Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 71,
  • Issue 10,
  • pp. 2278-2285
  • (2017)

The Importance of Interactions at the Molecular Level: A Spectroscopic Study of a New Composite Sorber Material

Not Accessible

Your library or personal account may give you access

Abstract

The functional properties of a new composite material having water vapor getter properties have been investigated by a large arsenal of characterization techniques. The composite system is originated by combining two constituents having very different chemical natures, a magnesium perchlorate (Mg(ClO4)2) salt and a polymeric acrylic matrix. In particular, Fourier transform infrared (FT-IR) and Raman spectroscopy have been fundamental to understand the type of interactions between the salt and the matrix in different hydration conditions. It was found that in the anhydrous composite system the dispersed Mg(ClO4)2 salt retains its molecular structure, because Mg2+ cations are still surrounded by their [ClO4] counter-anions; at the same time, the salt and the polymeric matrix chemically interact each other at the molecular level. These interactions gradually vanish in the presence of water, and disappear in the fully hydrated composite system, where the Mg2+ cations are completely solvated by the water molecules.

© 2017 The Author(s)

PDF Article
More Like This
Femtosecond laser micromachining in ophthalmic hydrogels: spectroscopic study of materials effects

Dan Yu, Ruiting Huang, and Wayne H. Knox
Opt. Mater. Express 9(8) 3292-3305 (2019)

Fourier transform infrared spectroscopic study of molecular interactions in hemoglobin

James O. Alben and George H. Bare
Appl. Opt. 17(18) 2985-2990 (1978)

Modeling of laser interactions with composite materials

Charles D. Boley and Alexander M. Rubenchik
Appl. Opt. 52(14) 3329-3337 (2013)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental file.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.