Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 72,
  • Issue 9,
  • pp. 1404-1415
  • (2018)

Simultaneous In Situ Monitoring of Trimethoxysilane Hydrolysis Reactions Using Raman, Infrared, and Nuclear Magnetic Resonance (NMR) Spectroscopy Aided by Chemometrics and Ab Initio Calculations

Not Accessible

Your library or personal account may give you access

Abstract

Sol-gels are found in many different scientific fields and have very broad applications. They are often prepared by the hydrolysis and condensation of alkoxysilanes such as trimethoxysilanes, which are commonly used as precursors in the preparation of silsequioxanes via the sol-gel process. The reaction rates of such reactions are influenced by a wide range of experimental factors such as temperature, pH, catalyst, etc. In this study, we combined multiple in situ spectroscopic techniques to monitor the hydrolysis and partial condensation reactions of methyltrimethoxysilane and phenyltrimethoxysilane. A rich set of kinetics information on intermediate species of the hydrolysis reactions were obtained and used for kinetics modeling. Raman and nuclear magnetic resonance (NMR) spectroscopy provided the most information about hydrolysis and NMR provided the most information about condensation. A quantitative method based on Raman spectra to quantify the various transient intermediate hydrolysis products was developed using NMR as the primary method, which can be deployed in the field where it is impractical to carry out NMR measurements.

© 2018 The Author(s)

PDF Article
More Like This
In situ monitoring of the acetylene decomposition and gas temperature at reaction conditions for the deposition of carbon nanotubes using linear Raman scattering

Karla Reinhold-López, Andreas Braeuer, Nadejda Popovska, and Alfred Leipertz
Opt. Express 18(17) 18223-18228 (2010)

Nuclear magnetic resonance imaging

William P. Rothwell
Appl. Opt. 24(23) 3958-3968 (1985)

Electro-mechano-optical detection of nuclear magnetic resonance

Kazuyuki Takeda, Kentaro Nagasaka, Atsushi Noguchi, Rekishu Yamazaki, Yasunobu Nakamura, Eiji Iwase, Jacob M. Taylor, and Koji Usami
Optica 5(2) 152-158 (2018)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental file.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.