K. Alzahrani, D. Burton, F. Lilley, M. Gdeisat, F. Bezombes, and M. Qudeisat, “Absolute distance measurement with micrometer accuracy using a Michelson interferometer and the iterative synthetic wavelength principle,” Opt. Express 20(5), 5658–5682 (2012).
[Crossref]
[PubMed]
S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photonics Rev. 6(3), 393–417 (2012).
[Crossref]
F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011).
[Crossref]
[PubMed]
P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011).
[Crossref]
Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[Crossref]
E. Shafir, M. Shtilman, E. Naor, and G. Berkovic, “Thermally independent fibre optic absolute distance measurement system based on white light interferometry,” IET Optoelectron. 5(2), 68–71 (2011).
[Crossref]
T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[Crossref]
[PubMed]
W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[Crossref]
The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010).
[Crossref]
[PubMed]
A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras,” Appl. Opt. 49(23), 4392–4403 (2010).
[Crossref]
[PubMed]
P. Wang, Y. Semenova, Q. Wu, and G. Farrell, “A bend loss-based singlemode fiber microdisplacement sensor,” Microw. Opt. Technol. Lett. 52(10), 2231–2235 (2010).
[Crossref]
R. Bogue, “Three-dimensional measurements: a review of technologies and applications,” Sensor Rev. 30(2), 102–106 (2010).
[Crossref]
F. Pollinger, K. Meiners-Hagen, M. Wedde, and A. Abou-Zeid, “Diode-laser-based high-precision absolute distance interferometer of 20 m range,” Appl. Opt. 48(32), 6188–6194 (2009).
[Crossref]
[PubMed]
N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
[Crossref]
[PubMed]
S. Rapp, L.-H. Kang, J.-H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct. 18(2), 025006 (2009).
[Crossref]
V. Trudel and Y. St-Amant, “One- and two-dimensional single-mode differential fiber-optic displacement sensor for submillimeter measurements,” Appl. Opt. 47(8), 1082–1089 (2008).
[Crossref]
[PubMed]
P. J. Boltryk, M. Hill, J. W. McBride, and A. Nascè, “A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles,” Sens. Actuators A Phys. 142(1), 2–11 (2008).
[Crossref]
H. Golnabi and P. Azimi, “Design and operation of a double-fiber displacement sensor,” Opt. Commun. 281(4), 614–620 (2008).
[Crossref]
G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008).
[Crossref]
E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[Crossref]
D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]
A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).
L. Ren, G. Song, M. Conditt, P. C. Noble, and H. Li, “Fiber Bragg grating displacement sensor for movement measurement of tendons and ligaments,” Appl. Opt. 46(28), 6867–6871 (2007).
[Crossref]
[PubMed]
D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).
J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[Crossref]
D. Guo and M. Wang, “Self-mixing interferometry based on a double-modulation technique for absolute distance measurement,” Appl. Opt. 46(9), 1486–1491 (2007).
[Crossref]
[PubMed]
M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[Crossref]
C. Cristalli, N. Paone, and R. M. Rodríguez, “Mechanical fault detection of electric motors by laser vibrometer and accelerometer measurements,” Mech. Syst. Signal Process. 20(6), 1350–1361 (2006).
[Crossref]
P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[Crossref]
O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]
J. Pehkonen, P. Palojärvi, and J. Kostamovaara, “Receiver channel with resonance-based timing detection for a laser range finder,” IEEE Trans. Circ. Syst. 53(3), 569–577 (2006).
[Crossref]
W. J. Walecki, A. Pravdivtsev, M. Santos II, and A. Koo, “High-speed high-accuracy fiber optic low-coherence interferometry for in situ grinding and etching process monitoring,” Proc. SPIE 6293, 62930D (2006).
[Crossref]
M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]
K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[Crossref]
E. Shafir and G. Berkovic, “Expanding the realm of fiber optic confocal sensing for probing position, displacement, and velocity,” Appl. Opt. 45(30), 7772–7777 (2006).
[Crossref]
[PubMed]
E. Shafir and G. Berkovic, “Multi-wavelength fiber optic displacement sensing,” Proc. SPIE 5952, 59520X (2005).
[Crossref]
M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref]
H.-J. Yang, J. Deibel, S. Nyberg, and K. Riles, “High-precision absolute distance and vibration measurement with frequency scanned interferometry,” Appl. Opt. 44(19), 3937–3944 (2005).
[Crossref]
[PubMed]
T. Thiel, J. Meissner, and U. Kliebold, “Autonomous crack response monitoring on civil structures with fiber Bragg grating displacement sensors,” Proc. SPIE 5855, 1068–1071 (2005).
[Crossref]
X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[Crossref]
L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[Crossref]
P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[Crossref]
J. Cohen-Sabban, J. Gaillard-Groleas, and P. J. Crepin, “Extended-field confocal imaging for 3D surface sensing,” Proc. SPIE 5252, 366–371 (2004).
[Crossref]
J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004).
[Crossref]
W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[Crossref]
[PubMed]
J. Liu, K. Yamazaki, Y. Zhou, and S. Matsumiya, “A reflective fiber optic sensor for surface roughness in-process measurement,” J. Manuf. Sci. Eng. 124(3), 515–522 (2002).
[Crossref]
G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[Crossref]
E. Shafir and G. Berkovic, “Compact fibre optic probe for simultaneous distance and velocity determination,” Meas. Sci. Technol. 12, 943–947 (2001).
M. Harris, G. Constant, and C. Ward, “Continuous-wave bistatic laser Doppler wind sensor,” Appl. Opt. 40(9), 1501–1506 (2001).
[Crossref]
[PubMed]
M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]
P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An overview and a contribution to the optical measurement of linear displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[Crossref]
R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[Crossref]
L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fibre optical confocal scanning microscope,” Meas. Sci. Technol. 11(12), 1786–1791 (2000).
[Crossref]
P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[Crossref]
[PubMed]
J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[Crossref]
[PubMed]
J. E. Nettleton, B. W. Schilling, D. N. Barr, and J. S. Lei, “Monoblock laser for a low-cost, eyesafe, microlaser range finder,” Appl. Opt. 39(15), 2428–2432 (2000).
[Crossref]
[PubMed]
F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]
J. Zheng and S. Albin, “Self-referenced reflective intensity modulated fiber optic displacement sensor,” Opt. Eng. 38(2), 227–232 (1999).
[Crossref]
J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[Crossref]
J. A. Stone, A. Stejskal, and L. Howard, “Absolute interferometry with a 670-nm external cavity diode laser,” Appl. Opt. 38(28), 5981–5994 (1999).
[Crossref]
[PubMed]
S. Zhang, S. B. Lee, X. Fang, and S. S. Choi, “In-fiber grating sensors,” Opt. Lasers Eng. 32(5), 405–418 (1999).
[Crossref]
D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9(7), 1031–1035 (1998).
[Crossref]
F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37(28), 6684–6689 (1998).
[Crossref]
[PubMed]
Y. Malet and G. Y. Sirat, “Conoscopic holography application: multipurpose rangefinders,” J. Opt. 29(3), 183–187 (1998).
[Crossref]
C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]
C. T. Allen, K. Shi, and R. G. Plumb, “The use of ground-penetrating radar with a cooperative target,” IEEE Geosci. Remote Sensing 36(5), 1821–1825 (1998).
[Crossref]
H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
[Crossref]
J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37(31), 7298–7304 (1998).
[Crossref]
[PubMed]
K.-C. Fan, “A non-contact automatic measurement for free-form surface profiles,” Comput. Integrated Manuf. Syst. 10(4), 277–285 (1997).
[Crossref]
P. Li, H. Zhang, Y. Zhao, and L.-Z. Yang, “New compensation method of an optical fiber reflective displacement sensor,” Proc. SPIE 3241, 474–476 (1997).
[Crossref]
A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]
A. Shimamoto and K. Tanaka, “Geometrical analysis of an optical fiber bundle displacement sensor,” Appl. Opt. 35(34), 6767–6774 (1996).
[Crossref]
[PubMed]
H. Wang, “Reflective fibre optical displacement sensors for the inspection of tilted objects,” Opt. Quantum Electron. 28(11), 1655–1668 (1996).
[Crossref]
Y.-J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]
A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref]
G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[Crossref]
[PubMed]
A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[Crossref]
W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sens. Actuators A Phys. 49(1–2), 51–55 (1995).
[Crossref]
S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[Crossref]
B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30(21), 2975–2979 (1991).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
[PubMed]
Y. Libo and Q. Anping, “Fiber-optic diaphragm pressure sensor with automatic intensity compensation,” Sens. Actuators A Phys. 28(1), 29–33 (1991).
[Crossref]
V. Gusmeroli and M. Martinelli, “Distributed laser Doppler velocimeter,” Opt. Lett. 16(17), 1358–1360 (1991).
[Crossref]
[PubMed]
A. Koch and R. Ulrich, “Fiber-optic displacement sensor with 0.02 µm resolution by white-light interferometry,” Sens. Actuators A Phys. 25(1-3), 201–207 (1990).
[Crossref]
Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21(5), 339–341 (1989).
[Crossref]
C. P. Cockshott and S. J. Pacaud, “Compensation of an optical fibre reflective sensor,” Sens. Actuators 17(1–2), 167–171 (1989).
[Crossref]
W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).
P. J. Besl, “Active optical range imaging sensors,” Mach. Vis. Appl. 1(2), 127–152 (1988).
[Crossref]
A. P. Shepherd and G. L. Riedel, “Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry,” Am. J. Physiol. 242(6), G668–G672 (1982).
[PubMed]
H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibre,” Electron. Lett. 17(17), 603–605 (1981).
[Crossref]
J. W. Bilbro, “Atmospheric laser Doppler velocimetry—An overview,” Opt. Eng. 19, 533–542 (1980).
Y. Yakimovsky and R. Cunningham, “A system for extracting three-dimensional measurements from a stereo pair of TV cameras,” Comput. Graphics Image Process. 7(2), 195–210 (1978).
[Crossref]
D. Nitzan, A. E. Brain, and R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65(2), 206–220 (1977).
[Crossref]
J. A. Powell, “A simple two fiber optical displacement sensor,” Rev. Sci. Instrum. 45(2), 302–303 (1974).
[Crossref]
L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[Crossref]
R. K. Raney, “Synthetic aperture imaging radar and moving targets,” IEEE Trans. Aerosp. Electron. Syst. AES-7(3), 499–505 (1971).
[Crossref]
K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” J. Appl. Meteorol. 7(1), 105–113 (1968).
[Crossref]
C. Menadier, C. Kissinger, and H. Adkins, “The fotonic sensor,” Instruments Control Syst. 40, 114–120 (1967).
G. J. Jako, K. E. Hickman, L. A. Maroti, and S. Holly, “Recording of the movement of the human basilar membrane,” J. Acoust. Soc. Am. 41(6), 1578–9999 (1967).
[Crossref]
J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
[Crossref]
Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He–Ne laser spectrometer,” Appl. Phys. Lett. 4(10), 176–178 (1964).
[Crossref]
C. Menadier, C. Kissinger, and H. Adkins, “The fotonic sensor,” Instruments Control Syst. 40, 114–120 (1967).
J. Zheng and S. Albin, “Self-referenced reflective intensity modulated fiber optic displacement sensor,” Opt. Eng. 38(2), 227–232 (1999).
[Crossref]
C. T. Allen, K. Shi, and R. G. Plumb, “The use of ground-penetrating radar with a cooperative target,” IEEE Geosci. Remote Sensing 36(5), 1821–1825 (1998).
[Crossref]
M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]
F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011).
[Crossref]
[PubMed]
Y. Libo and Q. Anping, “Fiber-optic diaphragm pressure sensor with automatic intensity compensation,” Sens. Actuators A Phys. 28(1), 29–33 (1991).
[Crossref]
E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[Crossref]
H. Golnabi and P. Azimi, “Design and operation of a double-fiber displacement sensor,” Opt. Commun. 281(4), 614–620 (2008).
[Crossref]
S. Rapp, L.-H. Kang, J.-H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct. 18(2), 025006 (2009).
[Crossref]
L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[Crossref]
M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]
G. Beheim and K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21(3), 93–94 (1985).
[Crossref]
E. Shafir, M. Shtilman, E. Naor, and G. Berkovic, “Thermally independent fibre optic absolute distance measurement system based on white light interferometry,” IET Optoelectron. 5(2), 68–71 (2011).
[Crossref]
G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008).
[Crossref]
E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[Crossref]
E. Shafir and G. Berkovic, “Expanding the realm of fiber optic confocal sensing for probing position, displacement, and velocity,” Appl. Opt. 45(30), 7772–7777 (2006).
[Crossref]
[PubMed]
E. Shafir and G. Berkovic, “Multi-wavelength fiber optic displacement sensing,” Proc. SPIE 5952, 59520X (2005).
[Crossref]
E. Shafir and G. Berkovic, “Compact fibre optic probe for simultaneous distance and velocity determination,” Meas. Sci. Technol. 12, 943–947 (2001).
G. Berkovic, S. Zilberman, and E. Shafir, “Size effect in fiber optic displacement sensors,” in Optical Sensors, OSA Technical Digest (online) (Optical Society of America, 2012) SM4F.6.
P. J. Besl, “Active optical range imaging sensors,” Mach. Vis. Appl. 1(2), 127–152 (1988).
[Crossref]
J. W. Bilbro, “Atmospheric laser Doppler velocimetry—An overview,” Opt. Eng. 19, 533–542 (1980).
R. Bogue, “Three-dimensional measurements: a review of technologies and applications,” Sensor Rev. 30(2), 102–106 (2010).
[Crossref]
P. J. Boltryk, M. Hill, J. W. McBride, and A. Nascè, “A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles,” Sens. Actuators A Phys. 142(1), 2–11 (2008).
[Crossref]
J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[Crossref]
[PubMed]
P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[Crossref]
[PubMed]
G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[Crossref]
[PubMed]
J. Borenstein, H. R. Everett, and L. Feng, Navigating Mobile Robots: Sensors and Techniques (A. K. Peters, 1995).
L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[Crossref]
G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[Crossref]
M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]
F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37(28), 6684–6689 (1998).
[Crossref]
[PubMed]
C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]
G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[Crossref]
[PubMed]
D. Nitzan, A. E. Brain, and R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65(2), 206–220 (1977).
[Crossref]
P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011).
[Crossref]
F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011).
[Crossref]
[PubMed]
P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[Crossref]
[PubMed]
J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[Crossref]
[PubMed]
C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]
G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[Crossref]
[PubMed]
G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008).
[Crossref]
F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]
K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” J. Appl. Meteorol. 7(1), 105–113 (1968).
[Crossref]
P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[Crossref]
Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1173–1180.
W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sens. Actuators A Phys. 49(1–2), 51–55 (1995).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
[PubMed]
F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]
S. Zhang, S. B. Lee, X. Fang, and S. S. Choi, “In-fiber grating sensors,” Opt. Lasers Eng. 32(5), 405–418 (1999).
[Crossref]
M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref]
C. P. Cockshott and S. J. Pacaud, “Compensation of an optical fibre reflective sensor,” Sens. Actuators 17(1–2), 167–171 (1989).
[Crossref]
P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[Crossref]
J. Cohen-Sabban, J. Gaillard-Groleas, and P. J. Crepin, “Extended-field confocal imaging for 3D surface sensing,” Proc. SPIE 5252, 366–371 (2004).
[Crossref]
F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011).
[Crossref]
[PubMed]
J. Cohen-Sabban, J. Gaillard-Groleas, and P. J. Crepin, “Extended-field confocal imaging for 3D surface sensing,” Proc. SPIE 5252, 366–371 (2004).
[Crossref]
C. Cristalli, N. Paone, and R. M. Rodríguez, “Mechanical fault detection of electric motors by laser vibrometer and accelerometer measurements,” Mech. Syst. Signal Process. 20(6), 1350–1361 (2006).
[Crossref]
Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1173–1180.
Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He–Ne laser spectrometer,” Appl. Phys. Lett. 4(10), 176–178 (1964).
[Crossref]
Y. Yakimovsky and R. Cunningham, “A system for extracting three-dimensional measurements from a stereo pair of TV cameras,” Comput. Graphics Image Process. 7(2), 195–210 (1978).
[Crossref]
F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011).
[Crossref]
[PubMed]
F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011).
[Crossref]
[PubMed]
X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[Crossref]
S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photonics Rev. 6(3), 393–417 (2012).
[Crossref]
M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[Crossref]
G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[Crossref]
S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[Crossref]
X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[Crossref]
W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[Crossref]
[PubMed]
D. Nitzan, A. E. Brain, and R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65(2), 206–220 (1977).
[Crossref]
M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]
A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[Crossref]
J. Borenstein, H. R. Everett, and L. Feng, Navigating Mobile Robots: Sensors and Techniques (A. K. Peters, 1995).
K.-C. Fan, “A non-contact automatic measurement for free-form surface profiles,” Comput. Integrated Manuf. Syst. 10(4), 277–285 (1997).
[Crossref]
S. Zhang, S. B. Lee, X. Fang, and S. S. Choi, “In-fiber grating sensors,” Opt. Lasers Eng. 32(5), 405–418 (1999).
[Crossref]
P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An overview and a contribution to the optical measurement of linear displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[Crossref]
P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011).
[Crossref]
Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[Crossref]
P. Wang, Y. Semenova, Q. Wu, and G. Farrell, “A bend loss-based singlemode fiber microdisplacement sensor,” Microw. Opt. Technol. Lett. 52(10), 2231–2235 (2010).
[Crossref]
J. Borenstein, H. R. Everett, and L. Feng, Navigating Mobile Robots: Sensors and Techniques (A. K. Peters, 1995).
A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref]
A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
[PubMed]
J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
[Crossref]
G. Beheim and K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21(3), 93–94 (1985).
[Crossref]
J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[Crossref]
[PubMed]
P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[Crossref]
[PubMed]
C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]
G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
[PubMed]
J. Cohen-Sabban, J. Gaillard-Groleas, and P. J. Crepin, “Extended-field confocal imaging for 3D surface sensing,” Proc. SPIE 5252, 366–371 (2004).
[Crossref]
D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).
J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004).
[Crossref]
M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]
J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
[Crossref]
A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).
J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004).
[Crossref]
P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An overview and a contribution to the optical measurement of linear displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[Crossref]
M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[Crossref]
L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[Crossref]
G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[Crossref]
S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[Crossref]
W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).
H. Golnabi and P. Azimi, “Design and operation of a double-fiber displacement sensor,” Opt. Commun. 281(4), 614–620 (2008).
[Crossref]
G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008).
[Crossref]
O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
[PubMed]
S. Rapp, L.-H. Kang, J.-H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct. 18(2), 025006 (2009).
[Crossref]
J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[Crossref]
Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[Crossref]
A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
[PubMed]
W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50(1), 73–78 (1979).
[Crossref]
[PubMed]
M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]
G. J. Jako, K. E. Hickman, L. A. Maroti, and S. Holly, “Recording of the movement of the human basilar membrane,” J. Acoust. Soc. Am. 41(6), 1578–9999 (1967).
[Crossref]
P. J. Boltryk, M. Hill, J. W. McBride, and A. Nascè, “A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles,” Sens. Actuators A Phys. 142(1), 2–11 (2008).
[Crossref]
C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11(21), 2753–2761 (2003).
[Crossref]
[PubMed]
A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[Crossref]
L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[Crossref]
G. J. Jako, K. E. Hickman, L. A. Maroti, and S. Holly, “Recording of the movement of the human basilar membrane,” J. Acoust. Soc. Am. 41(6), 1578–9999 (1967).
[Crossref]
E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[Crossref]
E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[Crossref]
W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[Crossref]
P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[Crossref]
M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
[PubMed]
The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010).
[Crossref]
[PubMed]
W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sens. Actuators A Phys. 49(1–2), 51–55 (1995).
[Crossref]
M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref]
W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[Crossref]
Y.-J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]
G. J. Jako, K. E. Hickman, L. A. Maroti, and S. Holly, “Recording of the movement of the human basilar membrane,” J. Acoust. Soc. Am. 41(6), 1578–9999 (1967).
[Crossref]
A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).
P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[Crossref]
[PubMed]
Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21(5), 339–341 (1989).
[Crossref]
M. Johnson, “Fiber displacement sensors for metrology and control,” Opt. Eng. 24, 961–965 (1985).
H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
[Crossref]
R. Juškaitis and T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92(4–6), 315–325 (1992).
[Crossref]
A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[Crossref]
S. Rapp, L.-H. Kang, J.-H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct. 18(2), 025006 (2009).
[Crossref]
D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9(7), 1031–1035 (1998).
[Crossref]
W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[Crossref]
C. Menadier, C. Kissinger, and H. Adkins, “The fotonic sensor,” Instruments Control Syst. 40, 114–120 (1967).
T. Thiel, J. Meissner, and U. Kliebold, “Autonomous crack response monitoring on civil structures with fiber Bragg grating displacement sensors,” Proc. SPIE 5855, 1068–1071 (2005).
[Crossref]
W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sens. Actuators A Phys. 49(1–2), 51–55 (1995).
[Crossref]
A. Koch and R. Ulrich, “Fiber-optic displacement sensor with 0.02 µm resolution by white-light interferometry,” Sens. Actuators A Phys. 25(1-3), 201–207 (1990).
[Crossref]
W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[Crossref]
W. J. Walecki, A. Pravdivtsev, M. Santos II, and A. Koo, “High-speed high-accuracy fiber optic low-coherence interferometry for in situ grinding and etching process monitoring,” Proc. SPIE 6293, 62930D (2006).
[Crossref]
J. Pehkonen, P. Palojärvi, and J. Kostamovaara, “Receiver channel with resonance-based timing detection for a laser range finder,” IEEE Trans. Circ. Syst. 53(3), 569–577 (2006).
[Crossref]
K. Määtta, J. Kostamovaara, and R. Myllylä, “Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques,” Appl. Opt. 32(27), 5334–5347 (1993).
[Crossref]
[PubMed]
O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]
M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]
R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[Crossref]
S. Zhang, S. B. Lee, X. Fang, and S. S. Choi, “In-fiber grating sensors,” Opt. Lasers Eng. 32(5), 405–418 (1999).
[Crossref]
M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]
Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21(5), 339–341 (1989).
[Crossref]
M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]
J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
[Crossref]
K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[Crossref]
P. Li, H. Zhang, Y. Zhao, and L.-Z. Yang, “New compensation method of an optical fiber reflective displacement sensor,” Proc. SPIE 3241, 474–476 (1997).
[Crossref]
Y. Libo and Q. Anping, “Fiber-optic diaphragm pressure sensor with automatic intensity compensation,” Sens. Actuators A Phys. 28(1), 29–33 (1991).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
[PubMed]
D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).
J. Liu, K. Yamazaki, Y. Zhou, and S. Matsumiya, “A reflective fiber optic sensor for surface roughness in-process measurement,” J. Manuf. Sci. Eng. 124(3), 515–522 (2002).
[Crossref]
K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[Crossref]
F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011).
[Crossref]
[PubMed]
Y. Malet and G. Y. Sirat, “Conoscopic holography application: multipurpose rangefinders,” J. Opt. 29(3), 183–187 (1998).
[Crossref]
G. J. Jako, K. E. Hickman, L. A. Maroti, and S. Holly, “Recording of the movement of the human basilar membrane,” J. Acoust. Soc. Am. 41(6), 1578–9999 (1967).
[Crossref]
P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[Crossref]
O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]
J. Liu, K. Yamazaki, Y. Zhou, and S. Matsumiya, “A reflective fiber optic sensor for surface roughness in-process measurement,” J. Manuf. Sci. Eng. 124(3), 515–522 (2002).
[Crossref]
P. J. Boltryk, M. Hill, J. W. McBride, and A. Nascè, “A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles,” Sens. Actuators A Phys. 142(1), 2–11 (2008).
[Crossref]
T. Thiel, J. Meissner, and U. Kliebold, “Autonomous crack response monitoring on civil structures with fiber Bragg grating displacement sensors,” Proc. SPIE 5855, 1068–1071 (2005).
[Crossref]
W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).
C. Menadier, C. Kissinger, and H. Adkins, “The fotonic sensor,” Instruments Control Syst. 40, 114–120 (1967).
J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004).
[Crossref]
The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010).
[Crossref]
[PubMed]
S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[Crossref]
F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011).
[Crossref]
[PubMed]
D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).
W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).
E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[Crossref]
S. Rapp, L.-H. Kang, J.-H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct. 18(2), 025006 (2009).
[Crossref]
M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]
K. Määtta, J. Kostamovaara, and R. Myllylä, “Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques,” Appl. Opt. 32(27), 5334–5347 (1993).
[Crossref]
[PubMed]
K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[Crossref]
E. Shafir, M. Shtilman, E. Naor, and G. Berkovic, “Thermally independent fibre optic absolute distance measurement system based on white light interferometry,” IET Optoelectron. 5(2), 68–71 (2011).
[Crossref]
P. J. Boltryk, M. Hill, J. W. McBride, and A. Nascè, “A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles,” Sens. Actuators A Phys. 142(1), 2–11 (2008).
[Crossref]
J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[Crossref]
X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[Crossref]
P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[Crossref]
D. Nitzan, A. E. Brain, and R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65(2), 206–220 (1977).
[Crossref]
M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[Crossref]
G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[Crossref]
A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).
A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]
C. P. Cockshott and S. J. Pacaud, “Compensation of an optical fibre reflective sensor,” Sens. Actuators 17(1–2), 167–171 (1989).
[Crossref]
M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]
J. Pehkonen, P. Palojärvi, and J. Kostamovaara, “Receiver channel with resonance-based timing detection for a laser range finder,” IEEE Trans. Circ. Syst. 53(3), 569–577 (2006).
[Crossref]
C. Cristalli, N. Paone, and R. M. Rodríguez, “Mechanical fault detection of electric motors by laser vibrometer and accelerometer measurements,” Mech. Syst. Signal Process. 20(6), 1350–1361 (2006).
[Crossref]
P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[Crossref]
[PubMed]
J. Pehkonen, P. Palojärvi, and J. Kostamovaara, “Receiver channel with resonance-based timing detection for a laser range finder,” IEEE Trans. Circ. Syst. 53(3), 569–577 (2006).
[Crossref]
P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An overview and a contribution to the optical measurement of linear displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[Crossref]
E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[Crossref]
D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).
J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[Crossref]
[PubMed]
C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]
L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[Crossref]
J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004).
[Crossref]
C. T. Allen, K. Shi, and R. G. Plumb, “The use of ground-penetrating radar with a cooperative target,” IEEE Geosci. Remote Sensing 36(5), 1821–1825 (1998).
[Crossref]
P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An overview and a contribution to the optical measurement of linear displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[Crossref]
J. A. Powell, “A simple two fiber optical displacement sensor,” Rev. Sci. Instrum. 45(2), 302–303 (1974).
[Crossref]
W. J. Walecki, A. Pravdivtsev, M. Santos II, and A. Koo, “High-speed high-accuracy fiber optic low-coherence interferometry for in situ grinding and etching process monitoring,” Proc. SPIE 6293, 62930D (2006).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
[PubMed]
R. K. Raney, “Synthetic aperture imaging radar and moving targets,” IEEE Trans. Aerosp. Electron. Syst. AES-7(3), 499–505 (1971).
[Crossref]
Y.-J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]
S. Rapp, L.-H. Kang, J.-H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct. 18(2), 025006 (2009).
[Crossref]
A. P. Shepherd and G. L. Riedel, “Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry,” Am. J. Physiol. 242(6), G668–G672 (1982).
[PubMed]
M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]
M. Rioux, “Laser range finder based on synchronized scanners,” Appl. Opt. 23(21), 3837–3844 (1984).
[Crossref]
[PubMed]
C. Cristalli, N. Paone, and R. M. Rodríguez, “Mechanical fault detection of electric motors by laser vibrometer and accelerometer measurements,” Mech. Syst. Signal Process. 20(6), 1350–1361 (2006).
[Crossref]
A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).
W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[Crossref]
B. Saleh, Introduction to Subsurface Imaging (Cambridge University Press, 2011), p. 38.
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
W. J. Walecki, A. Pravdivtsev, M. Santos II, and A. Koo, “High-speed high-accuracy fiber optic low-coherence interferometry for in situ grinding and etching process monitoring,” Proc. SPIE 6293, 62930D (2006).
[Crossref]
W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[Crossref]
L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[Crossref]
F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011).
[Crossref]
[PubMed]
W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[Crossref]
J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
[PubMed]
Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1173–1180.
R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[Crossref]
P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011).
[Crossref]
Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[Crossref]
P. Wang, Y. Semenova, Q. Wu, and G. Farrell, “A bend loss-based singlemode fiber microdisplacement sensor,” Microw. Opt. Technol. Lett. 52(10), 2231–2235 (2010).
[Crossref]
E. Shafir, M. Shtilman, E. Naor, and G. Berkovic, “Thermally independent fibre optic absolute distance measurement system based on white light interferometry,” IET Optoelectron. 5(2), 68–71 (2011).
[Crossref]
G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008).
[Crossref]
E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[Crossref]
E. Shafir and G. Berkovic, “Expanding the realm of fiber optic confocal sensing for probing position, displacement, and velocity,” Appl. Opt. 45(30), 7772–7777 (2006).
[Crossref]
[PubMed]
E. Shafir and G. Berkovic, “Multi-wavelength fiber optic displacement sensing,” Proc. SPIE 5952, 59520X (2005).
[Crossref]
E. Shafir and G. Berkovic, “Compact fibre optic probe for simultaneous distance and velocity determination,” Meas. Sci. Technol. 12, 943–947 (2001).
G. Berkovic, S. Zilberman, and E. Shafir, “Size effect in fiber optic displacement sensors,” in Optical Sensors, OSA Technical Digest (online) (Optical Society of America, 2012) SM4F.6.
H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibre,” Electron. Lett. 17(17), 603–605 (1981).
[Crossref]
The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010).
[Crossref]
[PubMed]
A. P. Shepherd and G. L. Riedel, “Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry,” Am. J. Physiol. 242(6), G668–G672 (1982).
[PubMed]
K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[Crossref]
C. T. Allen, K. Shi, and R. G. Plumb, “The use of ground-penetrating radar with a cooperative target,” IEEE Geosci. Remote Sensing 36(5), 1821–1825 (1998).
[Crossref]
E. Shafir, M. Shtilman, E. Naor, and G. Berkovic, “Thermally independent fibre optic absolute distance measurement system based on white light interferometry,” IET Optoelectron. 5(2), 68–71 (2011).
[Crossref]
X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[Crossref]
G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008).
[Crossref]
F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011).
[Crossref]
[PubMed]
Y. Malet and G. Y. Sirat, “Conoscopic holography application: multipurpose rangefinders,” J. Opt. 29(3), 183–187 (1998).
[Crossref]
D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).
E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[Crossref]
F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]
C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]
G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[Crossref]
[PubMed]
P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[Crossref]
[PubMed]
W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[Crossref]
D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]
W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
[PubMed]
O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]
E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[Crossref]
D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
[PubMed]
C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]
G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[Crossref]
[PubMed]
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1173–1180.
T. Thiel, J. Meissner, and U. Kliebold, “Autonomous crack response monitoring on civil structures with fiber Bragg grating displacement sensors,” Proc. SPIE 5855, 1068–1071 (2005).
[Crossref]
Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1173–1180.
H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
[Crossref]
P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[Crossref]
J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004).
[Crossref]
A. Koch and R. Ulrich, “Fiber-optic displacement sensor with 0.02 µm resolution by white-light interferometry,” Sens. Actuators A Phys. 25(1-3), 201–207 (1990).
[Crossref]
M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]
W. J. Walecki, A. Pravdivtsev, M. Santos II, and A. Koo, “High-speed high-accuracy fiber optic low-coherence interferometry for in situ grinding and etching process monitoring,” Proc. SPIE 6293, 62930D (2006).
[Crossref]
L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fibre optical confocal scanning microscope,” Meas. Sci. Technol. 11(12), 1786–1791 (2000).
[Crossref]
H. Wang, “Reflective fibre optical displacement sensors for the inspection of tilted objects,” Opt. Quantum Electron. 28(11), 1655–1668 (1996).
[Crossref]
L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fibre optical confocal scanning microscope,” Meas. Sci. Technol. 11(12), 1786–1791 (2000).
[Crossref]
Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[Crossref]
P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011).
[Crossref]
P. Wang, Y. Semenova, Q. Wu, and G. Farrell, “A bend loss-based singlemode fiber microdisplacement sensor,” Microw. Opt. Technol. Lett. 52(10), 2231–2235 (2010).
[Crossref]
H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
[Crossref]
P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[Crossref]
[PubMed]
G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[Crossref]
[PubMed]
E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[Crossref]
K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” J. Appl. Meteorol. 7(1), 105–113 (1968).
[Crossref]
O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]
R. Juškaitis and T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92(4–6), 315–325 (1992).
[Crossref]
P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011).
[Crossref]
Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[Crossref]
P. Wang, Y. Semenova, Q. Wu, and G. Farrell, “A bend loss-based singlemode fiber microdisplacement sensor,” Microw. Opt. Technol. Lett. 52(10), 2231–2235 (2010).
[Crossref]
The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010).
[Crossref]
[PubMed]
D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9(7), 1031–1035 (1998).
[Crossref]
L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fibre optical confocal scanning microscope,” Meas. Sci. Technol. 11(12), 1786–1791 (2000).
[Crossref]
Y. Yakimovsky and R. Cunningham, “A system for extracting three-dimensional measurements from a stereo pair of TV cameras,” Comput. Graphics Image Process. 7(2), 195–210 (1978).
[Crossref]
J. Liu, K. Yamazaki, Y. Zhou, and S. Matsumiya, “A reflective fiber optic sensor for surface roughness in-process measurement,” J. Manuf. Sci. Eng. 124(3), 515–522 (2002).
[Crossref]
L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fibre optical confocal scanning microscope,” Meas. Sci. Technol. 11(12), 1786–1791 (2000).
[Crossref]
P. Li, H. Zhang, Y. Zhao, and L.-Z. Yang, “New compensation method of an optical fiber reflective displacement sensor,” Proc. SPIE 3241, 474–476 (1997).
[Crossref]
J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[Crossref]
X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[Crossref]
Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He–Ne laser spectrometer,” Appl. Phys. Lett. 4(10), 176–178 (1964).
[Crossref]
K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[Crossref]
L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[Crossref]
The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010).
[Crossref]
[PubMed]
P. Li, H. Zhang, Y. Zhao, and L.-Z. Yang, “New compensation method of an optical fiber reflective displacement sensor,” Proc. SPIE 3241, 474–476 (1997).
[Crossref]
S. Zhang, S. B. Lee, X. Fang, and S. S. Choi, “In-fiber grating sensors,” Opt. Lasers Eng. 32(5), 405–418 (1999).
[Crossref]
X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[Crossref]
P. Li, H. Zhang, Y. Zhao, and L.-Z. Yang, “New compensation method of an optical fiber reflective displacement sensor,” Proc. SPIE 3241, 474–476 (1997).
[Crossref]
J. Zheng and S. Albin, “Self-referenced reflective intensity modulated fiber optic displacement sensor,” Opt. Eng. 38(2), 227–232 (1999).
[Crossref]
J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[Crossref]
J. Liu, K. Yamazaki, Y. Zhou, and S. Matsumiya, “A reflective fiber optic sensor for surface roughness in-process measurement,” J. Manuf. Sci. Eng. 124(3), 515–522 (2002).
[Crossref]
G. Berkovic, S. Zilberman, and E. Shafir, “Size effect in fiber optic displacement sensors,” in Optical Sensors, OSA Technical Digest (online) (Optical Society of America, 2012) SM4F.6.
P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[Crossref]
[PubMed]
A. P. Shepherd and G. L. Riedel, “Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry,” Am. J. Physiol. 242(6), G668–G672 (1982).
[PubMed]
C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]
R. O. Cook and C. W. Hamm, “Fiber optic lever displacement transducer,” Appl. Opt. 18(19), 3230–3241 (1979).
[Crossref]
[PubMed]
M. Rioux, “Laser range finder based on synchronized scanners,” Appl. Opt. 23(21), 3837–3844 (1984).
[Crossref]
[PubMed]
B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30(21), 2975–2979 (1991).
[Crossref]
[PubMed]
T. Dabbs and M. Glass, “Fiber-optic confocal microscope: FOCON,” Appl. Opt. 31(16), 3030–3035 (1992).
[Crossref]
[PubMed]
R. G. Dorsch, G. Häusler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33(7), 1306–1314 (1994).
[Crossref]
[PubMed]
H. J. Tiziani and H.-M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt. 33(10), 1838–1843 (1994).
[Crossref]
[PubMed]
F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37(28), 6684–6689 (1998).
[Crossref]
[PubMed]
J. A. Stone, A. Stejskal, and L. Howard, “Absolute interferometry with a 670-nm external cavity diode laser,” Appl. Opt. 38(28), 5981–5994 (1999).
[Crossref]
[PubMed]
J. E. Nettleton, B. W. Schilling, D. N. Barr, and J. S. Lei, “Monoblock laser for a low-cost, eyesafe, microlaser range finder,” Appl. Opt. 39(15), 2428–2432 (2000).
[Crossref]
[PubMed]
A. Shimamoto and K. Tanaka, “Geometrical analysis of an optical fiber bundle displacement sensor,” Appl. Opt. 35(34), 6767–6774 (1996).
[Crossref]
[PubMed]
K. Määtta, J. Kostamovaara, and R. Myllylä, “Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques,” Appl. Opt. 32(27), 5334–5347 (1993).
[Crossref]
[PubMed]
J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37(31), 7298–7304 (1998).
[Crossref]
[PubMed]
M. Harris, G. Constant, and C. Ward, “Continuous-wave bistatic laser Doppler wind sensor,” Appl. Opt. 40(9), 1501–1506 (2001).
[Crossref]
[PubMed]
C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12(9), 2071–2074 (1973).
[Crossref]
[PubMed]
H.-J. Yang, J. Deibel, S. Nyberg, and K. Riles, “High-precision absolute distance and vibration measurement with frequency scanned interferometry,” Appl. Opt. 44(19), 3937–3944 (2005).
[Crossref]
[PubMed]
E. Shafir and G. Berkovic, “Expanding the realm of fiber optic confocal sensing for probing position, displacement, and velocity,” Appl. Opt. 45(30), 7772–7777 (2006).
[Crossref]
[PubMed]
D. Guo and M. Wang, “Self-mixing interferometry based on a double-modulation technique for absolute distance measurement,” Appl. Opt. 46(9), 1486–1491 (2007).
[Crossref]
[PubMed]
L. Ren, G. Song, M. Conditt, P. C. Noble, and H. Li, “Fiber Bragg grating displacement sensor for movement measurement of tendons and ligaments,” Appl. Opt. 46(28), 6867–6871 (2007).
[Crossref]
[PubMed]
V. Trudel and Y. St-Amant, “One- and two-dimensional single-mode differential fiber-optic displacement sensor for submillimeter measurements,” Appl. Opt. 47(8), 1082–1089 (2008).
[Crossref]
[PubMed]
F. Pollinger, K. Meiners-Hagen, M. Wedde, and A. Abou-Zeid, “Diode-laser-based high-precision absolute distance interferometer of 20 m range,” Appl. Opt. 48(32), 6188–6194 (2009).
[Crossref]
[PubMed]
A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras,” Appl. Opt. 49(23), 4392–4403 (2010).
[Crossref]
[PubMed]
D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]
Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He–Ne laser spectrometer,” Appl. Phys. Lett. 4(10), 176–178 (1964).
[Crossref]
J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
[Crossref]
Y. Yakimovsky and R. Cunningham, “A system for extracting three-dimensional measurements from a stereo pair of TV cameras,” Comput. Graphics Image Process. 7(2), 195–210 (1978).
[Crossref]
K.-C. Fan, “A non-contact automatic measurement for free-form surface profiles,” Comput. Integrated Manuf. Syst. 10(4), 277–285 (1997).
[Crossref]
H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibre,” Electron. Lett. 17(17), 603–605 (1981).
[Crossref]
G. Beheim and K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21(3), 93–94 (1985).
[Crossref]
C. T. Allen, K. Shi, and R. G. Plumb, “The use of ground-penetrating radar with a cooperative target,” IEEE Geosci. Remote Sensing 36(5), 1821–1825 (1998).
[Crossref]
R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[Crossref]
S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[Crossref]
J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[Crossref]
Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[Crossref]
W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[Crossref]
P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An overview and a contribution to the optical measurement of linear displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[Crossref]
G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008).
[Crossref]
R. K. Raney, “Synthetic aperture imaging radar and moving targets,” IEEE Trans. Aerosp. Electron. Syst. AES-7(3), 499–505 (1971).
[Crossref]
J. Pehkonen, P. Palojärvi, and J. Kostamovaara, “Receiver channel with resonance-based timing detection for a laser range finder,” IEEE Trans. Circ. Syst. 53(3), 569–577 (2006).
[Crossref]
L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[Crossref]
M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[Crossref]
E. Shafir, M. Shtilman, E. Naor, and G. Berkovic, “Thermally independent fibre optic absolute distance measurement system based on white light interferometry,” IET Optoelectron. 5(2), 68–71 (2011).
[Crossref]
C. Menadier, C. Kissinger, and H. Adkins, “The fotonic sensor,” Instruments Control Syst. 40, 114–120 (1967).
A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).
G. J. Jako, K. E. Hickman, L. A. Maroti, and S. Holly, “Recording of the movement of the human basilar membrane,” J. Acoust. Soc. Am. 41(6), 1578–9999 (1967).
[Crossref]
K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” J. Appl. Meteorol. 7(1), 105–113 (1968).
[Crossref]
E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[Crossref]
L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[Crossref]
A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref]
M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref]
W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[Crossref]
[PubMed]
J. Liu, K. Yamazaki, Y. Zhou, and S. Matsumiya, “A reflective fiber optic sensor for surface roughness in-process measurement,” J. Manuf. Sci. Eng. 124(3), 515–522 (2002).
[Crossref]
Y. Malet and G. Y. Sirat, “Conoscopic holography application: multipurpose rangefinders,” J. Opt. 29(3), 183–187 (1998).
[Crossref]
P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011).
[Crossref]
G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[Crossref]
J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004).
[Crossref]
S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photonics Rev. 6(3), 393–417 (2012).
[Crossref]
P. J. Besl, “Active optical range imaging sensors,” Mach. Vis. Appl. 1(2), 127–152 (1988).
[Crossref]
H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
[Crossref]
L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fibre optical confocal scanning microscope,” Meas. Sci. Technol. 11(12), 1786–1791 (2000).
[Crossref]
Y.-J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]
E. Shafir and G. Berkovic, “Compact fibre optic probe for simultaneous distance and velocity determination,” Meas. Sci. Technol. 12, 943–947 (2001).
D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9(7), 1031–1035 (1998).
[Crossref]
P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[Crossref]
C. Cristalli, N. Paone, and R. M. Rodríguez, “Mechanical fault detection of electric motors by laser vibrometer and accelerometer measurements,” Mech. Syst. Signal Process. 20(6), 1350–1361 (2006).
[Crossref]
P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[Crossref]
P. Wang, Y. Semenova, Q. Wu, and G. Farrell, “A bend loss-based singlemode fiber microdisplacement sensor,” Microw. Opt. Technol. Lett. 52(10), 2231–2235 (2010).
[Crossref]
J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[Crossref]
[PubMed]
J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[Crossref]
A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[Crossref]
K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[Crossref]
R. Juškaitis and T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92(4–6), 315–325 (1992).
[Crossref]
H. Golnabi and P. Azimi, “Design and operation of a double-fiber displacement sensor,” Opt. Commun. 281(4), 614–620 (2008).
[Crossref]
F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]
M. Johnson, “Fiber displacement sensors for metrology and control,” Opt. Eng. 24, 961–965 (1985).
J. Zheng and S. Albin, “Self-referenced reflective intensity modulated fiber optic displacement sensor,” Opt. Eng. 38(2), 227–232 (1999).
[Crossref]
M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]
J. W. Bilbro, “Atmospheric laser Doppler velocimetry—An overview,” Opt. Eng. 19, 533–542 (1980).
C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11(21), 2753–2761 (2003).
[Crossref]
[PubMed]
T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[Crossref]
[PubMed]
F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011).
[Crossref]
[PubMed]
K. Alzahrani, D. Burton, F. Lilley, M. Gdeisat, F. Bezombes, and M. Qudeisat, “Absolute distance measurement with micrometer accuracy using a Michelson interferometer and the iterative synthetic wavelength principle,” Opt. Express 20(5), 5658–5682 (2012).
[Crossref]
[PubMed]
N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
[Crossref]
[PubMed]
Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21(5), 339–341 (1989).
[Crossref]
S. Zhang, S. B. Lee, X. Fang, and S. S. Choi, “In-fiber grating sensors,” Opt. Lasers Eng. 32(5), 405–418 (1999).
[Crossref]
G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[Crossref]
[PubMed]
G. Sirat and D. Psaltis, “Conoscopic holography,” Opt. Lett. 10(1), 4–6 (1985).
[Crossref]
[PubMed]
V. Gusmeroli and M. Martinelli, “Distributed laser Doppler velocimeter,” Opt. Lett. 16(17), 1358–1360 (1991).
[Crossref]
[PubMed]
H. Wang, “Reflective fibre optical displacement sensors for the inspection of tilted objects,” Opt. Quantum Electron. 28(11), 1655–1668 (1996).
[Crossref]
D. Nitzan, A. E. Brain, and R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65(2), 206–220 (1977).
[Crossref]
E. Shafir and G. Berkovic, “Multi-wavelength fiber optic displacement sensing,” Proc. SPIE 5952, 59520X (2005).
[Crossref]
P. Li, H. Zhang, Y. Zhao, and L.-Z. Yang, “New compensation method of an optical fiber reflective displacement sensor,” Proc. SPIE 3241, 474–476 (1997).
[Crossref]
W. J. Walecki, A. Pravdivtsev, M. Santos II, and A. Koo, “High-speed high-accuracy fiber optic low-coherence interferometry for in situ grinding and etching process monitoring,” Proc. SPIE 6293, 62930D (2006).
[Crossref]
M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]
J. Cohen-Sabban, J. Gaillard-Groleas, and P. J. Crepin, “Extended-field confocal imaging for 3D surface sensing,” Proc. SPIE 5252, 366–371 (2004).
[Crossref]
D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).
T. Thiel, J. Meissner, and U. Kliebold, “Autonomous crack response monitoring on civil structures with fiber Bragg grating displacement sensors,” Proc. SPIE 5855, 1068–1071 (2005).
[Crossref]
W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).
A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]
O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]
W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50(1), 73–78 (1979).
[Crossref]
[PubMed]
The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010).
[Crossref]
[PubMed]
J. A. Powell, “A simple two fiber optical displacement sensor,” Rev. Sci. Instrum. 45(2), 302–303 (1974).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
[PubMed]
C. P. Cockshott and S. J. Pacaud, “Compensation of an optical fibre reflective sensor,” Sens. Actuators 17(1–2), 167–171 (1989).
[Crossref]
Y. Libo and Q. Anping, “Fiber-optic diaphragm pressure sensor with automatic intensity compensation,” Sens. Actuators A Phys. 28(1), 29–33 (1991).
[Crossref]
P. J. Boltryk, M. Hill, J. W. McBride, and A. Nascè, “A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles,” Sens. Actuators A Phys. 142(1), 2–11 (2008).
[Crossref]
W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sens. Actuators A Phys. 49(1–2), 51–55 (1995).
[Crossref]
A. Koch and R. Ulrich, “Fiber-optic displacement sensor with 0.02 µm resolution by white-light interferometry,” Sens. Actuators A Phys. 25(1-3), 201–207 (1990).
[Crossref]
R. Bogue, “Three-dimensional measurements: a review of technologies and applications,” Sensor Rev. 30(2), 102–106 (2010).
[Crossref]
S. Rapp, L.-H. Kang, J.-H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct. 18(2), 025006 (2009).
[Crossref]
X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[Crossref]
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
B. Saleh, Introduction to Subsurface Imaging (Cambridge University Press, 2011), p. 38.
Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1173–1180.
J. Borenstein, H. R. Everett, and L. Feng, Navigating Mobile Robots: Sensors and Techniques (A. K. Peters, 1995).
“Fiber optic sensors: Introduction,” http://www.efunda.com/DesignStandards/sensors/fotonic/fotonic_intro.cfm.
http://www.efunda.com/DesignStandards/sensors/fotonic/fotonic_theory.cfm 36.
G. Berkovic, S. Zilberman, and E. Shafir, “Size effect in fiber optic displacement sensors,” in Optical Sensors, OSA Technical Digest (online) (Optical Society of America, 2012) SM4F.6.
See, for example, “Thales,” http://en.wikipedia.org/wiki/Thales.