanowire field-effect transistor,” Biosens. Bioelectron. 31(1), 137–143 (2012).
[Crossref]

Chiang, T. Y.

J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators, B 119(1), 105–109 (2006).
[Crossref]

Chittur, K.

S. Kaye, Z. Zeng, M. Sanders, K. Chittur, P. M. Koelle, and R. Lindquist, “Label-free detection of DNA hybridization with a compact LSPR-based fiber-optic sensor,” Analyst 142(11), 1974–1981 (2017).
[Crossref]

Chou, A. C.

K. S. Chang, C. J. Sun, P. L. Chiang, A. C. Chou, M. C. Lin, and C. Liang, “Monitoring extracellular K + flux with a valinomycin-coated silicon nanowire field-effect transistor,” Biosens. Bioelectron. 31(1), 137–143 (2012).
[Crossref]

Dong, H.

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
[Crossref]

Du, Y.

L. Xie, X. Yan, and Y. Du, “An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules,” Biosens. Bioelectron. 53(9), 58–64 (2014).
[Crossref]

Dubois, V.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref]

Dutta, S.

D. Paul, S. Dutta, D. Saha, and R. Biswas, “LSPR based ultra-sensitive low cost U-bent optical fiber for volatile liquid sensing,” Sens. Actuators, B 250, 198–207 (2017).
[Crossref]

Feizpour, A.

Finkelmeier, F.

F. Finkelmeier, Ö. Canli, A. Tal, T. Pleli, J. Trojan, M. Schmidt, B. Kronenberger, S. Zeuzem, A. Piiper, F. R. Greten, and O. Waidmann, “Eur. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis,” Eur. J. Cancer 59, 152–159 (2016).
[Crossref]

Flies, D. B.

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
[Crossref]

Freeman, G. J.

K. M. Mahoney, G. J. Freeman, and D. F. McDermott, “The Next Immune-Checkpoint Inhibitors:PD-1/PD-L1 Blockade in Melanoma,” Clin. Ther. 37(4), 764–782 (2015).
[Crossref]

Geng, Q. R.

L. Wang, H. Wang, H. Chen, W. D. Wang, X. Q. Chen, Q. R. Geng, Z. J. Xia, and Y. Lu, “Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma,” Oncotarget 6(38), 41228–41236 (2015).
[Crossref]

Grattan, K. T. V.

J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface Plasmon resonance optical fiber biosensor,” Sens. Actuators, B 181(5), 611–619 (2013).
[Crossref]

Greten, F. R.

F. Finkelmeier, Ö. Canli, A. Tal, T. Pleli, J. Trojan, M. Schmidt, B. Kronenberger, S. Zeuzem, A. Piiper, F. R. Greten, and O. Waidmann, “Eur. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis,” Eur. J. Cancer 59, 152–159 (2016).
[Crossref]

Guo, T.

Guo, Z.

Y. Tao, Z. Guo, A. Zhang, J. Zhang, B. Wang, and S. Qu, “Gold nanoshells with gain-assisted silica core for ultra-sensitive bio-molecular sensors,” Opt. Commun. 349, 193–197 (2015).
[Crossref]

Halas, N.

F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell Plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[Crossref]

Hannun, Y. A.

S. Wu, S. Powers, W. Zhu, and Y. A. Hannun, “Substantial contribution of extrinsic risk factors to cancer development,” Nature 529(7584), 43–47 (2016).
[Crossref]

He, Y. J.

Hirano, F.

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
[Crossref]

Homma, S.

Y. Okuma, Y. Hosomi, Y. Nakahara, K. Watanabe, Y. Sagawa, S. Homma, and J. Lung, “High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer,” Cancer 104, 1–6 (2017).
[Crossref]

Hosomi, Y.

Y. Okuma, Y. Hosomi, Y. Nakahara, K. Watanabe, Y. Sagawa, S. Homma, and J. Lung, “High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer,” Cancer 104, 1–6 (2017).
[Crossref]

Hsu, W. T.

J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators, B 119(1), 105–109 (2006).
[Crossref]

Hu, Z.

Y. Chen, Q. Wang, B. Shi, P. Xu, Z. Hu, L. Bai, and X. Zhang, “Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines,” Cytokine+ 56(2), 231–238 (2011).
[Crossref]

Huang, H. Q.

H. Wang, L. Wang, W. J. Liu, Z. J. Xia, H. Q. Huang, W. Q. Jiang, Z. M. Li, and Y. Lu, “High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients,” Oncotarget 7(22), 33035–33045 (2016).
[Crossref]

Ianoul, A.

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52(4), 337–344 (2014).
[Crossref]

Jha, R.

J. K. Nayak, P. Parhi, and R. Jha, “Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor,” Sens. Actuators, B 221, 835–841 (2015).
[Crossref]

Jiang, P. J.

B. B. Luo, Y. F. Xu, S. X. Wu, M. F. Zhao, P. J. Jiang, S. H. Shi, Z. H. Zhang, Y. Wang, L. L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

Jiang, W. Q.

H. Wang, L. Wang, W. J. Liu, Z. J. Xia, H. Q. Huang, W. Q. Jiang, Z. M. Li, and Y. Lu, “High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients,” Oncotarget 7(22), 33035–33045 (2016).
[Crossref]

Kabashin, A. V.

Kalyanaraman, R.

H. Taz, R. Ruther, A. Malasi, S. Yadavali, C. Carr, J. Nanda, and R. Kalyanaraman, “In situ localized surface plasmon resonance (LSPR) spectroscopy to investigate kinetics of chemical bath deposition of cds thin films,” J. Phys. Chem. C 119(9), 5033–5039 (2015).
[Crossref]

Kaye, S.

S. Kaye, Z. Zeng, M. Sanders, K. Chittur, P. M. Koelle, and R. Lindquist, “Label-free detection of DNA hybridization with a compact LSPR-based fiber-optic sensor,” Analyst 142(11), 1974–1981 (2017).
[Crossref]

Kim, H. J.

H. J. Kim, S. Park, K. J. Kim, and J. Seong, “Clinical significance of soluble programmed cell death ligand-1 (sPD-L1) in hepatocellular treated with radiotherapy,” Radiother. Oncol. 129(1), 130–135 (2018).
[Crossref]

Kim, K. J.

H. J. Kim, S. Park, K. J. Kim, and J. Seong, “Clinical significance of soluble programmed cell death ligand-1 (sPD-L1) in hepatocellular treated with radiotherapy,” Radiother. Oncol. 129(1), 130–135 (2018).
[Crossref]

Koelle, P. M.

S. Kaye, Z. Zeng, M. Sanders, K. Chittur, P. M. Koelle, and R. Lindquist, “Label-free detection of DNA hybridization with a compact LSPR-based fiber-optic sensor,” Analyst 142(11), 1974–1981 (2017).
[Crossref]

Kronenberger, B.

F. Finkelmeier, Ö. Canli, A. Tal, T. Pleli, J. Trojan, M. Schmidt, B. Kronenberger, S. Zeuzem, A. Piiper, F. R. Greten, and O. Waidmann, “Eur. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis,” Eur. J. Cancer 59, 152–159 (2016).
[Crossref]

Krull, U. J.

E. Petryayeva and U. J. Krull, “Localized surface Plasmon resonance: nanostructures, bioassays and biosensing–a review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref]

Lee, J.

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface Plasmon resonance biosensors,” Sensors 12(3), 2729–2741 (2012).
[Crossref]

Lennon, V. A.

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
[Crossref]

Lepinay, S.

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52(4), 337–344 (2014).
[Crossref]

Li, B. R.

B. R. Li, C. W. Chen, W. L. Yang, T. Y. Lin, C. Y. Pan, and Y. T. Chen, “Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor,” Biosens. Bioelectron. 45(2), 252–259 (2013).
[Crossref]

Li, Z. M.

H. Wang, L. Wang, W. J. Liu, Z. J. Xia, H. Q. Huang, W. Q. Jiang, Z. M. Li, and Y. Lu, “High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients,” Oncotarget 7(22), 33035–33045 (2016).
[Crossref]

Liang, C.

K. S. Chang, C. J. Sun, P. L. Chiang, A. C. Chou, M. C. Lin, and C. Liang, “Monitoring extracellular K + flux with a valinomycin-coated silicon nanowire field-effect transistor,” Biosens. Bioelectron. 31(1), 137–143 (2012).
[Crossref]

Lin, M. C.

K. S. Chang, C. J. Sun, P. L. Chiang, A. C. Chou, M. C. Lin, and C. Liang, “Monitoring extracellular K + flux with a valinomycin-coated silicon nanowire field-effect transistor,” Biosens. Bioelectron. 31(1), 137–143 (2012).
[Crossref]

Lin, T. Y.

B. R. Li, C. W. Chen, W. L. Yang, T. Y. Lin, C. Y. Pan, and Y. T. Chen, “Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor,” Biosens. Bioelectron. 45(2), 252–259 (2013).
[Crossref]

Lin, Y.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61(20), 95–101 (2014).
[Crossref]

Lindquist, R.

S. Kaye, Z. Zeng, M. Sanders, K. Chittur, P. M. Koelle, and R. Lindquist, “Label-free detection of DNA hybridization with a compact LSPR-based fiber-optic sensor,” Analyst 142(11), 1974–1981 (2017).
[Crossref]

Lindquist, R. G.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61(20), 95–101 (2014).
[Crossref]

Liu, D.

Liu, W. J.

H. Wang, L. Wang, W. J. Liu, Z. J. Xia, H. Q. Huang, W. Q. Jiang, Z. M. Li, and Y. Lu, “High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients,” Oncotarget 7(22), 33035–33045 (2016).
[Crossref]

Liu, Y.

B. B. Luo, Y. F. Xu, S. X. Wu, M. F. Zhao, P. J. Jiang, S. H. Shi, Z. H. Zhang, Y. Wang, L. L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

Lodewijks, K.

K. Lodewijks, R. W. Van, G. Borghs, and D. P. Van, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12(3), 1655–1659 (2012).
[Crossref]

Lu, H. F.

Lu, J.

B. B. Luo, H. F. Lu, S. H. Shi, M. F. Zhao, J. Lu, Y. J. Wang, and X. Wang, “Plasmonic gold nanoshell induced spectral effects and refractive index sensing properties of excessively tilted fiber grating,” Chin. Opt. Lett. 16(10), 100603 (2018).
[Crossref]

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
[Crossref]

Lu, Y.

H. Wang, L. Wang, W. J. Liu, Z. J. Xia, H. Q. Huang, W. Q. Jiang, Z. M. Li, and Y. Lu, “High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients,” Oncotarget 7(22), 33035–33045 (2016).
[Crossref]

L. Wang, H. Wang, H. Chen, W. D. Wang, X. Q. Chen, Q. R. Geng, Z. J. Xia, and Y. Lu, “Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma,” Oncotarget 6(38), 41228–41236 (2015).
[Crossref]

Lung, J.

Y. Okuma, Y. Hosomi, Y. Nakahara, K. Watanabe, Y. Sagawa, S. Homma, and J. Lung, “High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer,” Cancer 104, 1–6 (2017).
[Crossref]

Luo, B. B.

B. B. Luo, Y. F. Xu, S. X. Wu, M. F. Zhao, P. J. Jiang, S. H. Shi, Z. H. Zhang, Y. Wang, L. L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

B. B. Luo, H. F. Lu, S. H. Shi, M. F. Zhao, J. Lu, Y. J. Wang, and X. Wang, “Plasmonic gold nanoshell induced spectral effects and refractive index sensing properties of excessively tilted fiber grating,” Chin. Opt. Lett. 16(10), 100603 (2018).
[Crossref]

Luong, J. H.

Mahoney, K. M.

K. M. Mahoney, G. J. Freeman, and D. F. McDermott, “The Next Immune-Checkpoint Inhibitors:PD-1/PD-L1 Blockade in Melanoma,” Clin. Ther. 37(4), 764–782 (2015).
[Crossref]

Malachovská, V.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref]

Malasi, A.

H. Taz, R. Ruther, A. Malasi, S. Yadavali, C. Carr, J. Nanda, and R. Kalyanaraman, “In situ localized surface plasmon resonance (LSPR) spectroscopy to investigate kinetics of chemical bath deposition of cds thin films,” J. Phys. Chem. C 119(9), 5033–5039 (2015).
[Crossref]

Manson, Q. F.

Q. F. Manson, N. D. Ter Hoeve, H. Buerger, C. B. Moelans, and P. J. Van Diest, “PD-1 and PD-L1 Expression in Male Breast Cancer in Comparison with Female Breast Cancer,” Targ. Oncol. 13(6), 769–777 (2018).
[Crossref]

McDermott, D. F.

K. M. Mahoney, G. J. Freeman, and D. F. McDermott, “The Next Immune-Checkpoint Inhibitors:PD-1/PD-L1 Blockade in Melanoma,” Clin. Ther. 37(4), 764–782 (2015).
[Crossref]

Mégret, P.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref]

Meunier, M.

Moelans, C. B.

Q. F. Manson, N. D. Ter Hoeve, H. Buerger, C. B. Moelans, and P. J. Van Diest, “PD-1 and PD-L1 Expression in Male Breast Cancer in Comparison with Female Breast Cancer,” Targ. Oncol. 13(6), 769–777 (2018).
[Crossref]

Moran, C.

F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell Plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[Crossref]

Mou, C. B.

Nakahara, Y.

Y. Okuma, Y. Hosomi, Y. Nakahara, K. Watanabe, Y. Sagawa, S. Homma, and J. Lung, “High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer,” Cancer 104, 1–6 (2017).
[Crossref]

Nanda, J.

H. Taz, R. Ruther, A. Malasi, S. Yadavali, C. Carr, J. Nanda, and R. Kalyanaraman, “In situ localized surface plasmon resonance (LSPR) spectroscopy to investigate kinetics of chemical bath deposition of cds thin films,” J. Phys. Chem. C 119(9), 5033–5039 (2015).
[Crossref]

Nayak, J. K.

J. K. Nayak, P. Parhi, and R. Jha, “Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor,” Sens. Actuators, B 221, 835–841 (2015).
[Crossref]

Okuma, Y.

Y. Okuma, Y. Hosomi, Y. Nakahara, K. Watanabe, Y. Sagawa, S. Homma, and J. Lung, “High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer,” Cancer 104, 1–6 (2017).
[Crossref]

Pan, C. Y.

B. R. Li, C. W. Chen, W. L. Yang, T. Y. Lin, C. Y. Pan, and Y. T. Chen, “Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor,” Biosens. Bioelectron. 45(2), 252–259 (2013).
[Crossref]

Parhi, P.

J. K. Nayak, P. Parhi, and R. Jha, “Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor,” Sens. Actuators, B 221, 835–841 (2015).
[Crossref]

Park, S.

H. J. Kim, S. Park, K. J. Kim, and J. Seong, “Clinical significance of soluble programmed cell death ligand-1 (sPD-L1) in hepatocellular treated with radiotherapy,” Radiother. Oncol. 129(1), 130–135 (2018).
[Crossref]

Patskovsky, S.

Paul, D.

D. Paul, S. Dutta, D. Saha, and R. Biswas, “LSPR based ultra-sensitive low cost U-bent optical fiber for volatile liquid sensing,” Sens. Actuators, B 250, 198–207 (2017).
[Crossref]

Petryayeva, E.

E. Petryayeva and U. J. Krull, “Localized surface Plasmon resonance: nanostructures, bioassays and biosensing–a review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref]

Piiper, A.

F. Finkelmeier, Ö. Canli, A. Tal, T. Pleli, J. Trojan, M. Schmidt, B. Kronenberger, S. Zeuzem, A. Piiper, F. R. Greten, and O. Waidmann, “Eur. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis,” Eur. J. Cancer 59, 152–159 (2016).
[Crossref]

Pleli, T.

F. Finkelmeier, Ö. Canli, A. Tal, T. Pleli, J. Trojan, M. Schmidt, B. Kronenberger, S. Zeuzem, A. Piiper, F. R. Greten, and O. Waidmann, “Eur. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis,” Eur. J. Cancer 59, 152–159 (2016).
[Crossref]

Powers, S.

S. Wu, S. Powers, W. Zhu, and Y. A. Hannun, “Substantial contribution of extrinsic risk factors to cancer development,” Nature 529(7584), 43–47 (2016).
[Crossref]

Qu, S.

Y. Tao, Z. Guo, A. Zhang, J. Zhang, B. Wang, and S. Qu, “Gold nanoshells with gain-assisted silica core for ultra-sensitive bio-molecular sensors,” Opt. Commun. 349, 193–197 (2015).
[Crossref]

Reinhard, B. M.

Ribaut, C.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref]

Roche, P. C.

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
[Crossref]

Ruther, R.

H. Taz, R. Ruther, A. Malasi, S. Yadavali, C. Carr, J. Nanda, and R. Kalyanaraman, “In situ localized surface plasmon resonance (LSPR) spectroscopy to investigate kinetics of chemical bath deposition of cds thin films,” J. Phys. Chem. C 119(9), 5033–5039 (2015).
[Crossref]

Sagawa, Y.

Y. Okuma, Y. Hosomi, Y. Nakahara, K. Watanabe, Y. Sagawa, S. Homma, and J. Lung, “High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer,” Cancer 104, 1–6 (2017).
[Crossref]

Saha, D.

D. Paul, S. Dutta, D. Saha, and R. Biswas, “LSPR based ultra-sensitive low cost U-bent optical fiber for volatile liquid sensing,” Sens. Actuators, B 250, 198–207 (2017).
[Crossref]

Salomao, D. R.

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
[Crossref]

Sanders, M.

S. Kaye, Z. Zeng, M. Sanders, K. Chittur, P. M. Koelle, and R. Lindquist, “Label-free detection of DNA hybridization with a compact LSPR-based fiber-optic sensor,” Analyst 142(11), 1974–1981 (2017).
[Crossref]

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61(20), 95–101 (2014).
[Crossref]

Schade, W.

Schmidt, M.

F. Finkelmeier, Ö. Canli, A. Tal, T. Pleli, J. Trojan, M. Schmidt, B. Kronenberger, S. Zeuzem, A. Piiper, F. R. Greten, and O. Waidmann, “Eur. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis,” Eur. J. Cancer 59, 152–159 (2016).
[Crossref]

Seong, J.

H. J. Kim, S. Park, K. J. Kim, and J. Seong, “Clinical significance of soluble programmed cell death ligand-1 (sPD-L1) in hepatocellular treated with radiotherapy,” Radiother. Oncol. 129(1), 130–135 (2018).
[Crossref]

Sheng, L.

D. Tan, L. Sheng, and Q. H. Yi, “Correlation of PD-1/PD-L1 polymorphisms and expressions with clinicopathologic features and prognosis of ovarian cancer,” Cancer Biomarkers 21(2), 287–297 (2018).
[Crossref]

Shi, B.

Y. Chen, Q. Wang, B. Shi, P. Xu, Z. Hu, L. Bai, and X. Zhang, “Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines,” Cytokine+ 56(2), 231–238 (2011).
[Crossref]

Shi, S. H.

B. B. Luo, Y. F. Xu, S. X. Wu, M. F. Zhao, P. J. Jiang, S. H. Shi, Z. H. Zhang, Y. Wang, L. L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

B. B. Luo, H. F. Lu, S. H. Shi, M. F. Zhao, J. Lu, Y. J. Wang, and X. Wang, “Plasmonic gold nanoshell induced spectral effects and refractive index sensing properties of excessively tilted fiber grating,” Chin. Opt. Lett. 16(10), 100603 (2018).
[Crossref]

Staff, A.

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52(4), 337–344 (2014).
[Crossref]

Strome, S. E.

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
[Crossref]

Sun, C. J.

K. S. Chang, C. J. Sun, P. L. Chiang, A. C. Chou, M. C. Lin, and C. Liang, “Monitoring extracellular K + flux with a valinomycin-coated silicon nanowire field-effect transistor,” Biosens. Bioelectron. 31(1), 137–143 (2012).
[Crossref]

Sun, D.

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface Plasmon resonance biosensors,” Sensors 12(3), 2729–2741 (2012).
[Crossref]

Sun, Q.

Sun, T.

J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface Plasmon resonance optical fiber biosensor,” Sens. Actuators, B 181(5), 611–619 (2013).
[Crossref]

Sun, Z. Y.

Tal, A.

F. Finkelmeier, Ö. Canli, A. Tal, T. Pleli, J. Trojan, M. Schmidt, B. Kronenberger, S. Zeuzem, A. Piiper, F. R. Greten, and O. Waidmann, “Eur. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis,” Eur. J. Cancer 59, 152–159 (2016).
[Crossref]

Tam, F.

F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell Plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[Crossref]

Tamada, K.

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
[Crossref]

Tamura, H.

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
[Crossref]

Tan, D.

D. Tan, L. Sheng, and Q. H. Yi, “Correlation of PD-1/PD-L1 polymorphisms and expressions with clinicopathologic features and prognosis of ovarian cancer,” Cancer Biomarkers 21(2), 287–297 (2018).
[Crossref]

Tang, J. L.

J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators, B 119(1), 105–109 (2006).
[Crossref]

Tao, Y.

Y. Tao, Z. Guo, A. Zhang, J. Zhang, B. Wang, and S. Qu, “Gold nanoshells with gain-assisted silica core for ultra-sensitive bio-molecular sensors,” Opt. Commun. 349, 193–197 (2015).
[Crossref]

Taz, H.

H. Taz, R. Ruther, A. Malasi, S. Yadavali, C. Carr, J. Nanda, and R. Kalyanaraman, “In situ localized surface plasmon resonance (LSPR) spectroscopy to investigate kinetics of chemical bath deposition of cds thin films,” J. Phys. Chem. C 119(9), 5033–5039 (2015).
[Crossref]

Ter Hoeve, N. D.

Q. F. Manson, N. D. Ter Hoeve, H. Buerger, C. B. Moelans, and P. J. Van Diest, “PD-1 and PD-L1 Expression in Male Breast Cancer in Comparison with Female Breast Cancer,” Targ. Oncol. 13(6), 769–777 (2018).
[Crossref]

Trojan, J.

F. Finkelmeier, Ö. Canli, A. Tal, T. Pleli, J. Trojan, M. Schmidt, B. Kronenberger, S. Zeuzem, A. Piiper, F. R. Greten, and O. Waidmann, “Eur. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis,” Eur. J. Cancer 59, 152–159 (2016).
[Crossref]

Tu, M. H.

J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface Plasmon resonance optical fiber biosensor,” Sens. Actuators, B 181(5), 611–619 (2013).
[Crossref]

Van, D. P.

K. Lodewijks, R. W. Van, G. Borghs, and D. P. Van, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12(3), 1655–1659 (2012).
[Crossref]

Van, R. W.

K. Lodewijks, R. W. Van, G. Borghs, and D. P. Van, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12(3), 1655–1659 (2012).
[Crossref]

Van Diest, P. J.

Q. F. Manson, N. D. Ter Hoeve, H. Buerger, C. B. Moelans, and P. J. Van Diest, “PD-1 and PD-L1 Expression in Male Breast Cancer in Comparison with Female Breast Cancer,” Targ. Oncol. 13(6), 769–777 (2018).
[Crossref]

Voisin, V.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref]

Waidmann, O.

F. Finkelmeier, Ö. Canli, A. Tal, T. Pleli, J. Trojan, M. Schmidt, B. Kronenberger, S. Zeuzem, A. Piiper, F. R. Greten, and O. Waidmann, “Eur. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis,” Eur. J. Cancer 59, 152–159 (2016).
[Crossref]

Wang, B.

Y. Tao, Z. Guo, A. Zhang, J. Zhang, B. Wang, and S. Qu, “Gold nanoshells with gain-assisted silica core for ultra-sensitive bio-molecular sensors,” Opt. Commun. 349, 193–197 (2015).
[Crossref]

Wang, C. L.

Wang, H.

Z. Yan, H. Wang, C. L. Wang, Z. Y. Sun, G. L. Yin, K. M. Zhou, Y. S. Wang, W. Zhao, and L. Zhang, “Theoretical and experimental analysis of excessively tilted fiber gratings,” Opt. Express 24(11), 12107–12115 (2016).
[Crossref]

H. Wang, L. Wang, W. J. Liu, Z. J. Xia, H. Q. Huang, W. Q. Jiang, Z. M. Li, and Y. Lu, “High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients,” Oncotarget 7(22), 33035–33045 (2016).
[Crossref]

L. Wang, H. Wang, H. Chen, W. D. Wang, X. Q. Chen, Q. R. Geng, Z. J. Xia, and Y. Lu, “Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma,” Oncotarget 6(38), 41228–41236 (2015).
[Crossref]

Wang, L.

H. Wang, L. Wang, W. J. Liu, Z. J. Xia, H. Q. Huang, W. Q. Jiang, Z. M. Li, and Y. Lu, “High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients,” Oncotarget 7(22), 33035–33045 (2016).
[Crossref]

L. Wang, H. Wang, H. Chen, W. D. Wang, X. Q. Chen, Q. R. Geng, Z. J. Xia, and Y. Lu, “Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma,” Oncotarget 6(38), 41228–41236 (2015).
[Crossref]

Wang, L. L.

B. B. Luo, Y. F. Xu, S. X. Wu, M. F. Zhao, P. J. Jiang, S. H. Shi, Z. H. Zhang, Y. Wang, L. L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

Wang, Q.

Y. Chen, Q. Wang, B. Shi, P. Xu, Z. Hu, L. Bai, and X. Zhang, “Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines,” Cytokine+ 56(2), 231–238 (2011).
[Crossref]

Wang, W. D.

L. Wang, H. Wang, H. Chen, W. D. Wang, X. Q. Chen, Q. R. Geng, Z. J. Xia, and Y. Lu, “Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma,” Oncotarget 6(38), 41228–41236 (2015).
[Crossref]

Wang, X.

Wang, Y.

B. B. Luo, Y. F. Xu, S. X. Wu, M. F. Zhao, P. J. Jiang, S. H. Shi, Z. H. Zhang, Y. Wang, L. L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

Wang, Y. J.

Wang, Y. S.

Watanabe, K.

Y. Okuma, Y. Hosomi, Y. Nakahara, K. Watanabe, Y. Sagawa, S. Homma, and J. Lung, “High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer,” Cancer 104, 1–6 (2017).
[Crossref]

Wattiez, R.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref]

Wei, J.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61(20), 95–101 (2014).
[Crossref]

Wu, S.

S. Wu, S. Powers, W. Zhu, and Y. A. Hannun, “Substantial contribution of extrinsic risk factors to cancer development,” Nature 529(7584), 43–47 (2016).
[Crossref]

Wu, S. X.

B. B. Luo, Y. F. Xu, S. X. Wu, M. F. Zhao, P. J. Jiang, S. H. Shi, Z. H. Zhang, Y. Wang, L. L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

Xia, Z. J.

H. Wang, L. Wang, W. J. Liu, Z. J. Xia, H. Q. Huang, W. Q. Jiang, Z. M. Li, and Y. Lu, “High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients,” Oncotarget 7(22), 33035–33045 (2016).
[Crossref]

L. Wang, H. Wang, H. Chen, W. D. Wang, X. Q. Chen, Q. R. Geng, Z. J. Xia, and Y. Lu, “Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma,” Oncotarget 6(38), 41228–41236 (2015).
[Crossref]

Xie, L.

L. Xie, X. Yan, and Y. Du, “An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules,” Biosens. Bioelectron. 53(9), 58–64 (2014).
[Crossref]

Xiong, J.

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface Plasmon resonance biosensors,” Sensors 12(3), 2729–2741 (2012).
[Crossref]

Xu, P.

Y. Chen, Q. Wang, B. Shi, P. Xu, Z. Hu, L. Bai, and X. Zhang, “Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines,” Cytokine+ 56(2), 231–238 (2011).
[Crossref]

Xu, Y. F.

B. B. Luo, Y. F. Xu, S. X. Wu, M. F. Zhao, P. J. Jiang, S. H. Shi, Z. H. Zhang, Y. Wang, L. L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

Xue, C.

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface Plasmon resonance biosensors,” Sensors 12(3), 2729–2741 (2012).
[Crossref]

Yadavali, S.

H. Taz, R. Ruther, A. Malasi, S. Yadavali, C. Carr, J. Nanda, and R. Kalyanaraman, “In situ localized surface plasmon resonance (LSPR) spectroscopy to investigate kinetics of chemical bath deposition of cds thin films,” J. Phys. Chem. C 119(9), 5033–5039 (2015).
[Crossref]

Yan, X.

L. Xie, X. Yan, and Y. Du, “An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules,” Biosens. Bioelectron. 53(9), 58–64 (2014).
[Crossref]

Yan, Z.

Yang, W. L.

B. R. Li, C. W. Chen, W. L. Yang, T. Y. Lin, C. Y. Pan, and Y. T. Chen, “Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor,” Biosens. Bioelectron. 45(2), 252–259 (2013).
[Crossref]

Yi, Q. H.

D. Tan, L. Sheng, and Q. H. Yi, “Correlation of PD-1/PD-L1 polymorphisms and expressions with clinicopathologic features and prognosis of ovarian cancer,” Cancer Biomarkers 21(2), 287–297 (2018).
[Crossref]

Yin, G. L.

Yuan, Y.

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface Plasmon resonance biosensors,” Sensors 12(3), 2729–2741 (2012).
[Crossref]

Zeng, Z.

S. Kaye, Z. Zeng, M. Sanders, K. Chittur, P. M. Koelle, and R. Lindquist, “Label-free detection of DNA hybridization with a compact LSPR-based fiber-optic sensor,” Analyst 142(11), 1974–1981 (2017).
[Crossref]

Zeuzem, S.

F. Finkelmeier, Ö. Canli, A. Tal, T. Pleli, J. Trojan, M. Schmidt, B. Kronenberger, S. Zeuzem, A. Piiper, F. R. Greten, and O. Waidmann, “Eur. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis,” Eur. J. Cancer 59, 152–159 (2016).
[Crossref]

Zhang, A.

Y. Tao, Z. Guo, A. Zhang, J. Zhang, B. Wang, and S. Qu, “Gold nanoshells with gain-assisted silica core for ultra-sensitive bio-molecular sensors,” Opt. Commun. 349, 193–197 (2015).
[Crossref]

Zhang, J.

Y. Tao, Z. Guo, A. Zhang, J. Zhang, B. Wang, and S. Qu, “Gold nanoshells with gain-assisted silica core for ultra-sensitive bio-molecular sensors,” Opt. Commun. 349, 193–197 (2015).
[Crossref]

Zhang, L.

Zhang, Q.

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface Plasmon resonance biosensors,” Sensors 12(3), 2729–2741 (2012).
[Crossref]

Zhang, X.

Y. Chen, Q. Wang, B. Shi, P. Xu, Z. Hu, L. Bai, and X. Zhang, “Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines,” Cytokine+ 56(2), 231–238 (2011).
[Crossref]

Zhang, Z. H.

B. B. Luo, Y. F. Xu, S. X. Wu, M. F. Zhao, P. J. Jiang, S. H. Shi, Z. H. Zhang, Y. Wang, L. L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

Zhao, M. F.

B. B. Luo, H. F. Lu, S. H. Shi, M. F. Zhao, J. Lu, Y. J. Wang, and X. Wang, “Plasmonic gold nanoshell induced spectral effects and refractive index sensing properties of excessively tilted fiber grating,” Chin. Opt. Lett. 16(10), 100603 (2018).
[Crossref]

B. B. Luo, Y. F. Xu, S. X. Wu, M. F. Zhao, P. J. Jiang, S. H. Shi, Z. H. Zhang, Y. Wang, L. L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

Zhao, W.

Zhou, K. M.

Zhu, G.

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
[Crossref]

Zhu, W.

S. Wu, S. Powers, W. Zhu, and Y. A. Hannun, “Substantial contribution of extrinsic risk factors to cancer development,” Nature 529(7584), 43–47 (2016).
[Crossref]

Anal. Chem. (1)

S. F. Cheng and L. K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75(1), 16–21 (2003).
[Crossref]

Anal. Chim. Acta (1)

E. Petryayeva and U. J. Krull, “Localized surface Plasmon resonance: nanostructures, bioassays and biosensing–a review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref]

Analyst (1)

S. Kaye, Z. Zeng, M. Sanders, K. Chittur, P. M. Koelle, and R. Lindquist, “Label-free detection of DNA hybridization with a compact LSPR-based fiber-optic sensor,” Analyst 142(11), 1974–1981 (2017).
[Crossref]

Biosens. Bioelectron. (7)

L. Xie, X. Yan, and Y. Du, “An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules,” Biosens. Bioelectron. 53(9), 58–64 (2014).
[Crossref]

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosens. Bioelectron. 61(20), 95–101 (2014).
[Crossref]

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52(4), 337–344 (2014).
[Crossref]

B. B. Luo, Y. F. Xu, S. X. Wu, M. F. Zhao, P. J. Jiang, S. H. Shi, Z. H. Zhang, Y. Wang, L. L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

K. S. Chang, C. J. Sun, P. L. Chiang, A. C. Chou, M. C. Lin, and C. Liang, “Monitoring extracellular K + flux with a valinomycin-coated silicon nanowire field-effect transistor,” Biosens. Bioelectron. 31(1), 137–143 (2012).
[Crossref]

B. R. Li, C. W. Chen, W. L. Yang, T. Y. Lin, C. Y. Pan, and Y. T. Chen, “Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor,” Biosens. Bioelectron. 45(2), 252–259 (2013).
[Crossref]

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref]

Cancer (1)

Y. Okuma, Y. Hosomi, Y. Nakahara, K. Watanabe, Y. Sagawa, S. Homma, and J. Lung, “High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer,” Cancer 104, 1–6 (2017).
[Crossref]

Cancer Biomarkers (1)

D. Tan, L. Sheng, and Q. H. Yi, “Correlation of PD-1/PD-L1 polymorphisms and expressions with clinicopathologic features and prognosis of ovarian cancer,” Cancer Biomarkers 21(2), 287–297 (2018).
[Crossref]

Chin. Opt. Lett. (1)

Clin. Ther. (1)

K. M. Mahoney, G. J. Freeman, and D. F. McDermott, “The Next Immune-Checkpoint Inhibitors:PD-1/PD-L1 Blockade in Melanoma,” Clin. Ther. 37(4), 764–782 (2015).
[Crossref]

Cytokine+ (1)

Y. Chen, Q. Wang, B. Shi, P. Xu, Z. Hu, L. Bai, and X. Zhang, “Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines,” Cytokine+ 56(2), 231–238 (2011).
[Crossref]

Eur. J. Cancer (1)

F. Finkelmeier, Ö. Canli, A. Tal, T. Pleli, J. Trojan, M. Schmidt, B. Kronenberger, S. Zeuzem, A. Piiper, F. R. Greten, and O. Waidmann, “Eur. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis,” Eur. J. Cancer 59, 152–159 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell Plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[Crossref]

J. Phys. Chem. C (1)

H. Taz, R. Ruther, A. Malasi, S. Yadavali, C. Carr, J. Nanda, and R. Kalyanaraman, “In situ localized surface plasmon resonance (LSPR) spectroscopy to investigate kinetics of chemical bath deposition of cds thin films,” J. Phys. Chem. C 119(9), 5033–5039 (2015).
[Crossref]

Nano Lett. (1)

K. Lodewijks, R. W. Van, G. Borghs, and D. P. Van, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12(3), 1655–1659 (2012).
[Crossref]

Nat. Med. (1)

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen, “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nat. Med. 8(8), 793–800 (2002).
[Crossref]

Nature (1)

S. Wu, S. Powers, W. Zhu, and Y. A. Hannun, “Substantial contribution of extrinsic risk factors to cancer development,” Nature 529(7584), 43–47 (2016).
[Crossref]

Oncotarget (2)

L. Wang, H. Wang, H. Chen, W. D. Wang, X. Q. Chen, Q. R. Geng, Z. J. Xia, and Y. Lu, “Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma,” Oncotarget 6(38), 41228–41236 (2015).
[Crossref]

H. Wang, L. Wang, W. J. Liu, Z. J. Xia, H. Q. Huang, W. Q. Jiang, Z. M. Li, and Y. Lu, “High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients,” Oncotarget 7(22), 33035–33045 (2016).
[Crossref]

Opt. Commun. (1)

Y. Tao, Z. Guo, A. Zhang, J. Zhang, B. Wang, and S. Qu, “Gold nanoshells with gain-assisted silica core for ultra-sensitive bio-molecular sensors,” Opt. Commun. 349, 193–197 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Radiother. Oncol. (1)

H. J. Kim, S. Park, K. J. Kim, and J. Seong, “Clinical significance of soluble programmed cell death ligand-1 (sPD-L1) in hepatocellular treated with radiotherapy,” Radiother. Oncol. 129(1), 130–135 (2018).
[Crossref]

Sens. Actuators, B (4)

J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface Plasmon resonance optical fiber biosensor,” Sens. Actuators, B 181(5), 611–619 (2013).
[Crossref]

J. K. Nayak, P. Parhi, and R. Jha, “Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor,” Sens. Actuators, B 221, 835–841 (2015).
[Crossref]

D. Paul, S. Dutta, D. Saha, and R. Biswas, “LSPR based ultra-sensitive low cost U-bent optical fiber for volatile liquid sensing,” Sens. Actuators, B 250, 198–207 (2017).
[Crossref]

J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators, B 119(1), 105–109 (2006).
[Crossref]

Sensors (1)

Q. Zhang, C. Xue, Y. Yuan, J. Lee, D. Sun, and J. Xiong, “Fiber surface modification technology for fiber-optic localized surface Plasmon resonance biosensors,” Sensors 12(3), 2729–2741 (2012).
[Crossref]

Targ. Oncol. (1)

Q. F. Manson, N. D. Ter Hoeve, H. Buerger, C. B. Moelans, and P. J. Van Diest, “PD-1 and PD-L1 Expression in Male Breast Cancer in Comparison with Female Breast Cancer,” Targ. Oncol. 13(6), 769–777 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Size distribution, and (b) absorption spectrum of the large-sized gold nanoshells.
Fig. 2.
Fig. 2. Schematic diagram of the experimental setup.
Fig. 3.
Fig. 3. Modified process and chemical linkage mechanism for ExTFG.
Fig. 4.
Fig. 4. Spectral change of an ExTFG in water before and after gold-nanoshell immobilization; spectral evolution versus SRI for (b) TM mode and (c) TE mode.
Fig. 5.
Fig. 5. FESEM images of a gold-nanoshell immobilized ExTFG (a) 473 ×, (b) 2.68 K ×, (c) 11.15 K ×, and (d) 26.98 K ×; (e) Energy spectrum diagram of an ExTFG-LSPR sensor surface; (f) AFM image of an ExTFG-LSPR sensor surface (5×5 µm).
Fig. 6.
Fig. 6. (a) Reactivity of anti-sPD-L1 MAbs with sPD-L1; (b) identification of specificity of anti-sPD-L1 MAbs using Western blot analysis; lanes 1–3, sPD-L1; lane 4, PD-1 control.
Fig. 7.
Fig. 7. (a) Spectral evolution of an ExTFG-LSPR sensor during the modified steps. (b) Corresponding wavelength shifts of all ExTFGs; the red line (first sensor) depicts the corresponding wavelength shifts of spectra in Fig. 7(a).
Fig. 8.
Fig. 8. (a) Spectral evolution of the first ExTFG-LSPR immunosensor for sPD-L1 detection. (b) Corresponding resonance wavelength evolution against time during the immunoassay procedure.
Fig. 9.
Fig. 9. (a) Wavelength shifts of immunosensors during immunoassays; their RSD was 0.05 < RSD < 0.07 (Inset is the zoom-in image for the concentrations from 1 pg/mL to 100 pg/mL). (b) Corresponding average values of wavelength shifts and their fitting curves.
Fig. 10.
Fig. 10. (a) Spectral evolution, and (b) the corresponding wavelength shifts of the ExTFG-LSPR immunosensor for the specific test and assays in FBS samples.

Tables (1)

Tables Icon

Table 1. Comparison of main protein components between FBS and human serum.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ m = ( n c o e f f n c l , m i , e f f ) Λ G c o s θ i = T M o r T E ,
C Δ λ = C Δ λ m a x + 1 Δ λ m a x K d ,

Metrics