Abstract

High-resolution recording of visual cortex activity is an important tool for vision research. Using a customized digital mirror device (DMD) - based system equipped with retinal imaging, we projected visual stimuli directly on the rat retina and recorded cortical responses by voltage-sensitive dye imaging. We obtained robust cortical responses and generated high-resolution retinotopic maps at an unprecedented retinal resolution of 4.6 degrees in the field of view, while further distinguishing between normal and pathological retinal areas. This system is a useful tool for studying the cortical response to localized retinal stimulation and may shed light on various cortical plasticity processes.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Functional optical coherence tomography of rat olfactory bulb with periodic odor stimulation

Hideyuki Watanabe, Uma Maheswari Rajagopalan, Yu Nakamichi, Kei M. Igarashi, Hirofumi Kadono, and Manabu Tanifuji
Biomed. Opt. Express 7(3) 841-854 (2016)

High spatiotemporal resolution imaging of fast intrinsic optical signals activated by retinal flicker stimulation

Yang-Guo Li, Qiu-Xiang Zhang, Lei Liu, Franklin R. Amthor, and Xin-Cheng Yao
Opt. Express 18(7) 7210-7218 (2010)

Integrative Processes in Central Visual Pathways of the Cat*

David H. Hubel
J. Opt. Soc. Am. 53(1) 58-66 (1963)

References

  • View by:
  • |
  • |
  • |

  1. D. H. Hubel and T.N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex,” J. Physiol. 148(3), 574–591 (1959).
    [Crossref]
  2. S. Chemla, A. Reynaud, M. di Volo, Y. Zerlaut, L. Perrinet, A. Destexhe, and F. Chavane, “Suppressive traveling waves shape representations of illusory motion in primary visual cortex of awake primate,” J. Neurosci. 39(22), 4282–4298 (2019).
    [Crossref]
  3. G. Palagina, U. T. Eysel, and D. Jancke, “Strengthening of lateral activation in adult rat visual cortex after retinal lesions captured with voltage-sensitive dye imaging in vivo,” Proc. Natl. Acad. Sci. U. S. A. 106(21), 8743–8747 (2009).
    [Crossref]
  4. D. Jancke, “Catching the voltage gradient—asymmetric boost of cortical spread generates motion signals across visual cortex: a brief review with special thanks to Amiram Grinvald,” Neurophotonics 4(3), 031206 (2017).
    [Crossref]
  5. A. Grinvald and R. Hildesheim, “VSDI: a new era in functional imaging of cortical dynamics,” Nat. Rev. Neurosci. 5(11), 874–885 (2004).
    [Crossref]
  6. S. Chemla and F. Chavane, “Voltage-sensitive dye imaging: Technique review and models,” J. Physiol. 104(1-2), 40–50 (2010).
    [Crossref]
  7. V. Tsytsarev, L.-D. Liao, K. V. Kong, Y.-H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent Progress in Voltage-Sensitive Dye Imaging for Neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
    [Crossref]
  8. A. Grinvald, D. Shoham, A. Shmuel, D. Glaser, I. Vanzetta, E. Shtoyerman, H. Slovin, C. Wijnbergen, R. Hildesheim, and A. Arieli, “In-vivo Optical Imaging of Cortical Architecture and Dynamics,” Modern Techniques in Neuroscience Research, 893–969 (1999).
  9. A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, “Optical imaging of neuronal activity,” Physiol. Rev. 68(4), 1285–1366 (1988).
    [Crossref]
  10. Y. Chen, W. S. Geisler, and E. Seidemann, “Optimal decoding of correlated neural population responses in the primate visual cortex,” Nat. Neurosci. 9(11), 1412–1420 (2006).
    [Crossref]
  11. H. Slovin, “Long-Term Voltage-Sensitive Dye Imaging Reveals Cortical Dynamics in Behaving Monkeys,” J. Neurophysiol. 88(6), 3421–3438 (2002).
    [Crossref]
  12. E. Meirovithz, I. Ayzenshtat, Y. S. Bonneh, R. Itzhack, U. Werner-Reiss, and H. Slovin, “Population response to contextual influences in the primary visual cortex,” Cereb. Cortex 20(6), 1293–1304 (2010).
    [Crossref]
  13. D. B. Omer, R. Hildesheim, and A. Grinvald, “Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey,” NeuroImage 82, 237–251 (2013).
    [Crossref]
  14. D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
    [Crossref]
  15. D. Sharon, D. Jancke, F. Chavane, S. Na’aman, and A. Grinvald, “Cortical response field dynamics in cat visual cortex,” Cereb. Cortex 17(12), 2866–2877 (2007).
    [Crossref]
  16. M. T. Lippert, K. Takagaki, W. Xu, X. Huang, and J.-Y. Wu, “Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio,” J. Neurophysiol. 98(1), 502–512 (2007).
    [Crossref]
  17. T. D. Mrsic-Flogel, S. B. Hofer, C. Creutzfeldt, I. Cloëz-Tayarani, J. Changeux, T. Bonhoeffer, and M. Hübener, “Altered map of visual space in the superior colliculus of mice lacking early retinal waves,” J. Neurosci. 25(29), 6921–6928 (2005).
    [Crossref]
  18. S. Schuett, T. Bonhoeffer, and M. Hübener, “Mapping retinotopic structure in mouse visual cortex with optical imaging,” J. Neurosci. 22(15), 6549–6559 (2002).
    [Crossref]
  19. E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
    [Crossref]
  20. Y. Mandel, G. Goetz, D. Lavinsky, P. Huie, K. Mathieson, L. Wang, T. Kamins, L. Galambos, R. Manivanh, J. Harris, and D. Palanker, “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials,” Nat. Commun. 4(1), 1980 (2013).
    [Crossref]
  21. S. Y. Shim, S. Gong, M. I. Rosenblatt, D. Palanker, A. Al-Qahtani, M. G. Sun, Q. Zhou, L. Kanu, F. Chau, and C. Q. Yu, “Feasibility of Intraocular Projection for Treatment of Intractable Corneal Opacity,” Cornea 38(4), 523–527 (2019).
    [Crossref]
  22. A. Hughes, “A schematic eye for the rat,” Vision Res. 19(5), 569–588 (1979).
    [Crossref]
  23. S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985).
    [Crossref]
  24. D. O. Mutti, J. N. Ver Hoeve, K. Zadnik, and C. J. Murphy, “The artifact of retinoscopy revisited: comparison of refractive error measured by retinoscopy and visual evoked potential in the rat,” Optom. Vis. Sci. 74(7), 483–488 (1997).
    [Crossref]
  25. C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” NeuroImage 24(1), 200–206 (2005).
    [Crossref]
  26. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates - The New Coronal Set (2004).
  27. T. Fekete, D. B. Omer, K. O’Hashi, A. Grinvald, C. van Leeuwen, and O. Shriki, “Critical dynamics, anesthesia and information integration: Lessons from multi-scale criticality analysis of voltage imaging data,” NeuroImage 183, 919–933 (2018).
    [Crossref]
  28. P. M. Daniel and D. Whitteridge, “The representation of the visual field on the cerebral cortex in monkeys,” J. Physiol. 159(2), 203–221 (1961).
    [Crossref]
  29. L. Muller, F. Chavane, J. Reynolds, and T. J. Sejnowski, “Cortical travelling waves: mechanisms and computational principles,” Nat. Rev. Neurosci. 19(5), 255–268 (2018).
    [Crossref]
  30. T. Keck, T. D. Mrsic-Flogel, M. Vaz Afonso, U. T. Eysel, T. Bonhoeffer, and M. Hübener, “Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex,” Nat. Neurosci. 11(10), 1162–1167 (2008).
    [Crossref]
  31. P.-O. Polack and D. Contreras, “Long-range parallel processing and local recurrent activity in the visual cortex of the mouse,” J. Neurosci. 32(32), 11120–11131 (2012).
    [Crossref]
  32. H. Lorach, X. Lei, L. Galambos, T. Kamins, K. Mathieson, R. Dalal, P. Huie, J. Harris, and D. Palanker, “Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration,” Invest. Ophthalmol. Visual Sci. 56(12), 7444 (2015).
    [Crossref]
  33. D. Birch and G. H. Jacobs, “Spatial contrast sensitivity in albino and pigmented rats,” Vision Res. 19(8), 933–937 (1979).
    [Crossref]
  34. L. C. L. Silveira, C. A. Heywood, and A. Cowey, “Contrast sensitivity and visual acuity of the pigmented rat determined electrophysiologically,” Vision Res. 27(10), 1719–1731 (1987).
    [Crossref]
  35. H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, and D. Palanker, “Photovoltaic restoration of sight with high visual acuity,” Nat. Med. 21(5), 476–482 (2015).
    [Crossref]
  36. P. Dean, “Visual pathways and acuity in hooded rats,” Behav. Brain Res. 3(2), 239–271 (1981).
    [Crossref]
  37. G. T. Prusky, P. W. West, and R. M. Douglas, “Behavioral assessment of visual acuity in mice and rats,” Vision Res. 40(16), 2201–2209 (2000).
    [Crossref]
  38. F. Han, N. Caporale, and Y. Dan, “Reverberation of Recent Visual Experience in Spontaneous Cortical Waves,” Neuron 60(2), 321–327 (2008).
    [Crossref]
  39. S. Roux, F. Matonti, F. Dupont, L. Hoffart, S. Takerkart, S. Picaud, P. Pham, and F. Chavane, “Probing the functional impact of sub-retinal prosthesis,” eLife 5, e12687 (2016).
    [Crossref]
  40. M. T. Block, “A note on the refraction and image formation of the rat’s eye,” Vision Res. 9(6), 705–711 (1969).
    [Crossref]

2019 (2)

S. Chemla, A. Reynaud, M. di Volo, Y. Zerlaut, L. Perrinet, A. Destexhe, and F. Chavane, “Suppressive traveling waves shape representations of illusory motion in primary visual cortex of awake primate,” J. Neurosci. 39(22), 4282–4298 (2019).
[Crossref]

S. Y. Shim, S. Gong, M. I. Rosenblatt, D. Palanker, A. Al-Qahtani, M. G. Sun, Q. Zhou, L. Kanu, F. Chau, and C. Q. Yu, “Feasibility of Intraocular Projection for Treatment of Intractable Corneal Opacity,” Cornea 38(4), 523–527 (2019).
[Crossref]

2018 (2)

T. Fekete, D. B. Omer, K. O’Hashi, A. Grinvald, C. van Leeuwen, and O. Shriki, “Critical dynamics, anesthesia and information integration: Lessons from multi-scale criticality analysis of voltage imaging data,” NeuroImage 183, 919–933 (2018).
[Crossref]

L. Muller, F. Chavane, J. Reynolds, and T. J. Sejnowski, “Cortical travelling waves: mechanisms and computational principles,” Nat. Rev. Neurosci. 19(5), 255–268 (2018).
[Crossref]

2017 (1)

D. Jancke, “Catching the voltage gradient—asymmetric boost of cortical spread generates motion signals across visual cortex: a brief review with special thanks to Amiram Grinvald,” Neurophotonics 4(3), 031206 (2017).
[Crossref]

2016 (1)

S. Roux, F. Matonti, F. Dupont, L. Hoffart, S. Takerkart, S. Picaud, P. Pham, and F. Chavane, “Probing the functional impact of sub-retinal prosthesis,” eLife 5, e12687 (2016).
[Crossref]

2015 (2)

H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, and D. Palanker, “Photovoltaic restoration of sight with high visual acuity,” Nat. Med. 21(5), 476–482 (2015).
[Crossref]

H. Lorach, X. Lei, L. Galambos, T. Kamins, K. Mathieson, R. Dalal, P. Huie, J. Harris, and D. Palanker, “Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration,” Invest. Ophthalmol. Visual Sci. 56(12), 7444 (2015).
[Crossref]

2014 (1)

V. Tsytsarev, L.-D. Liao, K. V. Kong, Y.-H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent Progress in Voltage-Sensitive Dye Imaging for Neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref]

2013 (2)

D. B. Omer, R. Hildesheim, and A. Grinvald, “Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey,” NeuroImage 82, 237–251 (2013).
[Crossref]

Y. Mandel, G. Goetz, D. Lavinsky, P. Huie, K. Mathieson, L. Wang, T. Kamins, L. Galambos, R. Manivanh, J. Harris, and D. Palanker, “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials,” Nat. Commun. 4(1), 1980 (2013).
[Crossref]

2012 (1)

P.-O. Polack and D. Contreras, “Long-range parallel processing and local recurrent activity in the visual cortex of the mouse,” J. Neurosci. 32(32), 11120–11131 (2012).
[Crossref]

2010 (3)

E. Meirovithz, I. Ayzenshtat, Y. S. Bonneh, R. Itzhack, U. Werner-Reiss, and H. Slovin, “Population response to contextual influences in the primary visual cortex,” Cereb. Cortex 20(6), 1293–1304 (2010).
[Crossref]

E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref]

S. Chemla and F. Chavane, “Voltage-sensitive dye imaging: Technique review and models,” J. Physiol. 104(1-2), 40–50 (2010).
[Crossref]

2009 (1)

G. Palagina, U. T. Eysel, and D. Jancke, “Strengthening of lateral activation in adult rat visual cortex after retinal lesions captured with voltage-sensitive dye imaging in vivo,” Proc. Natl. Acad. Sci. U. S. A. 106(21), 8743–8747 (2009).
[Crossref]

2008 (2)

T. Keck, T. D. Mrsic-Flogel, M. Vaz Afonso, U. T. Eysel, T. Bonhoeffer, and M. Hübener, “Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex,” Nat. Neurosci. 11(10), 1162–1167 (2008).
[Crossref]

F. Han, N. Caporale, and Y. Dan, “Reverberation of Recent Visual Experience in Spontaneous Cortical Waves,” Neuron 60(2), 321–327 (2008).
[Crossref]

2007 (2)

D. Sharon, D. Jancke, F. Chavane, S. Na’aman, and A. Grinvald, “Cortical response field dynamics in cat visual cortex,” Cereb. Cortex 17(12), 2866–2877 (2007).
[Crossref]

M. T. Lippert, K. Takagaki, W. Xu, X. Huang, and J.-Y. Wu, “Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio,” J. Neurophysiol. 98(1), 502–512 (2007).
[Crossref]

2006 (1)

Y. Chen, W. S. Geisler, and E. Seidemann, “Optimal decoding of correlated neural population responses in the primate visual cortex,” Nat. Neurosci. 9(11), 1412–1420 (2006).
[Crossref]

2005 (2)

T. D. Mrsic-Flogel, S. B. Hofer, C. Creutzfeldt, I. Cloëz-Tayarani, J. Changeux, T. Bonhoeffer, and M. Hübener, “Altered map of visual space in the superior colliculus of mice lacking early retinal waves,” J. Neurosci. 25(29), 6921–6928 (2005).
[Crossref]

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” NeuroImage 24(1), 200–206 (2005).
[Crossref]

2004 (1)

A. Grinvald and R. Hildesheim, “VSDI: a new era in functional imaging of cortical dynamics,” Nat. Rev. Neurosci. 5(11), 874–885 (2004).
[Crossref]

2002 (2)

S. Schuett, T. Bonhoeffer, and M. Hübener, “Mapping retinotopic structure in mouse visual cortex with optical imaging,” J. Neurosci. 22(15), 6549–6559 (2002).
[Crossref]

H. Slovin, “Long-Term Voltage-Sensitive Dye Imaging Reveals Cortical Dynamics in Behaving Monkeys,” J. Neurophysiol. 88(6), 3421–3438 (2002).
[Crossref]

2000 (1)

G. T. Prusky, P. W. West, and R. M. Douglas, “Behavioral assessment of visual acuity in mice and rats,” Vision Res. 40(16), 2201–2209 (2000).
[Crossref]

1999 (1)

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[Crossref]

1997 (1)

D. O. Mutti, J. N. Ver Hoeve, K. Zadnik, and C. J. Murphy, “The artifact of retinoscopy revisited: comparison of refractive error measured by retinoscopy and visual evoked potential in the rat,” Optom. Vis. Sci. 74(7), 483–488 (1997).
[Crossref]

1988 (1)

A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, “Optical imaging of neuronal activity,” Physiol. Rev. 68(4), 1285–1366 (1988).
[Crossref]

1987 (1)

L. C. L. Silveira, C. A. Heywood, and A. Cowey, “Contrast sensitivity and visual acuity of the pigmented rat determined electrophysiologically,” Vision Res. 27(10), 1719–1731 (1987).
[Crossref]

1985 (1)

S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985).
[Crossref]

1981 (1)

P. Dean, “Visual pathways and acuity in hooded rats,” Behav. Brain Res. 3(2), 239–271 (1981).
[Crossref]

1979 (2)

A. Hughes, “A schematic eye for the rat,” Vision Res. 19(5), 569–588 (1979).
[Crossref]

D. Birch and G. H. Jacobs, “Spatial contrast sensitivity in albino and pigmented rats,” Vision Res. 19(8), 933–937 (1979).
[Crossref]

1969 (1)

M. T. Block, “A note on the refraction and image formation of the rat’s eye,” Vision Res. 9(6), 705–711 (1969).
[Crossref]

1961 (1)

P. M. Daniel and D. Whitteridge, “The representation of the visual field on the cerebral cortex in monkeys,” J. Physiol. 159(2), 203–221 (1961).
[Crossref]

1959 (1)

D. H. Hubel and T.N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex,” J. Physiol. 148(3), 574–591 (1959).
[Crossref]

Al-Qahtani, A.

S. Y. Shim, S. Gong, M. I. Rosenblatt, D. Palanker, A. Al-Qahtani, M. G. Sun, Q. Zhou, L. Kanu, F. Chau, and C. Q. Yu, “Feasibility of Intraocular Projection for Treatment of Intractable Corneal Opacity,” Cornea 38(4), 523–527 (2019).
[Crossref]

Arieli, A.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[Crossref]

A. Grinvald, D. Shoham, A. Shmuel, D. Glaser, I. Vanzetta, E. Shtoyerman, H. Slovin, C. Wijnbergen, R. Hildesheim, and A. Arieli, “In-vivo Optical Imaging of Cortical Architecture and Dynamics,” Modern Techniques in Neuroscience Research, 893–969 (1999).

Ayzenshtat, I.

E. Meirovithz, I. Ayzenshtat, Y. S. Bonneh, R. Itzhack, U. Werner-Reiss, and H. Slovin, “Population response to contextual influences in the primary visual cortex,” Cereb. Cortex 20(6), 1293–1304 (2010).
[Crossref]

Birch, D.

D. Birch and G. H. Jacobs, “Spatial contrast sensitivity in albino and pigmented rats,” Vision Res. 19(8), 933–937 (1979).
[Crossref]

Block, M. T.

M. T. Block, “A note on the refraction and image formation of the rat’s eye,” Vision Res. 9(6), 705–711 (1969).
[Crossref]

Bonhoeffer, T.

T. Keck, T. D. Mrsic-Flogel, M. Vaz Afonso, U. T. Eysel, T. Bonhoeffer, and M. Hübener, “Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex,” Nat. Neurosci. 11(10), 1162–1167 (2008).
[Crossref]

T. D. Mrsic-Flogel, S. B. Hofer, C. Creutzfeldt, I. Cloëz-Tayarani, J. Changeux, T. Bonhoeffer, and M. Hübener, “Altered map of visual space in the superior colliculus of mice lacking early retinal waves,” J. Neurosci. 25(29), 6921–6928 (2005).
[Crossref]

S. Schuett, T. Bonhoeffer, and M. Hübener, “Mapping retinotopic structure in mouse visual cortex with optical imaging,” J. Neurosci. 22(15), 6549–6559 (2002).
[Crossref]

Bonneh, Y. S.

E. Meirovithz, I. Ayzenshtat, Y. S. Bonneh, R. Itzhack, U. Werner-Reiss, and H. Slovin, “Population response to contextual influences in the primary visual cortex,” Cereb. Cortex 20(6), 1293–1304 (2010).
[Crossref]

Burrone, J.

E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref]

Caporale, N.

F. Han, N. Caporale, and Y. Dan, “Reverberation of Recent Visual Experience in Spontaneous Cortical Waves,” Neuron 60(2), 321–327 (2008).
[Crossref]

Changeux, J.

T. D. Mrsic-Flogel, S. B. Hofer, C. Creutzfeldt, I. Cloëz-Tayarani, J. Changeux, T. Bonhoeffer, and M. Hübener, “Altered map of visual space in the superior colliculus of mice lacking early retinal waves,” J. Neurosci. 25(29), 6921–6928 (2005).
[Crossref]

Chau, F.

S. Y. Shim, S. Gong, M. I. Rosenblatt, D. Palanker, A. Al-Qahtani, M. G. Sun, Q. Zhou, L. Kanu, F. Chau, and C. Q. Yu, “Feasibility of Intraocular Projection for Treatment of Intractable Corneal Opacity,” Cornea 38(4), 523–527 (2019).
[Crossref]

Chavane, F.

S. Chemla, A. Reynaud, M. di Volo, Y. Zerlaut, L. Perrinet, A. Destexhe, and F. Chavane, “Suppressive traveling waves shape representations of illusory motion in primary visual cortex of awake primate,” J. Neurosci. 39(22), 4282–4298 (2019).
[Crossref]

L. Muller, F. Chavane, J. Reynolds, and T. J. Sejnowski, “Cortical travelling waves: mechanisms and computational principles,” Nat. Rev. Neurosci. 19(5), 255–268 (2018).
[Crossref]

S. Roux, F. Matonti, F. Dupont, L. Hoffart, S. Takerkart, S. Picaud, P. Pham, and F. Chavane, “Probing the functional impact of sub-retinal prosthesis,” eLife 5, e12687 (2016).
[Crossref]

S. Chemla and F. Chavane, “Voltage-sensitive dye imaging: Technique review and models,” J. Physiol. 104(1-2), 40–50 (2010).
[Crossref]

D. Sharon, D. Jancke, F. Chavane, S. Na’aman, and A. Grinvald, “Cortical response field dynamics in cat visual cortex,” Cereb. Cortex 17(12), 2866–2877 (2007).
[Crossref]

Chemla, S.

S. Chemla, A. Reynaud, M. di Volo, Y. Zerlaut, L. Perrinet, A. Destexhe, and F. Chavane, “Suppressive traveling waves shape representations of illusory motion in primary visual cortex of awake primate,” J. Neurosci. 39(22), 4282–4298 (2019).
[Crossref]

S. Chemla and F. Chavane, “Voltage-sensitive dye imaging: Technique review and models,” J. Physiol. 104(1-2), 40–50 (2010).
[Crossref]

Chen, Y.

Y. Chen, W. S. Geisler, and E. Seidemann, “Optimal decoding of correlated neural population responses in the primate visual cortex,” Nat. Neurosci. 9(11), 1412–1420 (2006).
[Crossref]

Cloëz-Tayarani, I.

T. D. Mrsic-Flogel, S. B. Hofer, C. Creutzfeldt, I. Cloëz-Tayarani, J. Changeux, T. Bonhoeffer, and M. Hübener, “Altered map of visual space in the superior colliculus of mice lacking early retinal waves,” J. Neurosci. 25(29), 6921–6928 (2005).
[Crossref]

Coffey, P. J.

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” NeuroImage 24(1), 200–206 (2005).
[Crossref]

Contreras, D.

P.-O. Polack and D. Contreras, “Long-range parallel processing and local recurrent activity in the visual cortex of the mouse,” J. Neurosci. 32(32), 11120–11131 (2012).
[Crossref]

Cowey, A.

L. C. L. Silveira, C. A. Heywood, and A. Cowey, “Contrast sensitivity and visual acuity of the pigmented rat determined electrophysiologically,” Vision Res. 27(10), 1719–1731 (1987).
[Crossref]

Creutzfeldt, C.

T. D. Mrsic-Flogel, S. B. Hofer, C. Creutzfeldt, I. Cloëz-Tayarani, J. Changeux, T. Bonhoeffer, and M. Hübener, “Altered map of visual space in the superior colliculus of mice lacking early retinal waves,” J. Neurosci. 25(29), 6921–6928 (2005).
[Crossref]

Dalal, R.

H. Lorach, X. Lei, L. Galambos, T. Kamins, K. Mathieson, R. Dalal, P. Huie, J. Harris, and D. Palanker, “Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration,” Invest. Ophthalmol. Visual Sci. 56(12), 7444 (2015).
[Crossref]

Dan, Y.

F. Han, N. Caporale, and Y. Dan, “Reverberation of Recent Visual Experience in Spontaneous Cortical Waves,” Neuron 60(2), 321–327 (2008).
[Crossref]

Daniel, P. M.

P. M. Daniel and D. Whitteridge, “The representation of the visual field on the cerebral cortex in monkeys,” J. Physiol. 159(2), 203–221 (1961).
[Crossref]

Dawson, M. D.

E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref]

Dean, P.

P. Dean, “Visual pathways and acuity in hooded rats,” Behav. Brain Res. 3(2), 239–271 (1981).
[Crossref]

Degenaar, P.

E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref]

Destexhe, A.

S. Chemla, A. Reynaud, M. di Volo, Y. Zerlaut, L. Perrinet, A. Destexhe, and F. Chavane, “Suppressive traveling waves shape representations of illusory motion in primary visual cortex of awake primate,” J. Neurosci. 39(22), 4282–4298 (2019).
[Crossref]

di Volo, M.

S. Chemla, A. Reynaud, M. di Volo, Y. Zerlaut, L. Perrinet, A. Destexhe, and F. Chavane, “Suppressive traveling waves shape representations of illusory motion in primary visual cortex of awake primate,” J. Neurosci. 39(22), 4282–4298 (2019).
[Crossref]

Douglas, R. M.

G. T. Prusky, P. W. West, and R. M. Douglas, “Behavioral assessment of visual acuity in mice and rats,” Vision Res. 40(16), 2201–2209 (2000).
[Crossref]

Drakakis, E. M.

E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref]

Dupont, F.

S. Roux, F. Matonti, F. Dupont, L. Hoffart, S. Takerkart, S. Picaud, P. Pham, and F. Chavane, “Probing the functional impact of sub-retinal prosthesis,” eLife 5, e12687 (2016).
[Crossref]

Erzurumlu, R. S.

V. Tsytsarev, L.-D. Liao, K. V. Kong, Y.-H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent Progress in Voltage-Sensitive Dye Imaging for Neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref]

Eysel, U. T.

G. Palagina, U. T. Eysel, and D. Jancke, “Strengthening of lateral activation in adult rat visual cortex after retinal lesions captured with voltage-sensitive dye imaging in vivo,” Proc. Natl. Acad. Sci. U. S. A. 106(21), 8743–8747 (2009).
[Crossref]

T. Keck, T. D. Mrsic-Flogel, M. Vaz Afonso, U. T. Eysel, T. Bonhoeffer, and M. Hübener, “Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex,” Nat. Neurosci. 11(10), 1162–1167 (2008).
[Crossref]

Fekete, T.

T. Fekete, D. B. Omer, K. O’Hashi, A. Grinvald, C. van Leeuwen, and O. Shriki, “Critical dynamics, anesthesia and information integration: Lessons from multi-scale criticality analysis of voltage imaging data,” NeuroImage 183, 919–933 (2018).
[Crossref]

Frostig, R. D.

A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, “Optical imaging of neuronal activity,” Physiol. Rev. 68(4), 1285–1366 (1988).
[Crossref]

Galambos, L.

H. Lorach, X. Lei, L. Galambos, T. Kamins, K. Mathieson, R. Dalal, P. Huie, J. Harris, and D. Palanker, “Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration,” Invest. Ophthalmol. Visual Sci. 56(12), 7444 (2015).
[Crossref]

Y. Mandel, G. Goetz, D. Lavinsky, P. Huie, K. Mathieson, L. Wang, T. Kamins, L. Galambos, R. Manivanh, J. Harris, and D. Palanker, “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials,” Nat. Commun. 4(1), 1980 (2013).
[Crossref]

Geisler, W. S.

Y. Chen, W. S. Geisler, and E. Seidemann, “Optimal decoding of correlated neural population responses in the primate visual cortex,” Nat. Neurosci. 9(11), 1412–1420 (2006).
[Crossref]

Gias, C.

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” NeuroImage 24(1), 200–206 (2005).
[Crossref]

Glaser, D.

A. Grinvald, D. Shoham, A. Shmuel, D. Glaser, I. Vanzetta, E. Shtoyerman, H. Slovin, C. Wijnbergen, R. Hildesheim, and A. Arieli, “In-vivo Optical Imaging of Cortical Architecture and Dynamics,” Modern Techniques in Neuroscience Research, 893–969 (1999).

Glaser, D. E.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[Crossref]

Goetz, G.

H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, and D. Palanker, “Photovoltaic restoration of sight with high visual acuity,” Nat. Med. 21(5), 476–482 (2015).
[Crossref]

Y. Mandel, G. Goetz, D. Lavinsky, P. Huie, K. Mathieson, L. Wang, T. Kamins, L. Galambos, R. Manivanh, J. Harris, and D. Palanker, “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials,” Nat. Commun. 4(1), 1980 (2013).
[Crossref]

Gong, S.

S. Y. Shim, S. Gong, M. I. Rosenblatt, D. Palanker, A. Al-Qahtani, M. G. Sun, Q. Zhou, L. Kanu, F. Chau, and C. Q. Yu, “Feasibility of Intraocular Projection for Treatment of Intractable Corneal Opacity,” Cornea 38(4), 523–527 (2019).
[Crossref]

Gong, Z.

E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref]

Grinvald, A.

T. Fekete, D. B. Omer, K. O’Hashi, A. Grinvald, C. van Leeuwen, and O. Shriki, “Critical dynamics, anesthesia and information integration: Lessons from multi-scale criticality analysis of voltage imaging data,” NeuroImage 183, 919–933 (2018).
[Crossref]

D. B. Omer, R. Hildesheim, and A. Grinvald, “Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey,” NeuroImage 82, 237–251 (2013).
[Crossref]

D. Sharon, D. Jancke, F. Chavane, S. Na’aman, and A. Grinvald, “Cortical response field dynamics in cat visual cortex,” Cereb. Cortex 17(12), 2866–2877 (2007).
[Crossref]

A. Grinvald and R. Hildesheim, “VSDI: a new era in functional imaging of cortical dynamics,” Nat. Rev. Neurosci. 5(11), 874–885 (2004).
[Crossref]

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[Crossref]

A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, “Optical imaging of neuronal activity,” Physiol. Rev. 68(4), 1285–1366 (1988).
[Crossref]

A. Grinvald, D. Shoham, A. Shmuel, D. Glaser, I. Vanzetta, E. Shtoyerman, H. Slovin, C. Wijnbergen, R. Hildesheim, and A. Arieli, “In-vivo Optical Imaging of Cortical Architecture and Dynamics,” Modern Techniques in Neuroscience Research, 893–969 (1999).

Grossman, N.

E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref]

Grubb, M. S.

E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref]

Hallett, P. E.

S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985).
[Crossref]

Han, F.

F. Han, N. Caporale, and Y. Dan, “Reverberation of Recent Visual Experience in Spontaneous Cortical Waves,” Neuron 60(2), 321–327 (2008).
[Crossref]

Harris, J.

H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, and D. Palanker, “Photovoltaic restoration of sight with high visual acuity,” Nat. Med. 21(5), 476–482 (2015).
[Crossref]

H. Lorach, X. Lei, L. Galambos, T. Kamins, K. Mathieson, R. Dalal, P. Huie, J. Harris, and D. Palanker, “Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration,” Invest. Ophthalmol. Visual Sci. 56(12), 7444 (2015).
[Crossref]

Y. Mandel, G. Goetz, D. Lavinsky, P. Huie, K. Mathieson, L. Wang, T. Kamins, L. Galambos, R. Manivanh, J. Harris, and D. Palanker, “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials,” Nat. Commun. 4(1), 1980 (2013).
[Crossref]

Hewson-Stoate, N.

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” NeuroImage 24(1), 200–206 (2005).
[Crossref]

Heywood, C. A.

L. C. L. Silveira, C. A. Heywood, and A. Cowey, “Contrast sensitivity and visual acuity of the pigmented rat determined electrophysiologically,” Vision Res. 27(10), 1719–1731 (1987).
[Crossref]

Hildesheim, R.

D. B. Omer, R. Hildesheim, and A. Grinvald, “Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey,” NeuroImage 82, 237–251 (2013).
[Crossref]

A. Grinvald and R. Hildesheim, “VSDI: a new era in functional imaging of cortical dynamics,” Nat. Rev. Neurosci. 5(11), 874–885 (2004).
[Crossref]

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[Crossref]

A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, “Optical imaging of neuronal activity,” Physiol. Rev. 68(4), 1285–1366 (1988).
[Crossref]

A. Grinvald, D. Shoham, A. Shmuel, D. Glaser, I. Vanzetta, E. Shtoyerman, H. Slovin, C. Wijnbergen, R. Hildesheim, and A. Arieli, “In-vivo Optical Imaging of Cortical Architecture and Dynamics,” Modern Techniques in Neuroscience Research, 893–969 (1999).

Hofer, S. B.

T. D. Mrsic-Flogel, S. B. Hofer, C. Creutzfeldt, I. Cloëz-Tayarani, J. Changeux, T. Bonhoeffer, and M. Hübener, “Altered map of visual space in the superior colliculus of mice lacking early retinal waves,” J. Neurosci. 25(29), 6921–6928 (2005).
[Crossref]

Hoffart, L.

S. Roux, F. Matonti, F. Dupont, L. Hoffart, S. Takerkart, S. Picaud, P. Pham, and F. Chavane, “Probing the functional impact of sub-retinal prosthesis,” eLife 5, e12687 (2016).
[Crossref]

Huang, X.

M. T. Lippert, K. Takagaki, W. Xu, X. Huang, and J.-Y. Wu, “Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio,” J. Neurophysiol. 98(1), 502–512 (2007).
[Crossref]

Hubel, D. H.

D. H. Hubel and T.N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex,” J. Physiol. 148(3), 574–591 (1959).
[Crossref]

Hübener, M.

T. Keck, T. D. Mrsic-Flogel, M. Vaz Afonso, U. T. Eysel, T. Bonhoeffer, and M. Hübener, “Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex,” Nat. Neurosci. 11(10), 1162–1167 (2008).
[Crossref]

T. D. Mrsic-Flogel, S. B. Hofer, C. Creutzfeldt, I. Cloëz-Tayarani, J. Changeux, T. Bonhoeffer, and M. Hübener, “Altered map of visual space in the superior colliculus of mice lacking early retinal waves,” J. Neurosci. 25(29), 6921–6928 (2005).
[Crossref]

S. Schuett, T. Bonhoeffer, and M. Hübener, “Mapping retinotopic structure in mouse visual cortex with optical imaging,” J. Neurosci. 22(15), 6549–6559 (2002).
[Crossref]

Hughes, A.

A. Hughes, “A schematic eye for the rat,” Vision Res. 19(5), 569–588 (1979).
[Crossref]

Huie, P.

H. Lorach, X. Lei, L. Galambos, T. Kamins, K. Mathieson, R. Dalal, P. Huie, J. Harris, and D. Palanker, “Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration,” Invest. Ophthalmol. Visual Sci. 56(12), 7444 (2015).
[Crossref]

H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, and D. Palanker, “Photovoltaic restoration of sight with high visual acuity,” Nat. Med. 21(5), 476–482 (2015).
[Crossref]

Y. Mandel, G. Goetz, D. Lavinsky, P. Huie, K. Mathieson, L. Wang, T. Kamins, L. Galambos, R. Manivanh, J. Harris, and D. Palanker, “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials,” Nat. Commun. 4(1), 1980 (2013).
[Crossref]

Itzhack, R.

E. Meirovithz, I. Ayzenshtat, Y. S. Bonneh, R. Itzhack, U. Werner-Reiss, and H. Slovin, “Population response to contextual influences in the primary visual cortex,” Cereb. Cortex 20(6), 1293–1304 (2010).
[Crossref]

Jacobs, G. H.

D. Birch and G. H. Jacobs, “Spatial contrast sensitivity in albino and pigmented rats,” Vision Res. 19(8), 933–937 (1979).
[Crossref]

Jancke, D.

D. Jancke, “Catching the voltage gradient—asymmetric boost of cortical spread generates motion signals across visual cortex: a brief review with special thanks to Amiram Grinvald,” Neurophotonics 4(3), 031206 (2017).
[Crossref]

G. Palagina, U. T. Eysel, and D. Jancke, “Strengthening of lateral activation in adult rat visual cortex after retinal lesions captured with voltage-sensitive dye imaging in vivo,” Proc. Natl. Acad. Sci. U. S. A. 106(21), 8743–8747 (2009).
[Crossref]

D. Sharon, D. Jancke, F. Chavane, S. Na’aman, and A. Grinvald, “Cortical response field dynamics in cat visual cortex,” Cereb. Cortex 17(12), 2866–2877 (2007).
[Crossref]

Johnston, D.

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” NeuroImage 24(1), 200–206 (2005).
[Crossref]

Jones, M.

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” NeuroImage 24(1), 200–206 (2005).
[Crossref]

Kamins, T.

H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, and D. Palanker, “Photovoltaic restoration of sight with high visual acuity,” Nat. Med. 21(5), 476–482 (2015).
[Crossref]

H. Lorach, X. Lei, L. Galambos, T. Kamins, K. Mathieson, R. Dalal, P. Huie, J. Harris, and D. Palanker, “Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration,” Invest. Ophthalmol. Visual Sci. 56(12), 7444 (2015).
[Crossref]

Y. Mandel, G. Goetz, D. Lavinsky, P. Huie, K. Mathieson, L. Wang, T. Kamins, L. Galambos, R. Manivanh, J. Harris, and D. Palanker, “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials,” Nat. Commun. 4(1), 1980 (2013).
[Crossref]

Kanu, L.

S. Y. Shim, S. Gong, M. I. Rosenblatt, D. Palanker, A. Al-Qahtani, M. G. Sun, Q. Zhou, L. Kanu, F. Chau, and C. Q. Yu, “Feasibility of Intraocular Projection for Treatment of Intractable Corneal Opacity,” Cornea 38(4), 523–527 (2019).
[Crossref]

Keck, T.

T. Keck, T. D. Mrsic-Flogel, M. Vaz Afonso, U. T. Eysel, T. Bonhoeffer, and M. Hübener, “Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex,” Nat. Neurosci. 11(10), 1162–1167 (2008).
[Crossref]

Kenet, T.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[Crossref]

Kennedy, G. T.

E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref]

Kong, K. V.

V. Tsytsarev, L.-D. Liao, K. V. Kong, Y.-H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent Progress in Voltage-Sensitive Dye Imaging for Neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref]

Lavinsky, D.

Y. Mandel, G. Goetz, D. Lavinsky, P. Huie, K. Mathieson, L. Wang, T. Kamins, L. Galambos, R. Manivanh, J. Harris, and D. Palanker, “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials,” Nat. Commun. 4(1), 1980 (2013).
[Crossref]

Lei, X.

H. Lorach, X. Lei, L. Galambos, T. Kamins, K. Mathieson, R. Dalal, P. Huie, J. Harris, and D. Palanker, “Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration,” Invest. Ophthalmol. Visual Sci. 56(12), 7444 (2015).
[Crossref]

H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, and D. Palanker, “Photovoltaic restoration of sight with high visual acuity,” Nat. Med. 21(5), 476–482 (2015).
[Crossref]

Liao, L.-D.

V. Tsytsarev, L.-D. Liao, K. V. Kong, Y.-H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent Progress in Voltage-Sensitive Dye Imaging for Neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref]

Lieke, E.

A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, “Optical imaging of neuronal activity,” Physiol. Rev. 68(4), 1285–1366 (1988).
[Crossref]

Lippert, M. T.

M. T. Lippert, K. Takagaki, W. Xu, X. Huang, and J.-Y. Wu, “Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio,” J. Neurophysiol. 98(1), 502–512 (2007).
[Crossref]

Liu, Y.-H.

V. Tsytsarev, L.-D. Liao, K. V. Kong, Y.-H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent Progress in Voltage-Sensitive Dye Imaging for Neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref]

Lorach, H.

H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, and D. Palanker, “Photovoltaic restoration of sight with high visual acuity,” Nat. Med. 21(5), 476–482 (2015).
[Crossref]

H. Lorach, X. Lei, L. Galambos, T. Kamins, K. Mathieson, R. Dalal, P. Huie, J. Harris, and D. Palanker, “Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration,” Invest. Ophthalmol. Visual Sci. 56(12), 7444 (2015).
[Crossref]

Mandel, Y.

H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, and D. Palanker, “Photovoltaic restoration of sight with high visual acuity,” Nat. Med. 21(5), 476–482 (2015).
[Crossref]

Y. Mandel, G. Goetz, D. Lavinsky, P. Huie, K. Mathieson, L. Wang, T. Kamins, L. Galambos, R. Manivanh, J. Harris, and D. Palanker, “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials,” Nat. Commun. 4(1), 1980 (2013).
[Crossref]

Manivanh, R.

Y. Mandel, G. Goetz, D. Lavinsky, P. Huie, K. Mathieson, L. Wang, T. Kamins, L. Galambos, R. Manivanh, J. Harris, and D. Palanker, “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials,” Nat. Commun. 4(1), 1980 (2013).
[Crossref]

Mathieson, K.

H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, and D. Palanker, “Photovoltaic restoration of sight with high visual acuity,” Nat. Med. 21(5), 476–482 (2015).
[Crossref]

H. Lorach, X. Lei, L. Galambos, T. Kamins, K. Mathieson, R. Dalal, P. Huie, J. Harris, and D. Palanker, “Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration,” Invest. Ophthalmol. Visual Sci. 56(12), 7444 (2015).
[Crossref]

Y. Mandel, G. Goetz, D. Lavinsky, P. Huie, K. Mathieson, L. Wang, T. Kamins, L. Galambos, R. Manivanh, J. Harris, and D. Palanker, “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials,” Nat. Commun. 4(1), 1980 (2013).
[Crossref]

Matonti, F.

S. Roux, F. Matonti, F. Dupont, L. Hoffart, S. Takerkart, S. Picaud, P. Pham, and F. Chavane, “Probing the functional impact of sub-retinal prosthesis,” eLife 5, e12687 (2016).
[Crossref]

Mayhew, J. E.

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” NeuroImage 24(1), 200–206 (2005).
[Crossref]

McGovern, B.

E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref]

Meirovithz, E.

E. Meirovithz, I. Ayzenshtat, Y. S. Bonneh, R. Itzhack, U. Werner-Reiss, and H. Slovin, “Population response to contextual influences in the primary visual cortex,” Cereb. Cortex 20(6), 1293–1304 (2010).
[Crossref]

Mrsic-Flogel, T. D.

T. Keck, T. D. Mrsic-Flogel, M. Vaz Afonso, U. T. Eysel, T. Bonhoeffer, and M. Hübener, “Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex,” Nat. Neurosci. 11(10), 1162–1167 (2008).
[Crossref]

T. D. Mrsic-Flogel, S. B. Hofer, C. Creutzfeldt, I. Cloëz-Tayarani, J. Changeux, T. Bonhoeffer, and M. Hübener, “Altered map of visual space in the superior colliculus of mice lacking early retinal waves,” J. Neurosci. 25(29), 6921–6928 (2005).
[Crossref]

Muller, L.

L. Muller, F. Chavane, J. Reynolds, and T. J. Sejnowski, “Cortical travelling waves: mechanisms and computational principles,” Nat. Rev. Neurosci. 19(5), 255–268 (2018).
[Crossref]

Murphy, C. J.

D. O. Mutti, J. N. Ver Hoeve, K. Zadnik, and C. J. Murphy, “The artifact of retinoscopy revisited: comparison of refractive error measured by retinoscopy and visual evoked potential in the rat,” Optom. Vis. Sci. 74(7), 483–488 (1997).
[Crossref]

Mutti, D. O.

D. O. Mutti, J. N. Ver Hoeve, K. Zadnik, and C. J. Murphy, “The artifact of retinoscopy revisited: comparison of refractive error measured by retinoscopy and visual evoked potential in the rat,” Optom. Vis. Sci. 74(7), 483–488 (1997).
[Crossref]

Na’aman, S.

D. Sharon, D. Jancke, F. Chavane, S. Na’aman, and A. Grinvald, “Cortical response field dynamics in cat visual cortex,” Cereb. Cortex 17(12), 2866–2877 (2007).
[Crossref]

Neil, M. A. A.

E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref]

Nikolic, K.

E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref]

O’Hashi, K.

T. Fekete, D. B. Omer, K. O’Hashi, A. Grinvald, C. van Leeuwen, and O. Shriki, “Critical dynamics, anesthesia and information integration: Lessons from multi-scale criticality analysis of voltage imaging data,” NeuroImage 183, 919–933 (2018).
[Crossref]

Olivo, M.

V. Tsytsarev, L.-D. Liao, K. V. Kong, Y.-H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent Progress in Voltage-Sensitive Dye Imaging for Neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref]

Omer, D. B.

T. Fekete, D. B. Omer, K. O’Hashi, A. Grinvald, C. van Leeuwen, and O. Shriki, “Critical dynamics, anesthesia and information integration: Lessons from multi-scale criticality analysis of voltage imaging data,” NeuroImage 183, 919–933 (2018).
[Crossref]

D. B. Omer, R. Hildesheim, and A. Grinvald, “Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey,” NeuroImage 82, 237–251 (2013).
[Crossref]

Palagina, G.

G. Palagina, U. T. Eysel, and D. Jancke, “Strengthening of lateral activation in adult rat visual cortex after retinal lesions captured with voltage-sensitive dye imaging in vivo,” Proc. Natl. Acad. Sci. U. S. A. 106(21), 8743–8747 (2009).
[Crossref]

Palanker, D.

S. Y. Shim, S. Gong, M. I. Rosenblatt, D. Palanker, A. Al-Qahtani, M. G. Sun, Q. Zhou, L. Kanu, F. Chau, and C. Q. Yu, “Feasibility of Intraocular Projection for Treatment of Intractable Corneal Opacity,” Cornea 38(4), 523–527 (2019).
[Crossref]

H. Lorach, X. Lei, L. Galambos, T. Kamins, K. Mathieson, R. Dalal, P. Huie, J. Harris, and D. Palanker, “Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration,” Invest. Ophthalmol. Visual Sci. 56(12), 7444 (2015).
[Crossref]

H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, and D. Palanker, “Photovoltaic restoration of sight with high visual acuity,” Nat. Med. 21(5), 476–482 (2015).
[Crossref]

Y. Mandel, G. Goetz, D. Lavinsky, P. Huie, K. Mathieson, L. Wang, T. Kamins, L. Galambos, R. Manivanh, J. Harris, and D. Palanker, “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials,” Nat. Commun. 4(1), 1980 (2013).
[Crossref]

Palmini, R. B.

E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref]

Paxinos, G.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates - The New Coronal Set (2004).

Perrinet, L.

S. Chemla, A. Reynaud, M. di Volo, Y. Zerlaut, L. Perrinet, A. Destexhe, and F. Chavane, “Suppressive traveling waves shape representations of illusory motion in primary visual cortex of awake primate,” J. Neurosci. 39(22), 4282–4298 (2019).
[Crossref]

Pham, P.

S. Roux, F. Matonti, F. Dupont, L. Hoffart, S. Takerkart, S. Picaud, P. Pham, and F. Chavane, “Probing the functional impact of sub-retinal prosthesis,” eLife 5, e12687 (2016).
[Crossref]

Picaud, S.

S. Roux, F. Matonti, F. Dupont, L. Hoffart, S. Takerkart, S. Picaud, P. Pham, and F. Chavane, “Probing the functional impact of sub-retinal prosthesis,” eLife 5, e12687 (2016).
[Crossref]

Poher, V.

E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref]

Polack, P.-O.

P.-O. Polack and D. Contreras, “Long-range parallel processing and local recurrent activity in the visual cortex of the mouse,” J. Neurosci. 32(32), 11120–11131 (2012).
[Crossref]

Prusky, G. T.

G. T. Prusky, P. W. West, and R. M. Douglas, “Behavioral assessment of visual acuity in mice and rats,” Vision Res. 40(16), 2201–2209 (2000).
[Crossref]

Remtulla, S.

S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985).
[Crossref]

Reynaud, A.

S. Chemla, A. Reynaud, M. di Volo, Y. Zerlaut, L. Perrinet, A. Destexhe, and F. Chavane, “Suppressive traveling waves shape representations of illusory motion in primary visual cortex of awake primate,” J. Neurosci. 39(22), 4282–4298 (2019).
[Crossref]

Reynolds, J.

L. Muller, F. Chavane, J. Reynolds, and T. J. Sejnowski, “Cortical travelling waves: mechanisms and computational principles,” Nat. Rev. Neurosci. 19(5), 255–268 (2018).
[Crossref]

Rosenblatt, M. I.

S. Y. Shim, S. Gong, M. I. Rosenblatt, D. Palanker, A. Al-Qahtani, M. G. Sun, Q. Zhou, L. Kanu, F. Chau, and C. Q. Yu, “Feasibility of Intraocular Projection for Treatment of Intractable Corneal Opacity,” Cornea 38(4), 523–527 (2019).
[Crossref]

Roux, S.

S. Roux, F. Matonti, F. Dupont, L. Hoffart, S. Takerkart, S. Picaud, P. Pham, and F. Chavane, “Probing the functional impact of sub-retinal prosthesis,” eLife 5, e12687 (2016).
[Crossref]

Schuett, S.

S. Schuett, T. Bonhoeffer, and M. Hübener, “Mapping retinotopic structure in mouse visual cortex with optical imaging,” J. Neurosci. 22(15), 6549–6559 (2002).
[Crossref]

Seidemann, E.

Y. Chen, W. S. Geisler, and E. Seidemann, “Optimal decoding of correlated neural population responses in the primate visual cortex,” Nat. Neurosci. 9(11), 1412–1420 (2006).
[Crossref]

Sejnowski, T. J.

L. Muller, F. Chavane, J. Reynolds, and T. J. Sejnowski, “Cortical travelling waves: mechanisms and computational principles,” Nat. Rev. Neurosci. 19(5), 255–268 (2018).
[Crossref]

Sharon, D.

D. Sharon, D. Jancke, F. Chavane, S. Na’aman, and A. Grinvald, “Cortical response field dynamics in cat visual cortex,” Cereb. Cortex 17(12), 2866–2877 (2007).
[Crossref]

Sher, A.

H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, and D. Palanker, “Photovoltaic restoration of sight with high visual acuity,” Nat. Med. 21(5), 476–482 (2015).
[Crossref]

Shim, S. Y.

S. Y. Shim, S. Gong, M. I. Rosenblatt, D. Palanker, A. Al-Qahtani, M. G. Sun, Q. Zhou, L. Kanu, F. Chau, and C. Q. Yu, “Feasibility of Intraocular Projection for Treatment of Intractable Corneal Opacity,” Cornea 38(4), 523–527 (2019).
[Crossref]

Shmuel, A.

A. Grinvald, D. Shoham, A. Shmuel, D. Glaser, I. Vanzetta, E. Shtoyerman, H. Slovin, C. Wijnbergen, R. Hildesheim, and A. Arieli, “In-vivo Optical Imaging of Cortical Architecture and Dynamics,” Modern Techniques in Neuroscience Research, 893–969 (1999).

Shoham, D.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[Crossref]

A. Grinvald, D. Shoham, A. Shmuel, D. Glaser, I. Vanzetta, E. Shtoyerman, H. Slovin, C. Wijnbergen, R. Hildesheim, and A. Arieli, “In-vivo Optical Imaging of Cortical Architecture and Dynamics,” Modern Techniques in Neuroscience Research, 893–969 (1999).

Shriki, O.

T. Fekete, D. B. Omer, K. O’Hashi, A. Grinvald, C. van Leeuwen, and O. Shriki, “Critical dynamics, anesthesia and information integration: Lessons from multi-scale criticality analysis of voltage imaging data,” NeuroImage 183, 919–933 (2018).
[Crossref]

Shtoyerman, E.

A. Grinvald, D. Shoham, A. Shmuel, D. Glaser, I. Vanzetta, E. Shtoyerman, H. Slovin, C. Wijnbergen, R. Hildesheim, and A. Arieli, “In-vivo Optical Imaging of Cortical Architecture and Dynamics,” Modern Techniques in Neuroscience Research, 893–969 (1999).

Silveira, L. C. L.

L. C. L. Silveira, C. A. Heywood, and A. Cowey, “Contrast sensitivity and visual acuity of the pigmented rat determined electrophysiologically,” Vision Res. 27(10), 1719–1731 (1987).
[Crossref]

Slovin, H.

E. Meirovithz, I. Ayzenshtat, Y. S. Bonneh, R. Itzhack, U. Werner-Reiss, and H. Slovin, “Population response to contextual influences in the primary visual cortex,” Cereb. Cortex 20(6), 1293–1304 (2010).
[Crossref]

H. Slovin, “Long-Term Voltage-Sensitive Dye Imaging Reveals Cortical Dynamics in Behaving Monkeys,” J. Neurophysiol. 88(6), 3421–3438 (2002).
[Crossref]

A. Grinvald, D. Shoham, A. Shmuel, D. Glaser, I. Vanzetta, E. Shtoyerman, H. Slovin, C. Wijnbergen, R. Hildesheim, and A. Arieli, “In-vivo Optical Imaging of Cortical Architecture and Dynamics,” Modern Techniques in Neuroscience Research, 893–969 (1999).

Smith, R.

H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, and D. Palanker, “Photovoltaic restoration of sight with high visual acuity,” Nat. Med. 21(5), 476–482 (2015).
[Crossref]

Sun, M. G.

S. Y. Shim, S. Gong, M. I. Rosenblatt, D. Palanker, A. Al-Qahtani, M. G. Sun, Q. Zhou, L. Kanu, F. Chau, and C. Q. Yu, “Feasibility of Intraocular Projection for Treatment of Intractable Corneal Opacity,” Cornea 38(4), 523–527 (2019).
[Crossref]

Takagaki, K.

M. T. Lippert, K. Takagaki, W. Xu, X. Huang, and J.-Y. Wu, “Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio,” J. Neurophysiol. 98(1), 502–512 (2007).
[Crossref]

Takerkart, S.

S. Roux, F. Matonti, F. Dupont, L. Hoffart, S. Takerkart, S. Picaud, P. Pham, and F. Chavane, “Probing the functional impact of sub-retinal prosthesis,” eLife 5, e12687 (2016).
[Crossref]

Thakor, N. V.

V. Tsytsarev, L.-D. Liao, K. V. Kong, Y.-H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent Progress in Voltage-Sensitive Dye Imaging for Neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref]

Toledo, Y.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[Crossref]

Tsytsarev, V.

V. Tsytsarev, L.-D. Liao, K. V. Kong, Y.-H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent Progress in Voltage-Sensitive Dye Imaging for Neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref]

van Leeuwen, C.

T. Fekete, D. B. Omer, K. O’Hashi, A. Grinvald, C. van Leeuwen, and O. Shriki, “Critical dynamics, anesthesia and information integration: Lessons from multi-scale criticality analysis of voltage imaging data,” NeuroImage 183, 919–933 (2018).
[Crossref]

Vanzetta, I.

A. Grinvald, D. Shoham, A. Shmuel, D. Glaser, I. Vanzetta, E. Shtoyerman, H. Slovin, C. Wijnbergen, R. Hildesheim, and A. Arieli, “In-vivo Optical Imaging of Cortical Architecture and Dynamics,” Modern Techniques in Neuroscience Research, 893–969 (1999).

Vaz Afonso, M.

T. Keck, T. D. Mrsic-Flogel, M. Vaz Afonso, U. T. Eysel, T. Bonhoeffer, and M. Hübener, “Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex,” Nat. Neurosci. 11(10), 1162–1167 (2008).
[Crossref]

Ver Hoeve, J. N.

D. O. Mutti, J. N. Ver Hoeve, K. Zadnik, and C. J. Murphy, “The artifact of retinoscopy revisited: comparison of refractive error measured by retinoscopy and visual evoked potential in the rat,” Optom. Vis. Sci. 74(7), 483–488 (1997).
[Crossref]

Wang, L.

Y. Mandel, G. Goetz, D. Lavinsky, P. Huie, K. Mathieson, L. Wang, T. Kamins, L. Galambos, R. Manivanh, J. Harris, and D. Palanker, “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials,” Nat. Commun. 4(1), 1980 (2013).
[Crossref]

Watson, C.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates - The New Coronal Set (2004).

Werner-Reiss, U.

E. Meirovithz, I. Ayzenshtat, Y. S. Bonneh, R. Itzhack, U. Werner-Reiss, and H. Slovin, “Population response to contextual influences in the primary visual cortex,” Cereb. Cortex 20(6), 1293–1304 (2010).
[Crossref]

West, P. W.

G. T. Prusky, P. W. West, and R. M. Douglas, “Behavioral assessment of visual acuity in mice and rats,” Vision Res. 40(16), 2201–2209 (2000).
[Crossref]

Whitteridge, D.

P. M. Daniel and D. Whitteridge, “The representation of the visual field on the cerebral cortex in monkeys,” J. Physiol. 159(2), 203–221 (1961).
[Crossref]

Wiesel, T.N.

D. H. Hubel and T.N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex,” J. Physiol. 148(3), 574–591 (1959).
[Crossref]

Wijnbergen, C.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[Crossref]

A. Grinvald, D. Shoham, A. Shmuel, D. Glaser, I. Vanzetta, E. Shtoyerman, H. Slovin, C. Wijnbergen, R. Hildesheim, and A. Arieli, “In-vivo Optical Imaging of Cortical Architecture and Dynamics,” Modern Techniques in Neuroscience Research, 893–969 (1999).

Wu, J.-Y.

M. T. Lippert, K. Takagaki, W. Xu, X. Huang, and J.-Y. Wu, “Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio,” J. Neurophysiol. 98(1), 502–512 (2007).
[Crossref]

Xu, W.

M. T. Lippert, K. Takagaki, W. Xu, X. Huang, and J.-Y. Wu, “Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio,” J. Neurophysiol. 98(1), 502–512 (2007).
[Crossref]

Yu, C. Q.

S. Y. Shim, S. Gong, M. I. Rosenblatt, D. Palanker, A. Al-Qahtani, M. G. Sun, Q. Zhou, L. Kanu, F. Chau, and C. Q. Yu, “Feasibility of Intraocular Projection for Treatment of Intractable Corneal Opacity,” Cornea 38(4), 523–527 (2019).
[Crossref]

Zadnik, K.

D. O. Mutti, J. N. Ver Hoeve, K. Zadnik, and C. J. Murphy, “The artifact of retinoscopy revisited: comparison of refractive error measured by retinoscopy and visual evoked potential in the rat,” Optom. Vis. Sci. 74(7), 483–488 (1997).
[Crossref]

Zerlaut, Y.

S. Chemla, A. Reynaud, M. di Volo, Y. Zerlaut, L. Perrinet, A. Destexhe, and F. Chavane, “Suppressive traveling waves shape representations of illusory motion in primary visual cortex of awake primate,” J. Neurosci. 39(22), 4282–4298 (2019).
[Crossref]

Zhou, Q.

S. Y. Shim, S. Gong, M. I. Rosenblatt, D. Palanker, A. Al-Qahtani, M. G. Sun, Q. Zhou, L. Kanu, F. Chau, and C. Q. Yu, “Feasibility of Intraocular Projection for Treatment of Intractable Corneal Opacity,” Cornea 38(4), 523–527 (2019).
[Crossref]

Behav. Brain Res. (1)

P. Dean, “Visual pathways and acuity in hooded rats,” Behav. Brain Res. 3(2), 239–271 (1981).
[Crossref]

Cereb. Cortex (2)

E. Meirovithz, I. Ayzenshtat, Y. S. Bonneh, R. Itzhack, U. Werner-Reiss, and H. Slovin, “Population response to contextual influences in the primary visual cortex,” Cereb. Cortex 20(6), 1293–1304 (2010).
[Crossref]

D. Sharon, D. Jancke, F. Chavane, S. Na’aman, and A. Grinvald, “Cortical response field dynamics in cat visual cortex,” Cereb. Cortex 17(12), 2866–2877 (2007).
[Crossref]

Cornea (1)

S. Y. Shim, S. Gong, M. I. Rosenblatt, D. Palanker, A. Al-Qahtani, M. G. Sun, Q. Zhou, L. Kanu, F. Chau, and C. Q. Yu, “Feasibility of Intraocular Projection for Treatment of Intractable Corneal Opacity,” Cornea 38(4), 523–527 (2019).
[Crossref]

eLife (1)

S. Roux, F. Matonti, F. Dupont, L. Hoffart, S. Takerkart, S. Picaud, P. Pham, and F. Chavane, “Probing the functional impact of sub-retinal prosthesis,” eLife 5, e12687 (2016).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

H. Lorach, X. Lei, L. Galambos, T. Kamins, K. Mathieson, R. Dalal, P. Huie, J. Harris, and D. Palanker, “Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration,” Invest. Ophthalmol. Visual Sci. 56(12), 7444 (2015).
[Crossref]

J. Nanosci. Nanotechnol. (1)

V. Tsytsarev, L.-D. Liao, K. V. Kong, Y.-H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent Progress in Voltage-Sensitive Dye Imaging for Neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref]

J. Neural Eng. (1)

E. M. Drakakis, N. Grossman, M. S. Grubb, R. B. Palmini, M. A. A. Neil, K. Nikolic, M. D. Dawson, B. McGovern, J. Burrone, V. Poher, Z. Gong, G. T. Kennedy, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng. 7(1), 016004 (2010).
[Crossref]

J. Neurophysiol. (2)

H. Slovin, “Long-Term Voltage-Sensitive Dye Imaging Reveals Cortical Dynamics in Behaving Monkeys,” J. Neurophysiol. 88(6), 3421–3438 (2002).
[Crossref]

M. T. Lippert, K. Takagaki, W. Xu, X. Huang, and J.-Y. Wu, “Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio,” J. Neurophysiol. 98(1), 502–512 (2007).
[Crossref]

J. Neurosci. (4)

T. D. Mrsic-Flogel, S. B. Hofer, C. Creutzfeldt, I. Cloëz-Tayarani, J. Changeux, T. Bonhoeffer, and M. Hübener, “Altered map of visual space in the superior colliculus of mice lacking early retinal waves,” J. Neurosci. 25(29), 6921–6928 (2005).
[Crossref]

S. Schuett, T. Bonhoeffer, and M. Hübener, “Mapping retinotopic structure in mouse visual cortex with optical imaging,” J. Neurosci. 22(15), 6549–6559 (2002).
[Crossref]

S. Chemla, A. Reynaud, M. di Volo, Y. Zerlaut, L. Perrinet, A. Destexhe, and F. Chavane, “Suppressive traveling waves shape representations of illusory motion in primary visual cortex of awake primate,” J. Neurosci. 39(22), 4282–4298 (2019).
[Crossref]

P.-O. Polack and D. Contreras, “Long-range parallel processing and local recurrent activity in the visual cortex of the mouse,” J. Neurosci. 32(32), 11120–11131 (2012).
[Crossref]

J. Physiol. (3)

P. M. Daniel and D. Whitteridge, “The representation of the visual field on the cerebral cortex in monkeys,” J. Physiol. 159(2), 203–221 (1961).
[Crossref]

D. H. Hubel and T.N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex,” J. Physiol. 148(3), 574–591 (1959).
[Crossref]

S. Chemla and F. Chavane, “Voltage-sensitive dye imaging: Technique review and models,” J. Physiol. 104(1-2), 40–50 (2010).
[Crossref]

Nat. Commun. (1)

Y. Mandel, G. Goetz, D. Lavinsky, P. Huie, K. Mathieson, L. Wang, T. Kamins, L. Galambos, R. Manivanh, J. Harris, and D. Palanker, “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials,” Nat. Commun. 4(1), 1980 (2013).
[Crossref]

Nat. Med. (1)

H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, and D. Palanker, “Photovoltaic restoration of sight with high visual acuity,” Nat. Med. 21(5), 476–482 (2015).
[Crossref]

Nat. Neurosci. (2)

T. Keck, T. D. Mrsic-Flogel, M. Vaz Afonso, U. T. Eysel, T. Bonhoeffer, and M. Hübener, “Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex,” Nat. Neurosci. 11(10), 1162–1167 (2008).
[Crossref]

Y. Chen, W. S. Geisler, and E. Seidemann, “Optimal decoding of correlated neural population responses in the primate visual cortex,” Nat. Neurosci. 9(11), 1412–1420 (2006).
[Crossref]

Nat. Rev. Neurosci. (2)

A. Grinvald and R. Hildesheim, “VSDI: a new era in functional imaging of cortical dynamics,” Nat. Rev. Neurosci. 5(11), 874–885 (2004).
[Crossref]

L. Muller, F. Chavane, J. Reynolds, and T. J. Sejnowski, “Cortical travelling waves: mechanisms and computational principles,” Nat. Rev. Neurosci. 19(5), 255–268 (2018).
[Crossref]

NeuroImage (3)

T. Fekete, D. B. Omer, K. O’Hashi, A. Grinvald, C. van Leeuwen, and O. Shriki, “Critical dynamics, anesthesia and information integration: Lessons from multi-scale criticality analysis of voltage imaging data,” NeuroImage 183, 919–933 (2018).
[Crossref]

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” NeuroImage 24(1), 200–206 (2005).
[Crossref]

D. B. Omer, R. Hildesheim, and A. Grinvald, “Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey,” NeuroImage 82, 237–251 (2013).
[Crossref]

Neuron (2)

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999).
[Crossref]

F. Han, N. Caporale, and Y. Dan, “Reverberation of Recent Visual Experience in Spontaneous Cortical Waves,” Neuron 60(2), 321–327 (2008).
[Crossref]

Neurophotonics (1)

D. Jancke, “Catching the voltage gradient—asymmetric boost of cortical spread generates motion signals across visual cortex: a brief review with special thanks to Amiram Grinvald,” Neurophotonics 4(3), 031206 (2017).
[Crossref]

Optom. Vis. Sci. (1)

D. O. Mutti, J. N. Ver Hoeve, K. Zadnik, and C. J. Murphy, “The artifact of retinoscopy revisited: comparison of refractive error measured by retinoscopy and visual evoked potential in the rat,” Optom. Vis. Sci. 74(7), 483–488 (1997).
[Crossref]

Physiol. Rev. (1)

A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, “Optical imaging of neuronal activity,” Physiol. Rev. 68(4), 1285–1366 (1988).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

G. Palagina, U. T. Eysel, and D. Jancke, “Strengthening of lateral activation in adult rat visual cortex after retinal lesions captured with voltage-sensitive dye imaging in vivo,” Proc. Natl. Acad. Sci. U. S. A. 106(21), 8743–8747 (2009).
[Crossref]

Vision Res. (6)

A. Hughes, “A schematic eye for the rat,” Vision Res. 19(5), 569–588 (1979).
[Crossref]

S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985).
[Crossref]

D. Birch and G. H. Jacobs, “Spatial contrast sensitivity in albino and pigmented rats,” Vision Res. 19(8), 933–937 (1979).
[Crossref]

L. C. L. Silveira, C. A. Heywood, and A. Cowey, “Contrast sensitivity and visual acuity of the pigmented rat determined electrophysiologically,” Vision Res. 27(10), 1719–1731 (1987).
[Crossref]

M. T. Block, “A note on the refraction and image formation of the rat’s eye,” Vision Res. 9(6), 705–711 (1969).
[Crossref]

G. T. Prusky, P. W. West, and R. M. Douglas, “Behavioral assessment of visual acuity in mice and rats,” Vision Res. 40(16), 2201–2209 (2000).
[Crossref]

Other (2)

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates - The New Coronal Set (2004).

A. Grinvald, D. Shoham, A. Shmuel, D. Glaser, I. Vanzetta, E. Shtoyerman, H. Slovin, C. Wijnbergen, R. Hildesheim, and A. Arieli, “In-vivo Optical Imaging of Cortical Architecture and Dynamics,” Modern Techniques in Neuroscience Research, 893–969 (1999).

Supplementary Material (1)

NameDescription
» Visualization 1       A representative video of different retinal stimuli used in this study.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. An illustration of the experimental set-up, consisting of a DLP-DMD-based projection system, a retinal imaging system, and an optical imager for recording cortical activity. The pattern generated by the DLP-DMD projector is reflected through a mirror to a set of lenses (L1, Fig. 1) consisting of a Plano concave and doublet lens to achieve convergence. The converged pattern is then projected onto the rat retina through a mirror M2. The location of the stimulus on the retina is then imaged using a zoom lens (L2) and a CCD camera. Cortical activity is imaged by a CMOS camera situated above the animal and a mounted tandem lens, 85 mm f/1.4 lens and a 50 mm f/1.2. See more details in the Methods section.
Fig. 2.
Fig. 2. Cortical activity in response to flash stimuli with increasing irradiance. A. Cortical responses to a flash (10 ms, 1 Hz) stimulus of 22*13.5 degrees in the visual field, with increasing irradiance. B. Increased amplitude of responses (DF/F) as a function of increasing irradiances (n = 12, data points were fitted with a saturation function). C. Implicit time as a function of irradiance. D. Characteristic cortical responses showing increased spreading of the response with increasing stimulus irradiance (the diamond marker represent the center of activity). A = anterior, L = lateral, P = posterior, M = medial.
Fig. 3.
Fig. 3. Cortical responses to alternating bar stimuli with increasing spatial frequency. A. Retinal imaging of grating stimulus projected on the retina at four spatial frequencies. B. Characteristic responses obtained for the four alternating grating spatial frequencies. C. Decreased amplitude responses as a function of increased spatial frequency (Error Bars are SE, Noise level = 2*STD).
Fig. 4.
Fig. 4. Retinotopic map from nasal and temporal retinal stimuli to a 660µm*410 µm rectangle stimulus (corresponding to 11.3*7.1 degrees in the rat’s visual field). A. The location of the eight stimuli in the nasal and temporal retina. S = superior, T = temporal, I = inferior, N = nasal. B. Characteristic responses of the visual cortex to each retinal stimulus. C. The location of cortical activation obtained for each stimulus after applying a gaussian filter. D. Combined retinotopic mapping generated from visual cortex activity recorded in response to the nasal and temporal retinal stimuli show a clear organization. Each color represents the location of the response to the matched retinal stimulus (presented in diamond shapes with each color corresponding to a different location). E. The center of activation of each of the responses is shown in a larger magnification. A = anterior, L = lateral, P = posterior, M = medial.
Fig. 5.
Fig. 5. High-resolution retinotopy. A. The position of the eight retinal stimuli is shown in real retinal imaging (left, green was added for image clarity) and illustrated (right). S = superior, T = temporal, I = inferior, N = nasal. B. Characteristic visual cortex responses to each retinal stimulus. C. The location of the visual cortex response to each of the retinal stimuli is shown following applying a gaussian filter. D. Visual cortex retinotopic mapping in response to the eight retinal stimuli showing a clear organization. Each color represents the location of the response to the matched retinal stimuli. E. The center of activation of each of the responses (presented in diamond shapes with each color corresponding to a different location similarly to D) is shown in a larger magnification. A = anterior, L = lateral, P = posterior, M = medial.
Fig. 6.
Fig. 6. High-resolution retinotopic map with a non-responsive zone corresponding to a retinal lesion area. A. (Right) Retinal image of a 2 mm retinal area covered with laser lesions (white dots). (Left) Retinal image of the location of the eight stimuli, with the five most nasal ones positioned on healthy retina, whereas the three most temporal ones positioned on the lesioned retinal area (dashed white circle – demarcates the retinal lesion area). B. Diagram of the stimuli described in A. S = superior, T = temporal, I = inferior, N = nasal. C. Characteristic visual cortex responses to each stimulus, where the three most temporal ones showed no responses to stimuli positioned on the lesioned retina. D. The location of visual cortex responses to each of the retinal stimulus with no activity elicited in response to stimulation of the lesioned retina (dashed circle). E. Retinotopic mapping in the visual cortex showing no response in the presumed Lesion Projection Zone (LPZ). F. The centers of activations for each response (presented in diamond shapes with each color corresponding to a different location similarly to E) are shown in a higher magnification. A = anterior, L = lateral, P = posterior, M = medial.

Metrics