Abstract

Programmable integrated photonics is an emerging new paradigm that aims at designing common integrated optical hardware resource configurations, capable of implementing an unconstrained variety of functionalities by suitable programming, following a parallel but not identical path to that of integrated electronics in the past two decades of the last century. Programmable integrated photonics is raising considerable interest, as it is driven by the surge of a considerable number of new applications in the fields of telecommunications, quantum information processing, sensing, and neurophotonics, calling for flexible, reconfigurable, low-cost, compact, and low-power-consuming devices that can cooperate with integrated electronic devices to overcome the limitation expected by the demise of Moore’s Law. Integrated photonic devices exploiting full programmability are expected to scale from application-specific photonic chips (featuring a relatively low number of functionalities) up to very complex application-agnostic complex subsystems much in the same way as field programmable gate arrays and microprocessors operate in electronics. Two main differences need to be considered. First, as opposed to integrated electronics, programmable integrated photonics will carry analog operations over the signals to be processed. Second, the scale of integration density will be several orders of magnitude smaller due to the physical limitations imposed by the wavelength ratio of electrons and light wave photons. The success of programmable integrated photonics will depend on leveraging the properties of integrated photonic devices and, in particular, on research into suitable interconnection hardware architectures that can offer a very high spatial regularity as well as the possibility of independently setting (with a very low power consumption) the interconnection state of each connecting element. Integrated multiport interferometers and waveguide meshes provide regular and periodic geometries, formed by replicating unit elements and cells, respectively. In the case of waveguide meshes, the cells can take the form of a square, hexagon, or triangle, among other configurations. Each side of the cell is formed by two integrated waveguides connected by means of a Mach–Zehnder interferometer or a tunable directional coupler that can be operated by means of an output control signal as a crossbar switch or as a variable coupler with independent power division ratio and phase shift. In this paper, we provide the basic foundations and principles behind the construction of these complex programmable circuits. We also review some practical aspects that limit the programming and scalability of programmable integrated photonics and provide an overview of some of the most salient applications demonstrated so far.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Integrated microwave photonic filters

Yang Liu, Amol Choudhary, David Marpaung, and Benjamin J. Eggleton
Adv. Opt. Photon. 12(2) 485-555 (2020)

Auto-routing algorithm for field-programmable photonic gate arrays

Aitor López, Daniel Pérez, Prometheus DasMahapatra, and José Capmany
Opt. Express 28(1) 737-752 (2020)

Emerging material systems for integrated optical Kerr frequency combs

Andre Kovach, Dongyu Chen, Jinghan He, Hyungwoo Choi, Adil Han Dogan, Mohammadreza Ghasemkhani, Hossein Taheri, and Andrea M. Armani
Adv. Opt. Photon. 12(1) 135-222 (2020)

References

  • View by:
  • |
  • |
  • |

  1. J. Lyke, C. G. Christodolou, G. Vera, and A. H. Edwards, “An introduction to reconfigurable systems,” Proc. IEEE 103, 291–317 (2015).
    [Crossref]
  2. H. Kaeslin, Digital Integrated Circuit Design: From VLSI Architectures to CMOS (Cambridge University, 2008).
  3. S. M. Trimberger, “Three ages of FPGAs: a restrospective on the first thirty years of FPGA technology,” Proc. IEEE 103, 318–331 (2015).
    [Crossref]
  4. J. Mitola, “The software radio architecture,” IEEE Commun. Mag. 33(5), 26–38 (1995).
    [Crossref]
  5. B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and K. T. Turletti, “A survey of software-defined networking: past, present, future of programmable networks,” Proc. IEEE 16, 1617–1634 (2014).
    [Crossref]
  6. C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-Pastor, and A. Monje, “On the optimal allocation of virtual resources in cloud computing networks,” IEEE Trans. Comput. 62, 1060–1071 (2013).
    [Crossref]
  7. K. Kerpez and G. Ginis, “Software-defined access network (SDAN),” in Proceedings 48th Annual Conference on Information Sciences and Systems (CISS) (2014), pp. 1–16.
  8. C. M. Cristensen, The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail (Harvard Business School, 1997).
  9. A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L. O’Brien, “Multimode quantum interference of photons in multiport integrated devices,” Nat. Commun. 2, 224 (2011).
    [Crossref]
  10. B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
    [Crossref]
  11. D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express 21, 6360–6370 (2013).
    [Crossref]
  12. D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res. 1, 1–15 (2013).
    [Crossref]
  13. J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
    [Crossref]
  14. D. A. B. Miller, “Perfect optics with imperfect components,” Optica 2, 747–750 (2015).
    [Crossref]
  15. N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
    [Crossref]
  16. O. Graydon, “Birth of the programmable optical chip,” Nat. Photonics 10, 1 (2016).
    [Crossref]
  17. L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2, 854–859 (2015).
    [Crossref]
  18. D. Pérez, I. Gasulla, J. Capmany, and R. A. Soref, “Reconfigurable lattice mesh designs for programmable photonic processors,” Opt. Express 24, 12093–12106 (2016).
    [Crossref]
  19. J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10, 6–8 (2016).
    [Crossref]
  20. D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8, 636 (2017).
    [Crossref]
  21. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
    [Crossref]
  22. W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, “Optimal design for universal multiport interferometers,” Optica 3, 1460–1465 (2016).
    [Crossref]
  23. D. Pérez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon photonics rectangular universal interferometer,” Laser Photon. Rev. 11, 1700219 (2017).
    [Crossref]
  24. Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
    [Crossref]
  25. A. Ribeiro, A. Ruocco, L. Vanacker, and W. Bogaerts, “Demonstration of a 4 × 4-port universal linear circuit,” Optica 3, 1348–1357 (2016).
    [Crossref]
  26. A. Anoni, E. Guglielmi, M. Carminati, G. Ferrari, M. Sampietro, D. A. B. Miller, A. Melloni, and F. Morichetti, “Unscrambling light—automatically undoing strong mixing between modes,” Light Sci. Appl. 6, e17110 (2016).
    [Crossref]
  27. J. Capmany, I. Gasulla, and D. Pérez, “Toward programmable microwave photonics processors,” J. Lightwave Technol. 36, 519–532 (2018).
    [Crossref]
  28. L. N. Chen, E. Hall, L. Theogarajan, and J. Bowers, “Photonic switching for data center applications,” IEEE Photon. J. 3, 834–844 (2011).
    [Crossref]
  29. D. A. B. Miller, “Silicon photonics: meshing optics with applications,” Nat. Photonics 11, 403–404 (2017).
    [Crossref]
  30. N. Thomas-Peter, N. K. Langford, A. Datta, L. Zhang, B. J. Smith, J. B. Spring, B. J. Metcalf, H. B. Coldenstrodt-Ronge, M. Hu, J. Nunn, and I. A. Walmsley, “Integrated photonic sensing,” New J. Phys. 13, 055024 (2011).
    [Crossref]
  31. M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
    [Crossref]
  32. L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” J. Lightwave Technol. 29, 554–570 (2011).
    [Crossref]
  33. F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
    [Crossref]
  34. “JePPIX roadmap,” 2015, http://www.jeppix.eu .
  35. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010).
    [Crossref]
  36. W. Bogaerts, M. Fiers, and P. Dumon, “Design challenges in silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20, 8202008 (2014).
    [Crossref]
  37. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  38. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
  39. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
    [Crossref]
  40. S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3, 35–46 (2013).
    [Crossref]
  41. R. G. Heideman, M. Hoekman, and F. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1583–1596 (2012).
    [Crossref]
  42. C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
    [Crossref]
  43. B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
    [Crossref]
  44. J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
    [Crossref]
  45. A. Yariv, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).
  46. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2011).
  47. C. Pollock and M. Lipson, Integrated Photonics (Kluwer Academic, 2009).
  48. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
  49. H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  50. K. Iizuka, Elements of Photonics (Wiley, 2002).
  51. K. Iizuka, Engineering Optics, 3rd ed. (Springer-Verlag, 2009).
  52. M. Barchmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations,” Appl. Opt. 33, 3905–3911 (1994).
    [Crossref]
  53. L. H. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [Crossref]
  54. C. Madsen and H. J. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).
  55. S. M. Trimberger, ed., Field-Programmable Gate Array Technology (Springer, 1994).
  56. E. Desurvire, Classical and Quantum Information Theory: An Introduction for the Telecom Scientist (Cambridge University, 2009).
  57. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2001).
  58. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref]
  59. J. Capmany and D. Pérez, Programmable Integrated Photonics (Oxford University, 2020).
  60. N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
    [Crossref]
  61. C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8 × 8 programmable quantum photonic processor based on silicon nitride waveguides,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JTu3A.58 8.
  62. G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, 2003).
  63. P. L. Mennea, W. R. Clements, D. H. Smith, J. C. Gates, B. J. Metcalf, R. H. S. Bannerman, R. Burgwal, J. J. Renema, W. S. Kolthammer, I. A. Walmsley, and P. G. R. Smith, “Modular linear optical circuits,” Optica 5, 1087–1090 (2018).
    [Crossref]
  64. D. Pérez, “Integrated microwave photonic processors using waveguide mesh cores,” Ph.D. thesis (Universitat Politècnica de València, 2017).
  65. D. Pérez, E. Sánchez, and J. Capmany, “Programmable true-time delay lines using integrated waveguide meshes,” J. Lightwave Technol. 36, 4591–4601 (2018).
    [Crossref]
  66. D. Pérez-López, A. M. Gutierrez, E. Sánchez, P. DasMahapatra, and J. Capmany, “Integrated photonic tunable basic units using dual-drive directional couplers,” Opt. Express 27, 38071–38086 (2019).
    [Crossref]
  67. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).
  68. K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995).
    [Crossref]
  69. W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
    [Crossref]
  70. M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
    [Crossref]
  71. S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
    [Crossref]
  72. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, “Distributed and localized feedback in microresonator sequences for linear and nonlinear optics,” J. Opt. Soc. Am. B 21, 1818–1832 (2004).
    [Crossref]
  73. J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11, 124–129 (2016).
    [Crossref]
  74. D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express 20, 23985–23993 (2012).
    [Crossref]
  75. S. D. Brown, R. J. Francis, J. Rose, and Z. Vranesic, Field-Programmable Gate Arrays (Kluwer, 1992).
  76. K. Lee and P. Gulak, “Field programmable analogue array based on MOSFET transconductor,” Electron. Lett. 28, 28–29 (1992).
    [Crossref]
  77. K. Lee and P. Gulak, “A transconductor-based field-programmable analog array,” in Proceedings of IEEE International Solid-Sate Circuits Conference (1995), pp. 198–199.
  78. D. Pérez, I. Gasulla, and J. Capmany, “Field-programmable photonic arrays,” Opt. Express 26, 27265–27278 (2018).
    [Crossref]
  79. J. Capmany and D. Pérez, “Reversible gates for programmable photonics,” in IEEE Photonics Society Summer Topical Meeting Series, Florida, USA (2019), pp. 1–2.
  80. H. Zhou, Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “Self-learning photonic signal processor with an optical neural network chip,” arXiv:1902.07318 [eess.SP] (2019).
  81. D. Zheng, J. D. Doménech, W. Pan, X. Zou, L. Yan, and D. Pérez, “Low-loss broadband 5 × 5 non-blocking Si3N4 optical switch matrix,” Opt. Lett. 44, 2629–2632 (2019).
    [Crossref]
  82. D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.
  83. A. Densmore, S. Janz, R. Ma, J. H. Schmid, D. X. Xu, A. Delâge, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17, 10457–10465 (2009).
    [Crossref]
  84. J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
    [Crossref]
  85. M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. C. Roelkens, J. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
    [Crossref]
  86. J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, J. Doylend, N. Boechler, and A. Majumdar, “GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform,” Opt. Mater. Express 8, 1551–1561 (2018).
    [Crossref]
  87. P. Edinger, C. Errando-Herranz, and K. Gylfason, “Low-loss MEMS phase shifter for large scale reconfigurable silicon photonics,” in 32nd IEEE International Conference on Micro Electro Mechanical Systems, Seoul, South Korea (27–31 January2019).
  88. http://www.europractice-ic.com/index.php .
  89. L. Carroll, J. S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, and S. Collins, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
    [Crossref]
  90. M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Lightwave Technol. 36, 773–788 (2018).
    [Crossref]
  91. G. Cocorullo, F. G. D. Corte, I. Rendina, and P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A 71, 19–26 (1998).
    [Crossref]
  92. N. Zecevic, M. Hofbauer, and H. Zimmermann, “Integrated pulsewidth modulation control for a scalable optical switch matrix,” IEEE Photon. J. 7, 7803007 (2015).
    [Crossref]
  93. N. Seok, N. Quack, S. Han, and M. C. Wu, “50 × 50 digital silicon photonic switches with MEMS actuated adiabatic couplers,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2015), pp. 1–3.
  94. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
    [Crossref]
  95. J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).
    [Crossref]
  96. D. Pérez and J. Capmany, “Scalable analysis for arbitrary photonic integrated waveguide meshes,” Optica 6, 19–24 (2019).
    [Crossref]
  97. C. J. Oton, C. Manganelli, F. Bontempi, M. Fournier, D. Fowler, and C. Kopp, “Silicon photonic waveguide metrology using Mach-Zehnder interferometers,” Opt. Express 24, 6265–6270 (2016).
    [Crossref]
  98. Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25, 9712–9733 (2017).
    [Crossref]
  99. A. López, “Implementation of self-reconfigurable integrated optical filters based on mixture density networks,” Master thesis (Universidad Politécnica de Madrid, 2019).
  100. A. López, D. Pérez, P. DasMahapatra, and J. Capmany, “Auto-routing algorithm for field-programmable photonic gate arrays,” Opt. Express 28, 737–752 (2020).
    [Crossref]
  101. X. Chen and W. Bogaerts, “A graph-based design and programming strategy for reconfigurable photonic circuits,” in IEEE Photonics Society Summer Topical Meeting Series, Fort Lauderdale, Fla., USA (8–10 July2019).
  102. A. López, D. Pérez, P. DasMahapatra, and J. Capmany, “Dynamic reconfiguration in field-programmable photonic arrays,” in 45th European Conference on Optical Communications, Dublin, Ireland (2019).
  103. D. Zibar, H. Wymeersch, and I. Lyubomirsky, “Machine learning under the spotlight,” Nat. Photonics 11, 749–751 (2017).
    [Crossref]
  104. G. Choo, S. Cai, B. Wang, C. K. Madsen, K. Entesari, and S. Palermo, “Automatic monitor-based tuning of reconfigurable silicon photonic APF-based pole/zero filters,” J. Lightwave Technol. 36, 1899–1911 (2018).
    [Crossref]
  105. D. Pérez, “Programmable integrated silicon photonics waveguide meshes: optimized designs and control algorithms,” IEEE J. Sel. Top. Quantum Electron. 26, 8301312 (2019).
    [Crossref]
  106. N. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).
    [Crossref]
  107. J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
    [Crossref]
  108. A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
    [Crossref]
  109. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University, 2000).
  110. C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge University, 2005).
  111. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [Crossref]
  112. P. Kok, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [Crossref]
  113. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
    [Crossref]
  114. A. Politi, J. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
    [Crossref]
  115. M. G. Thompson, A. Politi, J. C. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst. 5, 94–102 (2011).
    [Crossref]
  116. J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
    [Crossref]
  117. M. Poot, C. Schuck, X.-S. Ma, X. Guo, and H. X. Tang, “Design and characterization of integrated components for SiN photonic quantum circuits,” Opt. Express 24, 6843–6860 (2016).
    [Crossref]
  118. M. F. Saleh, G. Di Giuseppe, B. E. A. Saleh, and M. C. Teich, “Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate,” Opt. Express 18, 20475–20490 (2010).
    [Crossref]
  119. N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophonic processor,” Optica 5, 1623–1631 (2018).
    [Crossref]
  120. X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
    [Crossref]
  121. B. G. Lee and N. Dupuis, “Silicon photonic switch fabrics: technology and architecture,” J. Lightwave Technol. 37, 6–20 (2019).
    [Crossref]
  122. Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
    [Crossref]
  123. A. Wonfor, H. Wang, R. Penty, and I. White, “Large port count high-speed optical switch fabric for use within datacenters,” J. Opt. Commun. Netw. 3, A32–A39 (2011).
    [Crossref]
  124. K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto, and I. Mito, “First 8*8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers,” Electron. Lett. 28, 441–443 (1992).
    [Crossref]
  125. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020–24029 (2009).
    [Crossref]
  126. N. Dupuis, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 Mach–Zehnder silicon photonic switches,” J. Lightwave Technol. 33, 3597–3606 (2015).
    [Crossref]
  127. A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
    [Crossref]
  128. X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electrooptical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
    [Crossref]
  129. P. DasMahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Optical crosspoint matrix using broadband resonant switches,” IEEE J. Sel. Top. Quantum Electron. 20, 5900410 (2014).
    [Crossref]
  130. M.-C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14, 4703–4712 (2006).
    [Crossref]
  131. J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
    [Crossref]
  132. S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
    [Crossref]
  133. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3, 64–70 (2016).
    [Crossref]
  134. L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach–Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
    [Crossref]
  135. L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
    [Crossref]
  136. Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16 × 16 silicon optical switch based on dual-ring-assisted Mach–Zehnder interferometers,” J. Lightwave Technol. 36, 225–232 (2018).
    [Crossref]
  137. S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lightwave Technol. 36, 1824–1830 (2018).
    [Crossref]
  138. H. Y. Hwang, J. S. Lee, T. J. Seok, A. Forencich, H. R. Grant, D. Knutson, N. Quack, S. Han, R. S. Muller, G. C. Papen, M. C. Wu, and P. O’brien, “Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre,” IEEE Photon. J. 9, 2900210 (2017).
    [Crossref]
  139. A. S. P. Khope, A. M. Netherton, T. Hirokawa, N. Volet, E. J. Stanton, C. Schow, R. Helkey, A. A. M. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic WDM optoelectronic crossbar switch with on-chip wavelength control,” in Proceedings OSA Advanced Photonics (2017), paper PTh1D.3.
  140. S. K. Hiroki Kouketsu, N. Koyama, A. Takei, T. Taniguchi, Y. Matsushima, and K. Utaka, “High-speed and compact non-blocking 8 × 8 InAlGaAs InAlAs Mach-Zehnder-type optical switch fabric,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2K.3.
  141. Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Lightwave Technol. 31, 3077–3084 (2013).
    [Crossref]
  142. S. Liu, Q. Cheng, M. R. Madarbux, A. Wonfor, R. V. Penty, I. H. White, and P. M. Watts, “Low latency optical switch for high performance computing with minimized processor energy load,” J. Opt. Commun. Netw. 7, A498–A510 (2015).
    [Crossref]
  143. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23, 17599–17606 (2015).
    [Crossref]
  144. T. Ferreira de Lima, B. J. Shastri, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Progress in neuromorphic photonics,” Nanophotonics 6, 577–599 (2017).
    [Crossref]
  145. P. R. Prucnal and B. J. Shastri, Neuromorphic Photonics (CRC Press, 2017).
  146. P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photon. 8, 228–299 (2016).
    [Crossref]
  147. A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in Nanophotonic Information Physics, M. Naruse, ed. (Springer, 2014), pp. 183–222.
  148. K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5, 3451 (2014).
    [Crossref]
  149. A. N. Tait, T. F. de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photon. Technol. Lett. 28, 887–890 (2016).
    [Crossref]
  150. A. N. Tait, T. Ferreira de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Multichannel control for microring weight banks,” Opt. Express 24, 8895–8906 (2016).
    [Crossref]
  151. H. Peng, M. A. Nahmias, T. F. de Lima, A. N. Tait, and B. J. Shastri, “Neuromorphic photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24, 6101715 (2018).
    [Crossref]
  152. A. N. Tait, H. Jayatilleka, T. Ferreira De Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26, 26422–26443 (2018).
    [Crossref]
  153. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT, 1986), Vol. 1: Foundations.
  154. D. Marpaung, Y. Liu, B. Isaac, J. Kalkavage, E. Adles, and T. Clark, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
    [Crossref]
  155. D. Marpaung, J. P. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
    [Crossref]
  156. W. Zhang and J. Yao, “Photonic integrated field-programmable disk array signal processor,” Nat. Commun. 11, 406 (2020).
    [Crossref]
  157. R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18, 25151–25157 (2010).
    [Crossref]
  158. E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, “Programmable photonic lattice filters in InGaAsP–InP,” IEEE Photon. Technol. Lett. 22, 109–111 (2010).
    [Crossref]
  159. E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP–InGaAsP,” J. Lightwave Technol. 29, 1611–1619 (2011).
    [Crossref]
  160. H. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
    [Crossref]
  161. R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19, 7816–7826 (2011).
    [Crossref]
  162. M. Sagues, “Applications and correspondence between the optical and electrical domain established by optical single sideband modulation,” Ph.D thesis (in Spanish) (Universidad Pública de Navarra, 2009).
  163. D. Pérez, I. Gasulla, J. Capmany, J. S. Fandiño, P. Muñoz, and H. Alavi, “Figures of merit for self-beating filtered microwave photonic systems,” Opt. Express 24, 10087–10102 (2016).
    [Crossref]
  164. D. Perez, I. Gasulla, and J. Capmany, “Software-defined universal microwave photonics processor,” Opt. Express 23, 14640–14654 (2015).
    [Crossref]
  165. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
    [Crossref]
  166. L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).
    [Crossref]
  167. J. Tang, T. Hao, W. Li, D. Domenech, R. Baños, P. Muñoz, N. Zhu, J. Capmany, and M. Li, “Integrated optoelectronic oscillator,” Opt. Express 26, 12257–12265 (2018).
    [Crossref]

2020 (2)

A. López, D. Pérez, P. DasMahapatra, and J. Capmany, “Auto-routing algorithm for field-programmable photonic gate arrays,” Opt. Express 28, 737–752 (2020).
[Crossref]

W. Zhang and J. Yao, “Photonic integrated field-programmable disk array signal processor,” Nat. Commun. 11, 406 (2020).
[Crossref]

2019 (6)

2018 (16)

D. Pérez, I. Gasulla, and J. Capmany, “Field-programmable photonic arrays,” Opt. Express 26, 27265–27278 (2018).
[Crossref]

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

P. L. Mennea, W. R. Clements, D. H. Smith, J. C. Gates, B. J. Metcalf, R. H. S. Bannerman, R. Burgwal, J. J. Renema, W. S. Kolthammer, I. A. Walmsley, and P. G. R. Smith, “Modular linear optical circuits,” Optica 5, 1087–1090 (2018).
[Crossref]

D. Pérez, E. Sánchez, and J. Capmany, “Programmable true-time delay lines using integrated waveguide meshes,” J. Lightwave Technol. 36, 4591–4601 (2018).
[Crossref]

J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, J. Doylend, N. Boechler, and A. Majumdar, “GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform,” Opt. Mater. Express 8, 1551–1561 (2018).
[Crossref]

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Lightwave Technol. 36, 773–788 (2018).
[Crossref]

J. Capmany, I. Gasulla, and D. Pérez, “Toward programmable microwave photonics processors,” J. Lightwave Technol. 36, 519–532 (2018).
[Crossref]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
[Crossref]

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophonic processor,” Optica 5, 1623–1631 (2018).
[Crossref]

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

G. Choo, S. Cai, B. Wang, C. K. Madsen, K. Entesari, and S. Palermo, “Automatic monitor-based tuning of reconfigurable silicon photonic APF-based pole/zero filters,” J. Lightwave Technol. 36, 1899–1911 (2018).
[Crossref]

Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16 × 16 silicon optical switch based on dual-ring-assisted Mach–Zehnder interferometers,” J. Lightwave Technol. 36, 225–232 (2018).
[Crossref]

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lightwave Technol. 36, 1824–1830 (2018).
[Crossref]

H. Peng, M. A. Nahmias, T. F. de Lima, A. N. Tait, and B. J. Shastri, “Neuromorphic photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24, 6101715 (2018).
[Crossref]

A. N. Tait, H. Jayatilleka, T. Ferreira De Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26, 26422–26443 (2018).
[Crossref]

J. Tang, T. Hao, W. Li, D. Domenech, R. Baños, P. Muñoz, N. Zhu, J. Capmany, and M. Li, “Integrated optoelectronic oscillator,” Opt. Express 26, 12257–12265 (2018).
[Crossref]

2017 (11)

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref]

T. Ferreira de Lima, B. J. Shastri, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Progress in neuromorphic photonics,” Nanophotonics 6, 577–599 (2017).
[Crossref]

H. Y. Hwang, J. S. Lee, T. J. Seok, A. Forencich, H. R. Grant, D. Knutson, N. Quack, S. Han, R. S. Muller, G. C. Papen, M. C. Wu, and P. O’brien, “Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre,” IEEE Photon. J. 9, 2900210 (2017).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8, 636 (2017).
[Crossref]

D. A. B. Miller, “Silicon photonics: meshing optics with applications,” Nat. Photonics 11, 403–404 (2017).
[Crossref]

N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

D. Pérez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon photonics rectangular universal interferometer,” Laser Photon. Rev. 11, 1700219 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

D. Zibar, H. Wymeersch, and I. Lyubomirsky, “Machine learning under the spotlight,” Nat. Photonics 11, 749–751 (2017).
[Crossref]

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25, 9712–9733 (2017).
[Crossref]

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

2016 (19)

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11, 124–129 (2016).
[Crossref]

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

C. J. Oton, C. Manganelli, F. Bontempi, M. Fournier, D. Fowler, and C. Kopp, “Silicon photonic waveguide metrology using Mach-Zehnder interferometers,” Opt. Express 24, 6265–6270 (2016).
[Crossref]

L. Carroll, J. S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, and S. Collins, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

A. Ribeiro, A. Ruocco, L. Vanacker, and W. Bogaerts, “Demonstration of a 4 × 4-port universal linear circuit,” Optica 3, 1348–1357 (2016).
[Crossref]

A. Anoni, E. Guglielmi, M. Carminati, G. Ferrari, M. Sampietro, D. A. B. Miller, A. Melloni, and F. Morichetti, “Unscrambling light—automatically undoing strong mixing between modes,” Light Sci. Appl. 6, e17110 (2016).
[Crossref]

O. Graydon, “Birth of the programmable optical chip,” Nat. Photonics 10, 1 (2016).
[Crossref]

D. Pérez, I. Gasulla, J. Capmany, and R. A. Soref, “Reconfigurable lattice mesh designs for programmable photonic processors,” Opt. Express 24, 12093–12106 (2016).
[Crossref]

J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10, 6–8 (2016).
[Crossref]

W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, “Optimal design for universal multiport interferometers,” Optica 3, 1460–1465 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3, 64–70 (2016).
[Crossref]

L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach–Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]

N. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).
[Crossref]

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

M. Poot, C. Schuck, X.-S. Ma, X. Guo, and H. X. Tang, “Design and characterization of integrated components for SiN photonic quantum circuits,” Opt. Express 24, 6843–6860 (2016).
[Crossref]

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photon. 8, 228–299 (2016).
[Crossref]

A. N. Tait, T. F. de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photon. Technol. Lett. 28, 887–890 (2016).
[Crossref]

A. N. Tait, T. Ferreira de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Multichannel control for microring weight banks,” Opt. Express 24, 8895–8906 (2016).
[Crossref]

D. Pérez, I. Gasulla, J. Capmany, J. S. Fandiño, P. Muñoz, and H. Alavi, “Figures of merit for self-beating filtered microwave photonic systems,” Opt. Express 24, 10087–10102 (2016).
[Crossref]

2015 (12)

D. Perez, I. Gasulla, and J. Capmany, “Software-defined universal microwave photonics processor,” Opt. Express 23, 14640–14654 (2015).
[Crossref]

S. Liu, Q. Cheng, M. R. Madarbux, A. Wonfor, R. V. Penty, I. H. White, and P. M. Watts, “Low latency optical switch for high performance computing with minimized processor energy load,” J. Opt. Commun. Netw. 7, A498–A510 (2015).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23, 17599–17606 (2015).
[Crossref]

N. Dupuis, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 Mach–Zehnder silicon photonic switches,” J. Lightwave Technol. 33, 3597–3606 (2015).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2, 854–859 (2015).
[Crossref]

J. Lyke, C. G. Christodolou, G. Vera, and A. H. Edwards, “An introduction to reconfigurable systems,” Proc. IEEE 103, 291–317 (2015).
[Crossref]

S. M. Trimberger, “Three ages of FPGAs: a restrospective on the first thirty years of FPGA technology,” Proc. IEEE 103, 318–331 (2015).
[Crossref]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

D. A. B. Miller, “Perfect optics with imperfect components,” Optica 2, 747–750 (2015).
[Crossref]

N. Zecevic, M. Hofbauer, and H. Zimmermann, “Integrated pulsewidth modulation control for a scalable optical switch matrix,” IEEE Photon. J. 7, 7803007 (2015).
[Crossref]

J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).
[Crossref]

2014 (6)

N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
[Crossref]

B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and K. T. Turletti, “A survey of software-defined networking: past, present, future of programmable networks,” Proc. IEEE 16, 1617–1634 (2014).
[Crossref]

W. Bogaerts, M. Fiers, and P. Dumon, “Design challenges in silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20, 8202008 (2014).
[Crossref]

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

P. DasMahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Optical crosspoint matrix using broadband resonant switches,” IEEE J. Sel. Top. Quantum Electron. 20, 5900410 (2014).
[Crossref]

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5, 3451 (2014).
[Crossref]

2013 (13)

D. Marpaung, Y. Liu, B. Isaac, J. Kalkavage, E. Adles, and T. Clark, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Lightwave Technol. 31, 3077–3084 (2013).
[Crossref]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3, 35–46 (2013).
[Crossref]

C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-Pastor, and A. Monje, “On the optimal allocation of virtual resources in cloud computing networks,” IEEE Trans. Comput. 62, 1060–1071 (2013).
[Crossref]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express 21, 6360–6370 (2013).
[Crossref]

D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res. 1, 1–15 (2013).
[Crossref]

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. C. Roelkens, J. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

2012 (3)

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express 20, 23985–23993 (2012).
[Crossref]

R. G. Heideman, M. Hoekman, and F. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1583–1596 (2012).
[Crossref]

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electrooptical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
[Crossref]

2011 (10)

M. G. Thompson, A. Politi, J. C. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst. 5, 94–102 (2011).
[Crossref]

A. Wonfor, H. Wang, R. Penty, and I. White, “Large port count high-speed optical switch fabric for use within datacenters,” J. Opt. Commun. Netw. 3, A32–A39 (2011).
[Crossref]

R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19, 7816–7826 (2011).
[Crossref]

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).
[Crossref]

E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP–InGaAsP,” J. Lightwave Technol. 29, 1611–1619 (2011).
[Crossref]

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” J. Lightwave Technol. 29, 554–570 (2011).
[Crossref]

N. Thomas-Peter, N. K. Langford, A. Datta, L. Zhang, B. J. Smith, J. B. Spring, B. J. Metcalf, H. B. Coldenstrodt-Ronge, M. Hu, J. Nunn, and I. A. Walmsley, “Integrated photonic sensing,” New J. Phys. 13, 055024 (2011).
[Crossref]

L. N. Chen, E. Hall, L. Theogarajan, and J. Bowers, “Photonic switching for data center applications,” IEEE Photon. J. 3, 834–844 (2011).
[Crossref]

A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L. O’Brien, “Multimode quantum interference of photons in multiport integrated devices,” Nat. Commun. 2, 224 (2011).
[Crossref]

J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

2010 (6)

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010).
[Crossref]

H. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18, 25151–25157 (2010).
[Crossref]

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, “Programmable photonic lattice filters in InGaAsP–InP,” IEEE Photon. Technol. Lett. 22, 109–111 (2010).
[Crossref]

M. F. Saleh, G. Di Giuseppe, B. E. A. Saleh, and M. C. Teich, “Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate,” Opt. Express 18, 20475–20490 (2010).
[Crossref]

2009 (5)

A. Politi, J. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020–24029 (2009).
[Crossref]

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

A. Densmore, S. Janz, R. Ma, J. H. Schmid, D. X. Xu, A. Delâge, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17, 10457–10465 (2009).
[Crossref]

2008 (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

2007 (2)

P. Kok, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[Crossref]

2006 (2)

M.-C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14, 4703–4712 (2006).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

2005 (2)

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
[Crossref]

2004 (1)

2002 (1)

S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
[Crossref]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

1998 (1)

G. Cocorullo, F. G. D. Corte, I. Rendina, and P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A 71, 19–26 (1998).
[Crossref]

1995 (3)

L. H. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995).
[Crossref]

J. Mitola, “The software radio architecture,” IEEE Commun. Mag. 33(5), 26–38 (1995).
[Crossref]

1994 (2)

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

M. Barchmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations,” Appl. Opt. 33, 3905–3911 (1994).
[Crossref]

1992 (2)

K. Lee and P. Gulak, “Field programmable analogue array based on MOSFET transconductor,” Electron. Lett. 28, 28–29 (1992).
[Crossref]

K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto, and I. Mito, “First 8*8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers,” Electron. Lett. 28, 441–443 (1992).
[Crossref]

Achouche, M.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Adles, E.

D. Marpaung, Y. Liu, B. Isaac, J. Kalkavage, E. Adles, and T. Clark, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Alavi, H.

Alber, G.

G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, 2003).

Alferness, R. C.

A. S. P. Khope, A. M. Netherton, T. Hirokawa, N. Volet, E. J. Stanton, C. Schow, R. Helkey, A. A. M. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic WDM optoelectronic crossbar switch with on-chip wavelength control,” in Proceedings OSA Advanced Photonics (2017), paper PTh1D.3.

Alsing, P. M.

Ambrosius, H.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Ambrosius, H. P. M. M.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Anan, T.

K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto, and I. Mito, “First 8*8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers,” Electron. Lett. 28, 441–443 (1992).
[Crossref]

Anoni, A.

A. Anoni, E. Guglielmi, M. Carminati, G. Ferrari, M. Sampietro, D. A. B. Miller, A. Melloni, and F. Morichetti, “Unscrambling light—automatically undoing strong mixing between modes,” Light Sci. Appl. 6, e17110 (2016).
[Crossref]

Assefa, S.

Augustin, L. M.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Baehr-Jones, T.

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophonic processor,” Optica 5, 1623–1631 (2018).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

N. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010).
[Crossref]

Bahadori, M.

Bakker, A.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Bannerman, R. H. S.

Baños, R.

Barbieri, M.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Barchmann, M.

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Belisle, C.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
[Crossref]

Bell, B. A.

C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8 × 8 programmable quantum photonic processor based on silicon nitride waveguides,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JTu3A.58 8.

Bente, E. A. J. M.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Bentivegna, M.

N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
[Crossref]

Bergman, K.

Bernier, E.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

Bernstein, H. J.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

Bertani, P.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

Besse, P. A.

Beth, T.

G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, 2003).

Bhat, S. P.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Bienstman, P.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5, 3451 (2014).
[Crossref]

Bitincka, E.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Boechler, N.

Boeck, R.

Bogaerts, W.

A. Ribeiro, A. Ruocco, L. Vanacker, and W. Bogaerts, “Demonstration of a 4 × 4-port universal linear circuit,” Optica 3, 1348–1357 (2016).
[Crossref]

W. Bogaerts, M. Fiers, and P. Dumon, “Design challenges in silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20, 8202008 (2014).
[Crossref]

X. Chen and W. Bogaerts, “A graph-based design and programming strategy for reconfigurable photonic circuits,” in IEEE Photonics Society Summer Topical Meeting Series, Fort Lauderdale, Fla., USA (8–10 July2019).

Bolk, J.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Boller, K.-J.

L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2, 854–859 (2015).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8 × 8 programmable quantum photonic processor based on silicon nitride waveguides,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JTu3A.58 8.

Bonneau, D.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

Bontempi, F.

Bovington, J.

H. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

Bowers, J.

L. N. Chen, E. Hall, L. Theogarajan, and J. Bowers, “Photonic switching for data center applications,” IEEE Photon. J. 3, 834–844 (2011).
[Crossref]

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

H. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

A. S. P. Khope, A. M. Netherton, T. Hirokawa, N. Volet, E. J. Stanton, C. Schow, R. Helkey, A. A. M. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic WDM optoelectronic crossbar switch with on-chip wavelength control,” in Proceedings OSA Advanced Photonics (2017), paper PTh1D.3.

Boyd, R. W.

Brod, D. J.

N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

Broeke, R. G.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Broome, M. A.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Brown, S. D.

S. D. Brown, R. J. Francis, J. Rose, and Z. Vranesic, Field-Programmable Gate Arrays (Kluwer, 1992).

Bunandar, D.

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophonic processor,” Optica 5, 1623–1631 (2018).
[Crossref]

N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

N. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).
[Crossref]

Burgwal, R.

Burla, M.

Butrie, T.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Cai, H.

J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Cai, S.

Cao, W.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8, 636 (2017).
[Crossref]

D. Pérez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon photonics rectangular universal interferometer,” Laser Photon. Rev. 11, 1700219 (2017).
[Crossref]

Cao, Z.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Capmany, J.

A. López, D. Pérez, P. DasMahapatra, and J. Capmany, “Auto-routing algorithm for field-programmable photonic gate arrays,” Opt. Express 28, 737–752 (2020).
[Crossref]

D. Pérez and J. Capmany, “Scalable analysis for arbitrary photonic integrated waveguide meshes,” Optica 6, 19–24 (2019).
[Crossref]

D. Pérez-López, A. M. Gutierrez, E. Sánchez, P. DasMahapatra, and J. Capmany, “Integrated photonic tunable basic units using dual-drive directional couplers,” Opt. Express 27, 38071–38086 (2019).
[Crossref]

D. Marpaung, J. P. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

J. Tang, T. Hao, W. Li, D. Domenech, R. Baños, P. Muñoz, N. Zhu, J. Capmany, and M. Li, “Integrated optoelectronic oscillator,” Opt. Express 26, 12257–12265 (2018).
[Crossref]

D. Pérez, E. Sánchez, and J. Capmany, “Programmable true-time delay lines using integrated waveguide meshes,” J. Lightwave Technol. 36, 4591–4601 (2018).
[Crossref]

D. Pérez, I. Gasulla, and J. Capmany, “Field-programmable photonic arrays,” Opt. Express 26, 27265–27278 (2018).
[Crossref]

J. Capmany, I. Gasulla, and D. Pérez, “Toward programmable microwave photonics processors,” J. Lightwave Technol. 36, 519–532 (2018).
[Crossref]

D. Pérez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon photonics rectangular universal interferometer,” Laser Photon. Rev. 11, 1700219 (2017).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8, 636 (2017).
[Crossref]

D. Pérez, I. Gasulla, J. Capmany, and R. A. Soref, “Reconfigurable lattice mesh designs for programmable photonic processors,” Opt. Express 24, 12093–12106 (2016).
[Crossref]

J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10, 6–8 (2016).
[Crossref]

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11, 124–129 (2016).
[Crossref]

D. Pérez, I. Gasulla, J. Capmany, J. S. Fandiño, P. Muñoz, and H. Alavi, “Figures of merit for self-beating filtered microwave photonic systems,” Opt. Express 24, 10087–10102 (2016).
[Crossref]

D. Perez, I. Gasulla, and J. Capmany, “Software-defined universal microwave photonics processor,” Opt. Express 23, 14640–14654 (2015).
[Crossref]

J. Capmany and D. Pérez, “Reversible gates for programmable photonics,” in IEEE Photonics Society Summer Topical Meeting Series, Florida, USA (2019), pp. 1–2.

J. Capmany and D. Pérez, Programmable Integrated Photonics (Oxford University, 2020).

A. López, D. Pérez, P. DasMahapatra, and J. Capmany, “Dynamic reconfiguration in field-programmable photonic arrays,” in 45th European Conference on Optical Communications, Dublin, Ireland (2019).

Cappuzzo, M.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Carminati, M.

A. Anoni, E. Guglielmi, M. Carminati, G. Ferrari, M. Sampietro, D. A. B. Miller, A. Melloni, and F. Morichetti, “Unscrambling light—automatically undoing strong mixing between modes,” Light Sci. Appl. 6, e17110 (2016).
[Crossref]

Carolan, J.

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophonic processor,” Optica 5, 1623–1631 (2018).
[Crossref]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Carroll, L.

L. Carroll, J. S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, and S. Collins, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Celo, D.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

Cervello-Pastor, C.

C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-Pastor, and A. Monje, “On the optimal allocation of virtual resources in cloud computing networks,” IEEE Trans. Comput. 62, 1060–1071 (2013).
[Crossref]

Chak, P.

Cheben, P.

Chen, C.

N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Chen, E.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Chen, H.

H. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Chen, J.

Chen, L. N.

L. N. Chen, E. Hall, L. Theogarajan, and J. Bowers, “Photonic switching for data center applications,” IEEE Photon. J. 3, 834–844 (2011).
[Crossref]

Chen, X.

X. Chen and W. Bogaerts, “A graph-based design and programming strategy for reconfigurable photonic circuits,” in IEEE Photonics Society Summer Topical Meeting Series, Fort Lauderdale, Fla., USA (8–10 July2019).

Cheng, Q.

Choo, G.

Christodolou, C. G.

J. Lyke, C. G. Christodolou, G. Vera, and A. H. Edwards, “An introduction to reconfigurable systems,” Proc. IEEE 103, 291–317 (2015).
[Crossref]

Chrostowski, L.

Chu, T.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2001).

Clark, T.

D. Marpaung, Y. Liu, B. Isaac, J. Kalkavage, E. Adles, and T. Clark, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Clements, W. R.

Cocorullo, G.

G. Cocorullo, F. G. D. Corte, I. Rendina, and P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A 71, 19–26 (1998).
[Crossref]

Colburn, S.

Coldenstrodt-Ronge, H. B.

N. Thomas-Peter, N. K. Langford, A. Datta, L. Zhang, B. J. Smith, J. B. Spring, B. J. Metcalf, H. B. Coldenstrodt-Ronge, M. Hu, J. Nunn, and I. A. Walmsley, “Integrated photonic sensing,” New J. Phys. 13, 055024 (2011).
[Crossref]

Coldren, L. A.

Collins, S.

L. Carroll, J. S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, and S. Collins, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Cong, G.

Corbett, B.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

Corradi, A.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Corte, F. G. D.

G. Cocorullo, F. G. D. Corte, I. Rendina, and P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A 71, 19–26 (1998).
[Crossref]

Corzine, S.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Crespi, A.

N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

Cristensen, C. M.

C. M. Cristensen, The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail (Harvard Business School, 1997).

Crudgington, L.

D. Pérez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon photonics rectangular universal interferometer,” Laser Photon. Rev. 11, 1700219 (2017).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8, 636 (2017).
[Crossref]

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

D’Agostino, D.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Dabbs, A.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Dambre, J.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5, 3451 (2014).
[Crossref]

DasMahapatra, P.

A. López, D. Pérez, P. DasMahapatra, and J. Capmany, “Auto-routing algorithm for field-programmable photonic gate arrays,” Opt. Express 28, 737–752 (2020).
[Crossref]

D. Pérez-López, A. M. Gutierrez, E. Sánchez, P. DasMahapatra, and J. Capmany, “Integrated photonic tunable basic units using dual-drive directional couplers,” Opt. Express 27, 38071–38086 (2019).
[Crossref]

P. DasMahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Optical crosspoint matrix using broadband resonant switches,” IEEE J. Sel. Top. Quantum Electron. 20, 5900410 (2014).
[Crossref]

A. López, D. Pérez, P. DasMahapatra, and J. Capmany, “Dynamic reconfiguration in field-programmable photonic arrays,” in 45th European Conference on Optical Communications, Dublin, Ireland (2019).

Datta, A.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

N. Thomas-Peter, N. K. Langford, A. Datta, L. Zhang, B. J. Smith, J. B. Spring, B. J. Metcalf, H. B. Coldenstrodt-Ronge, M. Hu, J. Nunn, and I. A. Walmsley, “Integrated photonic sensing,” New J. Phys. 13, 055024 (2011).
[Crossref]

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

de Lima, T. F.

H. Peng, M. A. Nahmias, T. F. de Lima, A. N. Tait, and B. J. Shastri, “Neuromorphic photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24, 6101715 (2018).
[Crossref]

A. N. Tait, T. F. de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photon. Technol. Lett. 28, 887–890 (2016).
[Crossref]

de Vries, T.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Debregeas, H.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Delâge, A.

Demars, S.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Densmore, A.

Dentai, A.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Deshmukh, S.

Desurvire, E.

E. Desurvire, Classical and Quantum Information Theory: An Introduction for the Telecom Scientist (Cambridge University, 2009).

Di Giuseppe, G.

Domenech, D.

Doménech, D.

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11, 124–129 (2016).
[Crossref]

Doménech, J. D.

Dong, J.

H. Zhou, Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “Self-learning photonic signal processor with an optical neural network chip,” arXiv:1902.07318 [eess.SP] (2019).

Dos Santos, A.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Doylend, J.

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Dumais, P.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

Dumon, P.

W. Bogaerts, M. Fiers, and P. Dumon, “Design challenges in silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20, 8202008 (2014).
[Crossref]

Duperron, M.

L. Carroll, J. S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, and S. Collins, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Dupuis, N.

Dzibrou, D. O.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Eckstein, A.

C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8 × 8 programmable quantum photonic processor based on silicon nitride waveguides,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JTu3A.58 8.

Edinger, P.

P. Edinger, C. Errando-Herranz, and K. Gylfason, “Low-loss MEMS phase shifter for large scale reconfigurable silicon photonics,” in 32nd IEEE International Conference on Micro Electro Mechanical Systems, Seoul, South Korea (27–31 January2019).

Edwards, A. H.

J. Lyke, C. G. Christodolou, G. Vera, and A. H. Edwards, “An introduction to reconfigurable systems,” Proc. IEEE 103, 291–317 (2015).
[Crossref]

Englund, D.

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophonic processor,” Optica 5, 1623–1631 (2018).
[Crossref]

N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

N. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).
[Crossref]

J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).
[Crossref]

Entesari, K.

Errando-Herranz, C.

P. Edinger, C. Errando-Herranz, and K. Gylfason, “Low-loss MEMS phase shifter for large scale reconfigurable silicon photonics,” in 32nd IEEE International Conference on Micro Electro Mechanical Systems, Seoul, South Korea (27–31 January2019).

Evans, P.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Fandiño, J. S.

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11, 124–129 (2016).
[Crossref]

D. Pérez, I. Gasulla, J. Capmany, J. S. Fandiño, P. Muñoz, and H. Alavi, “Figures of merit for self-beating filtered microwave photonic systems,” Opt. Express 24, 10087–10102 (2016).
[Crossref]

Fang, A. W.

H. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

Fanto, M. L.

Felicetti, M.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Feng, S.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electrooptical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
[Crossref]

Ferrari, G.

A. Anoni, E. Guglielmi, M. Carminati, G. Ferrari, M. Sampietro, D. A. B. Miller, A. Melloni, and F. Morichetti, “Unscrambling light—automatically undoing strong mixing between modes,” Light Sci. Appl. 6, e17110 (2016).
[Crossref]

Ferreira De Lima, T.

Fiers, M.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5, 3451 (2014).
[Crossref]

W. Bogaerts, M. Fiers, and P. Dumon, “Design challenges in silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20, 8202008 (2014).
[Crossref]

Fiore, A.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Firth, P.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Fisher, M.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Flamini, F.

N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
[Crossref]

Flueckiger, J.

Forencich, A.

H. Y. Hwang, J. S. Lee, T. J. Seok, A. Forencich, H. R. Grant, D. Knutson, N. Quack, S. Han, R. S. Muller, G. C. Papen, M. C. Wu, and P. O’brien, “Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre,” IEEE Photon. J. 9, 2900210 (2017).
[Crossref]

Fournier, M.

Fowler, D.

Fraile, F. J.

D. Pérez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon photonics rectangular universal interferometer,” Laser Photon. Rev. 11, 1700219 (2017).
[Crossref]

Francis, R. J.

S. D. Brown, R. J. Francis, J. Rose, and Z. Vranesic, Field-Programmable Gate Arrays (Kluwer, 1992).

Frantz, J.

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Gallagher, D.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Galvao, E. F.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

Galvão, E. F.

N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
[Crossref]

Gao, D.

H. Zhou, Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “Self-learning photonic signal processor with an optical neural network chip,” arXiv:1902.07318 [eess.SP] (2019).

Gasparyan, A.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Gasulla, I.

D. Pérez, I. Gasulla, and J. Capmany, “Field-programmable photonic arrays,” Opt. Express 26, 27265–27278 (2018).
[Crossref]

J. Capmany, I. Gasulla, and D. Pérez, “Toward programmable microwave photonics processors,” J. Lightwave Technol. 36, 519–532 (2018).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8, 636 (2017).
[Crossref]

D. Pérez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon photonics rectangular universal interferometer,” Laser Photon. Rev. 11, 1700219 (2017).
[Crossref]

J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10, 6–8 (2016).
[Crossref]

D. Pérez, I. Gasulla, J. Capmany, and R. A. Soref, “Reconfigurable lattice mesh designs for programmable photonic processors,” Opt. Express 24, 12093–12106 (2016).
[Crossref]

D. Pérez, I. Gasulla, J. Capmany, J. S. Fandiño, P. Muñoz, and H. Alavi, “Figures of merit for self-beating filtered microwave photonic systems,” Opt. Express 24, 10087–10102 (2016).
[Crossref]

D. Perez, I. Gasulla, and J. Capmany, “Software-defined universal microwave photonics processor,” Opt. Express 23, 14640–14654 (2015).
[Crossref]

Gates, J. C.

P. L. Mennea, W. R. Clements, D. H. Smith, J. C. Gates, B. J. Metcalf, R. H. S. Bannerman, R. Burgwal, J. J. Renema, W. S. Kolthammer, I. A. Walmsley, and P. G. R. Smith, “Modular linear optical circuits,” Optica 5, 1087–1090 (2018).
[Crossref]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Gazman, A.

Geluk, E. J.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Geluk, E.-J.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Geng, D.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

Gentner, J.-L.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Gerry, C. C.

C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge University, 2005).

Geskus, D.

C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8 × 8 programmable quantum photonic processor based on silicon nitride waveguides,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JTu3A.58 8.

Giacomini, S.

N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
[Crossref]

Gilardi, G.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Ginis, G.

K. Kerpez and G. Ginis, “Software-defined access network (SDAN),” in Proceedings 48th Annual Conference on Information Sciences and Systems (CISS) (2014), pp. 1–16.

Gomez, L.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Goodwill, D. J.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

Gradkowski, K.

L. Carroll, J. S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, and S. Collins, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Grange, J. L.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Grant, H. R.

H. Y. Hwang, J. S. Lee, T. J. Seok, A. Forencich, H. R. Grant, D. Knutson, N. Quack, S. Han, R. S. Muller, G. C. Papen, M. C. Wu, and P. O’brien, “Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre,” IEEE Photon. J. 9, 2900210 (2017).
[Crossref]

Graydon, O.

O. Graydon, “Birth of the programmable optical chip,” Nat. Photonics 10, 1 (2016).
[Crossref]

Green, W. M. J.

Griffin, A.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Grootjans, R.

C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8 × 8 programmable quantum photonic processor based on silicon nitride waveguides,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JTu3A.58 8.

Grote, N.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Guglielmi, E.

A. Anoni, E. Guglielmi, M. Carminati, G. Ferrari, M. Sampietro, D. A. B. Miller, A. Melloni, and F. Morichetti, “Unscrambling light—automatically undoing strong mixing between modes,” Light Sci. Appl. 6, e17110 (2016).
[Crossref]

Gulak, P.

K. Lee and P. Gulak, “Field programmable analogue array based on MOSFET transconductor,” Electron. Lett. 28, 28–29 (1992).
[Crossref]

K. Lee and P. Gulak, “A transconductor-based field-programmable analog array,” in Proceedings of IEEE International Solid-Sate Circuits Conference (1995), pp. 198–199.

Guo, X.

Guo, Z.

Gutierrez, A. M.

Guzzon, R. S.

Gylfason, K.

P. Edinger, C. Errando-Herranz, and K. Gylfason, “Low-loss MEMS phase shifter for large scale reconfigurable silicon photonics,” in 32nd IEEE International Conference on Micro Electro Mechanical Systems, Seoul, South Korea (27–31 January2019).

Haghighi, H. R.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Hall, E.

L. N. Chen, E. Hall, L. Theogarajan, and J. Bowers, “Photonic switching for data center applications,” IEEE Photon. J. 3, 834–844 (2011).
[Crossref]

Hamamoto, K.

K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto, and I. Mito, “First 8*8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers,” Electron. Lett. 28, 441–443 (1992).
[Crossref]

Han, S.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lightwave Technol. 36, 1824–1830 (2018).
[Crossref]

H. Y. Hwang, J. S. Lee, T. J. Seok, A. Forencich, H. R. Grant, D. Knutson, N. Quack, S. Han, R. S. Muller, G. C. Papen, M. C. Wu, and P. O’brien, “Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre,” IEEE Photon. J. 9, 2900210 (2017).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3, 64–70 (2016).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
[Crossref]

N. Seok, N. Quack, S. Han, and M. C. Wu, “50 × 50 digital silicon photonic switches with MEMS actuated adiabatic couplers,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2015), pp. 1–3.

Hao, T.

Harris, N.

N. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).
[Crossref]

Harris, N. C.

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophonic processor,” Optica 5, 1623–1631 (2018).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).
[Crossref]

Harrold, C.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Hashimoto, T.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Haus, H.

H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

He, J.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Heebner, J. E.

Heideman, R. G.

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

R. G. Heideman, M. Hoekman, and F. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1583–1596 (2012).
[Crossref]

Heiss, D.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Helkey, R.

A. S. P. Khope, A. M. Netherton, T. Hirokawa, N. Volet, E. J. Stanton, C. Schow, R. Helkey, A. A. M. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic WDM optoelectronic crossbar switch with on-chip wavelength control,” in Proceedings OSA Advanced Photonics (2017), paper PTh1D.3.

Hendrickson, J.

Hinton, G. E.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT, 1986), Vol. 1: Foundations.

Hirokawa, T.

A. S. P. Khope, A. M. Netherton, T. Hirokawa, N. Volet, E. J. Stanton, C. Schow, R. Helkey, A. A. M. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic WDM optoelectronic crossbar switch with on-chip wavelength control,” in Proceedings OSA Advanced Photonics (2017), paper PTh1D.3.

Hiroki Kouketsu, S. K.

S. K. Hiroki Kouketsu, N. Koyama, A. Takei, T. Taniguchi, Y. Matsushima, and K. Utaka, “High-speed and compact non-blocking 8 × 8 InAlGaAs InAlAs Mach-Zehnder-type optical switch fabric,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2K.3.

Hochberg, M.

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophonic processor,” Optica 5, 1623–1631 (2018).
[Crossref]

N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

N. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010).
[Crossref]

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).

Hoekman, M.

L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2, 854–859 (2015).
[Crossref]

R. G. Heideman, M. Hoekman, and F. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1583–1596 (2012).
[Crossref]

Hofbauer, M.

N. Zecevic, M. Hofbauer, and H. Zimmermann, “Integrated pulsewidth modulation control for a scalable optical switch matrix,” IEEE Photon. J. 7, 7803007 (2015).
[Crossref]

Horodecki, M.

G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, 2003).

Horodecki, P.

G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, 2003).

Horodecki, R.

G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, 2003).

Hu, M.

N. Thomas-Peter, N. K. Langford, A. Datta, L. Zhang, B. J. Smith, J. B. Spring, B. J. Metcalf, H. B. Coldenstrodt-Ronge, M. Hu, J. Nunn, and I. A. Walmsley, “Integrated photonic sensing,” New J. Phys. 13, 055024 (2011).
[Crossref]

Humphreys, P. C.

W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, “Optimal design for universal multiport interferometers,” Optica 3, 1460–1465 (2016).
[Crossref]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Hwang, H. Y.

H. Y. Hwang, J. S. Lee, T. J. Seok, A. Forencich, H. R. Grant, D. Knutson, N. Quack, S. Han, R. S. Muller, G. C. Papen, M. C. Wu, and P. O’brien, “Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre,” IEEE Photon. J. 9, 2900210 (2017).
[Crossref]

Iizuka, K.

K. Iizuka, Elements of Photonics (Wiley, 2002).

K. Iizuka, Engineering Optics, 3rd ed. (Springer-Verlag, 2009).

Ikeda, K.

Isaac, B.

D. Marpaung, Y. Liu, B. Isaac, J. Kalkavage, E. Adles, and T. Clark, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Itoh, M.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Jaeger, N. A. F.

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

James, A.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Janosik, N.

Janz, S.

Jayatilleka, H.

Jhoja, J.

Jiang, J.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

Jiao, Y.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Jin, X.-M.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Jinguji, K.

K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995).
[Crossref]

Johansson, L.

Johansson, L. A.

Joyner, C.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Kaeslin, H.

H. Kaeslin, Digital Integrated Circuit Design: From VLSI Architectures to CMOS (Cambridge University, 2008).

Kalkavage, J.

D. Marpaung, Y. Liu, B. Isaac, J. Kalkavage, E. Adles, and T. Clark, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Kashi, A. A.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Kasper, A.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Kato, M.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Kawachi, M.

K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995).
[Crossref]

Kawashima, H.

Kerpez, K.

K. Kerpez and G. Ginis, “Software-defined access network (SDAN),” in Proceedings 48th Annual Conference on Information Sciences and Systems (CISS) (2014), pp. 1–16.

Keyvaninia, S.

Khanolkar, A.

Khokhar, A. Z.

D. Pérez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon photonics rectangular universal interferometer,” Laser Photon. Rev. 11, 1700219 (2017).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8, 636 (2017).
[Crossref]

Khope, A. S. P.

A. S. P. Khope, A. M. Netherton, T. Hirokawa, N. Volet, E. J. Stanton, C. Schow, R. Helkey, A. A. M. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic WDM optoelectronic crossbar switch with on-chip wavelength control,” in Proceedings OSA Advanced Photonics (2017), paper PTh1D.3.

Kimura, T.

Kish, F.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Kleijn, E.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Klein, J.

Kling, L.

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Knight, P. L.

C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge University, 2005).

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Knutson, D.

H. Y. Hwang, J. S. Lee, T. J. Seok, A. Forencich, H. R. Grant, D. Knutson, N. Quack, S. Han, R. S. Muller, G. C. Papen, M. C. Wu, and P. O’brien, “Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre,” IEEE Photon. J. 9, 2900210 (2017).
[Crossref]

Kok, P.

P. Kok, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Kolthammer, W. S.

P. L. Mennea, W. R. Clements, D. H. Smith, J. C. Gates, B. J. Metcalf, R. H. S. Bannerman, R. Burgwal, J. J. Renema, W. S. Kolthammer, I. A. Walmsley, and P. G. R. Smith, “Modular linear optical circuits,” Optica 5, 1087–1090 (2018).
[Crossref]

W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, “Optimal design for universal multiport interferometers,” Optica 3, 1460–1465 (2016).
[Crossref]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Komatsu, K.

K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto, and I. Mito, “First 8*8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers,” Electron. Lett. 28, 441–443 (1992).
[Crossref]

Kopp, C.

Korthorst, T.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Koshino, K.

Koyama, N.

S. K. Hiroki Kouketsu, N. Koyama, A. Takei, T. Taniguchi, Y. Matsushima, and K. Utaka, “High-speed and compact non-blocking 8 × 8 InAlGaAs InAlAs Mach-Zehnder-type optical switch fabric,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2K.3.

Krishnamachari, U.

Kuindersma, P. I.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Kumar, R. R.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Kundys, D.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Kwong, D.-L.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electrooptical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
[Crossref]

J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Lahini, Y.

N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).
[Crossref]

Laing, A.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L. O’Brien, “Multimode quantum interference of photons in multiport integrated devices,” Nat. Commun. 2, 224 (2011).
[Crossref]

Lal, V.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Lambert, D.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Langford, N. K.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

N. Thomas-Peter, N. K. Langford, A. Datta, L. Zhang, B. J. Smith, J. B. Spring, B. J. Metcalf, H. B. Coldenstrodt-Ronge, M. Hu, J. Nunn, and I. A. Walmsley, “Integrated photonic sensing,” New J. Phys. 13, 055024 (2011).
[Crossref]

Larochelle, H.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Laskowski, E.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Lawniczuk, K.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Lee, B. G.

Lee, J. S.

H. Y. Hwang, J. S. Lee, T. J. Seok, A. Forencich, H. R. Grant, D. Knutson, N. Quack, S. Han, R. S. Muller, G. C. Papen, M. C. Wu, and P. O’brien, “Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre,” IEEE Photon. J. 9, 2900210 (2017).
[Crossref]

L. Carroll, J. S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, and S. Collins, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Lee, K.

K. Lee and P. Gulak, “Field programmable analogue array based on MOSFET transconductor,” Electron. Lett. 28, 28–29 (1992).
[Crossref]

K. Lee and P. Gulak, “A transconductor-based field-programmable analog array,” in Proceedings of IEEE International Solid-Sate Circuits Conference (1995), pp. 198–199.

Lee, M.-C. M.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[Crossref]

M.-C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14, 4703–4712 (2006).
[Crossref]

Leijtens, X. J. M.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Leinse, A.

Leivadeas, A.

C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-Pastor, and A. Monje, “On the optimal allocation of virtual resources in cloud computing networks,” IEEE Trans. Comput. 62, 1060–1071 (2013).
[Crossref]

Lemos, R. M.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Leuenberger, D.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[Crossref]

Li, D.

Li, K.

D. Pérez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon photonics rectangular universal interferometer,” Laser Photon. Rev. 11, 1700219 (2017).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8, 636 (2017).
[Crossref]

Li, M.

J. Tang, T. Hao, W. Li, D. Domenech, R. Baños, P. Muñoz, N. Zhu, J. Capmany, and M. Li, “Integrated optoelectronic oscillator,” Opt. Express 26, 12257–12265 (2018).
[Crossref]

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

Li, W.

Li, X.

Li, Z.

Liang, D.

H. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

Liow, T.-Y.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electrooptical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
[Crossref]

J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Lipson, M.

C. Pollock and M. Lipson, Integrated Photonics (Kluwer Academic, 2009).

Liu, A.

Liu, D.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

Liu, S.

Liu, T.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Liu, W.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

Liu, Y.

D. Marpaung, Y. Liu, B. Isaac, J. Kalkavage, E. Adles, and T. Clark, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Lloyd, S.

N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Lo, G. Q.

J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Lo, G.-Q.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electrooptical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
[Crossref]

Loi, R.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

Loke, T.

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

López, A.

A. López, D. Pérez, P. DasMahapatra, and J. Capmany, “Auto-routing algorithm for field-programmable photonic gate arrays,” Opt. Express 28, 737–752 (2020).
[Crossref]

A. López, “Implementation of self-reconfigurable integrated optical filters based on mixture density networks,” Master thesis (Universidad Politécnica de Madrid, 2019).

A. López, D. Pérez, P. DasMahapatra, and J. Capmany, “Dynamic reconfiguration in field-programmable photonic arrays,” in 45th European Conference on Optical Communications, Dublin, Ireland (2019).

Loudon, R.

R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University, 2000).

Lowery, A. J.

Lu, H.

L. Carroll, J. S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, and S. Collins, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Lu, L.

Lu, M.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

Lu, Z.

Lugani, J.

C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8 × 8 programmable quantum photonic processor based on silicon nitride waveguides,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JTu3A.58 8.

Luo, X.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electrooptical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
[Crossref]

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Lyke, J.

J. Lyke, C. G. Christodolou, G. Vera, and A. H. Edwards, “An introduction to reconfigurable systems,” Proc. IEEE 103, 291–317 (2015).
[Crossref]

Lyubomirsky, I.

D. Zibar, H. Wymeersch, and I. Lyubomirsky, “Machine learning under the spotlight,” Nat. Photonics 11, 749–751 (2017).
[Crossref]

Ma, P. Y.

Ma, R.

Ma, X.-S.

Ma, Z.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

Madarbux, M. R.

Madsen, C.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

C. Madsen and H. J. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

Madsen, C. K.

Maglaris, V.

C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-Pastor, and A. Monje, “On the optimal allocation of virtual resources in cloud computing networks,” IEEE Trans. Comput. 62, 1060–1071 (2013).
[Crossref]

Maiorino, E.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

Majumdar, A.

Maleki, L.

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).
[Crossref]

Manganelli, C.

Marpaung, D.

D. Marpaung, J. P. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

D. Marpaung, Y. Liu, B. Isaac, J. Kalkavage, E. Adles, and T. Clark, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Marpaung, D. A. I.

Marshall, G. D.

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Martín-López, E.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Mashanovich, G. Z.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8, 636 (2017).
[Crossref]

D. Pérez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon photonics rectangular universal interferometer,” Laser Photon. Rev. 11, 1700219 (2017).
[Crossref]

Mataloni, P.

N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

Matsuda, N.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Matsumaro, K.

Matsushima, Y.

S. K. Hiroki Kouketsu, N. Koyama, A. Takei, T. Taniguchi, Y. Matsushima, and K. Utaka, “High-speed and compact non-blocking 8 × 8 InAlGaAs InAlAs Mach-Zehnder-type optical switch fabric,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2K.3.

Matthews, J.

A. Politi, J. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

Matthews, J. C.

M. G. Thompson, A. Politi, J. C. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst. 5, 94–102 (2011).
[Crossref]

Matthews, J. C. F.

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Mechet, P.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5, 3451 (2014).
[Crossref]

Mehrvar, H.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

Melati, D.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Melchior, H.

Melloni, A.

A. Anoni, E. Guglielmi, M. Carminati, G. Ferrari, M. Sampietro, D. A. B. Miller, A. Melloni, and F. Morichetti, “Unscrambling light—automatically undoing strong mixing between modes,” Light Sci. Appl. 6, e17110 (2016).
[Crossref]

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Mendonca, M.

B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and K. T. Turletti, “A survey of software-defined networking: past, present, future of programmable networks,” Proc. IEEE 16, 1617–1634 (2014).
[Crossref]

Mennea, P. L.

Metcalf, B. J.

P. L. Mennea, W. R. Clements, D. H. Smith, J. C. Gates, B. J. Metcalf, R. H. S. Bannerman, R. Burgwal, J. J. Renema, W. S. Kolthammer, I. A. Walmsley, and P. G. R. Smith, “Modular linear optical circuits,” Optica 5, 1087–1090 (2018).
[Crossref]

W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, “Optimal design for universal multiport interferometers,” Optica 3, 1460–1465 (2016).
[Crossref]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

N. Thomas-Peter, N. K. Langford, A. Datta, L. Zhang, B. J. Smith, J. B. Spring, B. J. Metcalf, H. B. Coldenstrodt-Ronge, M. Hu, J. Nunn, and I. A. Walmsley, “Integrated photonic sensing,” New J. Phys. 13, 055024 (2011).
[Crossref]

Milani, G.

N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Silicon photonics: meshing optics with applications,” Nat. Photonics 11, 403–404 (2017).
[Crossref]

A. Anoni, E. Guglielmi, M. Carminati, G. Ferrari, M. Sampietro, D. A. B. Miller, A. Melloni, and F. Morichetti, “Unscrambling light—automatically undoing strong mixing between modes,” Light Sci. Appl. 6, e17110 (2016).
[Crossref]

D. A. B. Miller, “Perfect optics with imperfect components,” Optica 2, 747–750 (2015).
[Crossref]

D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express 21, 6360–6370 (2013).
[Crossref]

D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res. 1, 1–15 (2013).
[Crossref]

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express 20, 23985–23993 (2012).
[Crossref]

Missey, M.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Mito, I.

K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto, and I. Mito, “First 8*8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers,” Electron. Lett. 28, 441–443 (1992).
[Crossref]

Mitola, J.

J. Mitola, “The software radio architecture,” IEEE Commun. Mag. 33(5), 26–38 (1995).
[Crossref]

Monje, A.

C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-Pastor, and A. Monje, “On the optimal allocation of virtual resources in cloud computing networks,” IEEE Trans. Comput. 62, 1060–1071 (2013).
[Crossref]

Mookherjea, S.

S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
[Crossref]

Morichetti, F.

A. Anoni, E. Guglielmi, M. Carminati, G. Ferrari, M. Sampietro, D. A. B. Miller, A. Melloni, and F. Morichetti, “Unscrambling light—automatically undoing strong mixing between modes,” Light Sci. Appl. 6, e17110 (2016).
[Crossref]

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Morthier, G.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5, 3451 (2014).
[Crossref]

Moskalenko, V.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Mower, J.

N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

N. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).
[Crossref]

J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).
[Crossref]

Muller, R. S.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lightwave Technol. 36, 1824–1830 (2018).
[Crossref]

H. Y. Hwang, J. S. Lee, T. J. Seok, A. Forencich, H. R. Grant, D. Knutson, N. Quack, S. Han, R. S. Muller, G. C. Papen, M. C. Wu, and P. O’brien, “Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre,” IEEE Photon. J. 9, 2900210 (2017).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3, 64–70 (2016).
[Crossref]

Muneeb, M.

Muñoz, P.

Murthy, S.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Musk, B.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Muthiah, R.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Myers, J.

Nagarajan, R.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Nahmias, M. A.

A. N. Tait, H. Jayatilleka, T. Ferreira De Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26, 26422–26443 (2018).
[Crossref]

H. Peng, M. A. Nahmias, T. F. de Lima, A. N. Tait, and B. J. Shastri, “Neuromorphic photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24, 6101715 (2018).
[Crossref]

T. Ferreira de Lima, B. J. Shastri, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Progress in neuromorphic photonics,” Nanophotonics 6, 577–599 (2017).
[Crossref]

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photon. 8, 228–299 (2016).
[Crossref]

A. N. Tait, T. Ferreira de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Multichannel control for microring weight banks,” Opt. Express 24, 8895–8906 (2016).
[Crossref]

A. N. Tait, T. F. de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photon. Technol. Lett. 28, 887–890 (2016).
[Crossref]

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in Nanophotonic Information Physics, M. Naruse, ed. (Springer, 2014), pp. 183–222.

Namiki, S.

Netherton, A. M.

A. S. P. Khope, A. M. Netherton, T. Hirokawa, N. Volet, E. J. Stanton, C. Schow, R. Helkey, A. A. M. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic WDM optoelectronic crossbar switch with on-chip wavelength control,” in Proceedings OSA Advanced Photonics (2017), paper PTh1D.3.

Nguyen, X.-N.

B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and K. T. Turletti, “A survey of software-defined networking: past, present, future of programmable networks,” Proc. IEEE 16, 1617–1634 (2014).
[Crossref]

Nicholes, S. C.

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” J. Lightwave Technol. 29, 554–570 (2011).
[Crossref]

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, “Programmable photonic lattice filters in InGaAsP–InP,” IEEE Photon. Technol. Lett. 22, 109–111 (2010).
[Crossref]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2001).

Norberg, E. J.

Nunes, B.

B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and K. T. Turletti, “A survey of software-defined networking: past, present, future of programmable networks,” Proc. IEEE 16, 1617–1634 (2014).
[Crossref]

Nunn, J.

N. Thomas-Peter, N. K. Langford, A. Datta, L. Zhang, B. J. Smith, J. B. Spring, B. J. Metcalf, H. B. Coldenstrodt-Ronge, M. Hu, J. Nunn, and I. A. Walmsley, “Integrated photonic sensing,” New J. Phys. 13, 055024 (2011).
[Crossref]

O’Brien, J. L.

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L. O’Brien, “Multimode quantum interference of photons in multiport integrated devices,” Nat. Commun. 2, 224 (2011).
[Crossref]

M. G. Thompson, A. Politi, J. C. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst. 5, 94–102 (2011).
[Crossref]

A. Politi, J. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

O’brien, P.

H. Y. Hwang, J. S. Lee, T. J. Seok, A. Forencich, H. R. Grant, D. Knutson, N. Quack, S. Han, R. S. Muller, G. C. Papen, M. C. Wu, and P. O’brien, “Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre,” IEEE Photon. J. 9, 2900210 (2017).
[Crossref]

O’Gara, S.

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Obraczka, K.

B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and K. T. Turletti, “A survey of software-defined networking: past, present, future of programmable networks,” Proc. IEEE 16, 1617–1634 (2014).
[Crossref]

Oguma, M.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Ohtsuka, M.

Oldenbeuving, R. M.

Osellame, R.

N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

Osmond, J.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. C. Roelkens, J. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Oton, C. J.

Pagliano, F.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Palermo, S.

Pan, W.

Pant, M.

N. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).
[Crossref]

Papagianni, C.

C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-Pastor, and A. Monje, “On the optimal allocation of virtual resources in cloud computing networks,” IEEE Trans. Comput. 62, 1060–1071 (2013).
[Crossref]

Papavassiliou, S.

C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-Pastor, and A. Monje, “On the optimal allocation of virtual resources in cloud computing networks,” IEEE Trans. Comput. 62, 1060–1071 (2013).
[Crossref]

Papen, G. C.

H. Y. Hwang, J. S. Lee, T. J. Seok, A. Forencich, H. R. Grant, D. Knutson, N. Quack, S. Han, R. S. Muller, G. C. Papen, M. C. Wu, and P. O’brien, “Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre,” IEEE Photon. J. 9, 2900210 (2017).
[Crossref]

Paquet, S.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
[Crossref]

Parker, J. S.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19, 7816–7826 (2011).
[Crossref]

E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP–InGaAsP,” J. Lightwave Technol. 29, 1611–1619 (2011).
[Crossref]

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, “Programmable photonic lattice filters in InGaAsP–InP,” IEEE Photon. Technol. Lett. 22, 109–111 (2010).
[Crossref]

Patel, S.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Pello, J.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. C. Roelkens, J. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Peng, H.

H. Peng, M. A. Nahmias, T. F. de Lima, A. N. Tait, and B. J. Shastri, “Neuromorphic photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24, 6101715 (2018).
[Crossref]

Pennings, E. C. M.

L. H. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Penty, R.

Penty, R. V.

S. Liu, Q. Cheng, M. R. Madarbux, A. Wonfor, R. V. Penty, I. H. White, and P. M. Watts, “Low latency optical switch for high performance computing with minimized processor energy load,” J. Opt. Commun. Netw. 7, A498–A510 (2015).
[Crossref]

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Lightwave Technol. 31, 3077–3084 (2013).
[Crossref]

Pereira, S.

Perez, D.

Pérez, D.

A. López, D. Pérez, P. DasMahapatra, and J. Capmany, “Auto-routing algorithm for field-programmable photonic gate arrays,” Opt. Express 28, 737–752 (2020).
[Crossref]

D. Pérez and J. Capmany, “Scalable analysis for arbitrary photonic integrated waveguide meshes,” Optica 6, 19–24 (2019).
[Crossref]

D. Pérez, “Programmable integrated silicon photonics waveguide meshes: optimized designs and control algorithms,” IEEE J. Sel. Top. Quantum Electron. 26, 8301312 (2019).
[Crossref]

D. Zheng, J. D. Doménech, W. Pan, X. Zou, L. Yan, and D. Pérez, “Low-loss broadband 5 × 5 non-blocking Si3N4 optical switch matrix,” Opt. Lett. 44, 2629–2632 (2019).
[Crossref]

D. Pérez, I. Gasulla, and J. Capmany, “Field-programmable photonic arrays,” Opt. Express 26, 27265–27278 (2018).
[Crossref]

D. Pérez, E. Sánchez, and J. Capmany, “Programmable true-time delay lines using integrated waveguide meshes,” J. Lightwave Technol. 36, 4591–4601 (2018).
[Crossref]

J. Capmany, I. Gasulla, and D. Pérez, “Toward programmable microwave photonics processors,” J. Lightwave Technol. 36, 519–532 (2018).
[Crossref]

D. Pérez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon photonics rectangular universal interferometer,” Laser Photon. Rev. 11, 1700219 (2017).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8, 636 (2017).
[Crossref]

D. Pérez, I. Gasulla, J. Capmany, and R. A. Soref, “Reconfigurable lattice mesh designs for programmable photonic processors,” Opt. Express 24, 12093–12106 (2016).
[Crossref]

J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10, 6–8 (2016).
[Crossref]

D. Pérez, I. Gasulla, J. Capmany, J. S. Fandiño, P. Muñoz, and H. Alavi, “Figures of merit for self-beating filtered microwave photonic systems,” Opt. Express 24, 10087–10102 (2016).
[Crossref]

D. Pérez, “Integrated microwave photonic processors using waveguide mesh cores,” Ph.D. thesis (Universitat Politècnica de València, 2017).

J. Capmany and D. Pérez, “Reversible gates for programmable photonics,” in IEEE Photonics Society Summer Topical Meeting Series, Florida, USA (2019), pp. 1–2.

J. Capmany and D. Pérez, Programmable Integrated Photonics (Oxford University, 2020).

A. López, D. Pérez, P. DasMahapatra, and J. Capmany, “Dynamic reconfiguration in field-programmable photonic arrays,” in 45th European Conference on Optical Communications, Dublin, Ireland (2019).

Pérez-López, D.

Peruzzo, A.

A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L. O’Brien, “Multimode quantum interference of photons in multiport integrated devices,” Nat. Commun. 2, 224 (2011).
[Crossref]

Peters, J. D.

H. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

Pinkse, P. W. H.

C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8 × 8 programmable quantum photonic processor based on silicon nitride waveguides,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JTu3A.58 8.

Pleumeekers, J.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Pogoretskii, V.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Politi, A.

A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L. O’Brien, “Multimode quantum interference of photons in multiport integrated devices,” Nat. Commun. 2, 224 (2011).
[Crossref]

M. G. Thompson, A. Politi, J. C. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst. 5, 94–102 (2011).
[Crossref]

A. Politi, J. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

Pollock, C.

C. Pollock and M. Lipson, Integrated Photonics (Kluwer Academic, 2009).

Polster, R.

Pond, J.

Poon, A. W.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electrooptical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
[Crossref]

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Poot, M.

Pop, E.

Prabhu, M.

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophonic processor,” Optica 5, 1623–1631 (2018).
[Crossref]

N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

N. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).
[Crossref]

Prucnal, P. R.

A. N. Tait, H. Jayatilleka, T. Ferreira De Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26, 26422–26443 (2018).
[Crossref]

T. Ferreira de Lima, B. J. Shastri, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Progress in neuromorphic photonics,” Nanophotonics 6, 577–599 (2017).
[Crossref]

A. N. Tait, T. Ferreira de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Multichannel control for microring weight banks,” Opt. Express 24, 8895–8906 (2016).
[Crossref]

A. N. Tait, T. F. de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photon. Technol. Lett. 28, 887–890 (2016).
[Crossref]

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photon. 8, 228–299 (2016).
[Crossref]

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in Nanophotonic Information Physics, M. Naruse, ed. (Springer, 2014), pp. 183–222.

P. R. Prucnal and B. J. Shastri, Neuromorphic Photonics (CRC Press, 2017).

Pruneri, V.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. C. Roelkens, J. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Qi, G.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
[Crossref]

Qian, X.

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Qiao, L.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref]

Quack, N.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lightwave Technol. 36, 1824–1830 (2018).
[Crossref]

H. Y. Hwang, J. S. Lee, T. J. Seok, A. Forencich, H. R. Grant, D. Knutson, N. Quack, S. Han, R. S. Muller, G. C. Papen, M. C. Wu, and P. O’brien, “Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre,” IEEE Photon. J. 9, 2900210 (2017).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3, 64–70 (2016).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
[Crossref]

N. Seok, N. Quack, S. Han, and M. C. Wu, “50 × 50 digital silicon photonic switches with MEMS actuated adiabatic couplers,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2015), pp. 1–3.

Ralph, T. C.

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Ramponi, R.

N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

Rasras, M.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Reck, M.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

Reffle, M.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Rendina, I.

G. Cocorullo, F. G. D. Corte, I. Rendina, and P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A 71, 19–26 (1998).
[Crossref]

Renema, J. J.

P. L. Mennea, W. R. Clements, D. H. Smith, J. C. Gates, B. J. Metcalf, R. H. S. Bannerman, R. Burgwal, J. J. Renema, W. S. Kolthammer, I. A. Walmsley, and P. G. R. Smith, “Modular linear optical circuits,” Optica 5, 1087–1090 (2018).
[Crossref]

C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8 × 8 programmable quantum photonic processor based on silicon nitride waveguides,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JTu3A.58 8.

Reniers, S.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Ribeiro, A.

Ristic, S.

Robbins, D. J.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Roelkens, G.

Roelkens, G. C.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. C. Roelkens, J. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Roeloffzen, C. G. H.

L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2, 854–859 (2015).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8 × 8 programmable quantum photonic processor based on silicon nitride waveguides,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JTu3A.58 8.

Rohit, A.

P. DasMahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Optical crosspoint matrix using broadband resonant switches,” IEEE J. Sel. Top. Quantum Electron. 20, 5900410 (2014).
[Crossref]

Rose, J.

S. D. Brown, R. J. Francis, J. Rose, and Z. Vranesic, Field-Programmable Gate Arrays (Kluwer, 1992).

Rossi, J.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Rötteler, M.

G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, 2003).

Rouger, N.

Rudé, M.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. C. Roelkens, J. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Rudolph, T.

A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L. O’Brien, “Multimode quantum interference of photons in multiport integrated devices,” Nat. Commun. 2, 224 (2011).
[Crossref]

Rumelhart, D. E.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT, 1986), Vol. 1: Foundations.

Rumley, S.

Ruocco, A.

Russell, N. J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Sagues, M.

M. Sagues, “Applications and correspondence between the optical and electrical domain established by optical single sideband modulation,” Ph.D thesis (in Spanish) (Universidad Pública de Navarra, 2009).

Saleh, A. A. M.

A. S. P. Khope, A. M. Netherton, T. Hirokawa, N. Volet, E. J. Stanton, C. Schow, R. Helkey, A. A. M. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic WDM optoelectronic crossbar switch with on-chip wavelength control,” in Proceedings OSA Advanced Photonics (2017), paper PTh1D.3.

Saleh, B. E. A.

Saleh, M. F.

Salvatore, R.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Sampietro, M.

A. Anoni, E. Guglielmi, M. Carminati, G. Ferrari, M. Sampietro, D. A. B. Miller, A. Melloni, and F. Morichetti, “Unscrambling light—automatically undoing strong mixing between modes,” Light Sci. Appl. 6, e17110 (2016).
[Crossref]

Sánchez, E.

Santagati, R.

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Sarro, P. M.

G. Cocorullo, F. G. D. Corte, I. Rendina, and P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A 71, 19–26 (1998).
[Crossref]

Scarcella, C.

L. Carroll, J. S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, and S. Collins, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Schell, M.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Schmid, J. H.

Schneider, R.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Schow, C.

A. S. P. Khope, A. M. Netherton, T. Hirokawa, N. Volet, E. J. Stanton, C. Schow, R. Helkey, A. A. M. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic WDM optoelectronic crossbar switch with on-chip wavelength control,” in Proceedings OSA Advanced Photonics (2017), paper PTh1D.3.

Schrauwen, B.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5, 3451 (2014).
[Crossref]

Schreuder, F.

R. G. Heideman, M. Hoekman, and F. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1583–1596 (2012).
[Crossref]

Schuck, C.

Sciarrino, F.

N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

Seki, M.

Seok, N.

N. Seok, N. Quack, S. Han, and M. C. Wu, “50 × 50 digital silicon photonic switches with MEMS actuated adiabatic couplers,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2015), pp. 1–3.

Seok, T. J.

Seregelyi, J.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
[Crossref]

Shadbolt, P. J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Shastri, B. J.

A. N. Tait, H. Jayatilleka, T. Ferreira De Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26, 26422–26443 (2018).
[Crossref]

H. Peng, M. A. Nahmias, T. F. de Lima, A. N. Tait, and B. J. Shastri, “Neuromorphic photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24, 6101715 (2018).
[Crossref]

T. Ferreira de Lima, B. J. Shastri, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Progress in neuromorphic photonics,” Nanophotonics 6, 577–599 (2017).
[Crossref]

A. N. Tait, T. F. de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photon. Technol. Lett. 28, 887–890 (2016).
[Crossref]

A. N. Tait, T. Ferreira de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Multichannel control for microring weight banks,” Opt. Express 24, 8895–8906 (2016).
[Crossref]

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photon. 8, 228–299 (2016).
[Crossref]

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in Nanophotonic Information Physics, M. Naruse, ed. (Springer, 2014), pp. 183–222.

P. R. Prucnal and B. J. Shastri, Neuromorphic Photonics (CRC Press, 2017).

Shekhar, S.

Shen, L.

Shen, Y.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Silverstone, J. W.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Simpson, R. E.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. C. Roelkens, J. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Sipe, J. E.

Skirlo, S.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Smalbrugge, E.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Smit, M.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Smit, M. K.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Smith, A. M.

Smith, B. J.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

N. Thomas-Peter, N. K. Langford, A. Datta, L. Zhang, B. J. Smith, J. B. Spring, B. J. Metcalf, H. B. Coldenstrodt-Ronge, M. Hu, J. Nunn, and I. A. Walmsley, “Integrated photonic sensing,” New J. Phys. 13, 055024 (2011).
[Crossref]

Smith, D. H.

Smith, P. G. R.

P. L. Mennea, W. R. Clements, D. H. Smith, J. C. Gates, B. J. Metcalf, R. H. S. Bannerman, R. Burgwal, J. J. Renema, W. S. Kolthammer, I. A. Walmsley, and P. G. R. Smith, “Modular linear optical circuits,” Optica 5, 1087–1090 (2018).
[Crossref]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Soares, F. M.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Soldano, L. H.

L. H. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Soljacic, M.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Song, J.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electrooptical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
[Crossref]

Song, J. F.

J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

Soref, R. A.

Spagnolo, N.

N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

Sparrow, C.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Spring, J. B.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

N. Thomas-Peter, N. K. Langford, A. Datta, L. Zhang, B. J. Smith, J. B. Spring, B. J. Metcalf, H. B. Coldenstrodt-Ronge, M. Hu, J. Nunn, and I. A. Walmsley, “Integrated photonic sensing,” New J. Phys. 13, 055024 (2011).
[Crossref]

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Stabile, R.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

P. DasMahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Optical crosspoint matrix using broadband resonant switches,” IEEE J. Sel. Top. Quantum Electron. 20, 5900410 (2014).
[Crossref]

Stankovic, S.

Stanton, E. J.

A. S. P. Khope, A. M. Netherton, T. Hirokawa, N. Volet, E. J. Stanton, C. Schow, R. Helkey, A. A. M. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic WDM optoelectronic crossbar switch with on-chip wavelength control,” in Proceedings OSA Advanced Photonics (2017), paper PTh1D.3.

Steinbrecher, G. R.

N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

N. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).
[Crossref]

J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).
[Crossref]

Stopinski, S. T.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Suda, S.

Sugaya, T.

Sugimoto, M.

K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto, and I. Mito, “First 8*8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers,” Electron. Lett. 28, 441–443 (1992).
[Crossref]

Sun, X.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Suzuki, K.

Taballione, C.

C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8 × 8 programmable quantum photonic processor based on silicon nitride waveguides,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JTu3A.58 8.

Taddei, C.

Tahvili, M. S.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Tait, A. N.

A. N. Tait, H. Jayatilleka, T. Ferreira De Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26, 26422–26443 (2018).
[Crossref]

H. Peng, M. A. Nahmias, T. F. de Lima, A. N. Tait, and B. J. Shastri, “Neuromorphic photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24, 6101715 (2018).
[Crossref]

T. Ferreira de Lima, B. J. Shastri, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Progress in neuromorphic photonics,” Nanophotonics 6, 577–599 (2017).
[Crossref]

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photon. 8, 228–299 (2016).
[Crossref]

A. N. Tait, T. Ferreira de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Multichannel control for microring weight banks,” Opt. Express 24, 8895–8906 (2016).
[Crossref]

A. N. Tait, T. F. de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photon. Technol. Lett. 28, 887–890 (2016).
[Crossref]

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in Nanophotonic Information Physics, M. Naruse, ed. (Springer, 2014), pp. 183–222.

Takei, A.

S. K. Hiroki Kouketsu, N. Koyama, A. Takei, T. Taniguchi, Y. Matsushima, and K. Utaka, “High-speed and compact non-blocking 8 × 8 InAlGaAs InAlAs Mach-Zehnder-type optical switch fabric,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2K.3.

Tang, H. X.

Tang, J.

Tang, W.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref]

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Taniguchi, T.

S. K. Hiroki Kouketsu, N. Koyama, A. Takei, T. Taniguchi, Y. Matsushima, and K. Utaka, “High-speed and compact non-blocking 8 × 8 InAlGaAs InAlAs Mach-Zehnder-type optical switch fabric,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2K.3.

Tanizawa, K.

Teich, M. C.

Theogarajan, L.

L. N. Chen, E. Hall, L. Theogarajan, and J. Bowers, “Photonic switching for data center applications,” IEEE Photon. J. 3, 834–844 (2011).
[Crossref]

Thijs, P. J. A.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Thomas-Peter, N.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

N. Thomas-Peter, N. K. Langford, A. Datta, L. Zhang, B. J. Smith, J. B. Spring, B. J. Metcalf, H. B. Coldenstrodt-Ronge, M. Hu, J. Nunn, and I. A. Walmsley, “Integrated photonic sensing,” New J. Phys. 13, 055024 (2011).
[Crossref]

Thompson, M. G.

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

M. G. Thompson, A. Politi, J. C. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst. 5, 94–102 (2011).
[Crossref]

A. Politi, J. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

Thomson, D. J.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8, 636 (2017).
[Crossref]

D. Pérez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon photonics rectangular universal interferometer,” Laser Photon. Rev. 11, 1700219 (2017).
[Crossref]

Tian, Y.

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in Nanophotonic Information Physics, M. Naruse, ed. (Springer, 2014), pp. 183–222.

Tison, C. C.

Tol van der, J. J. G. M.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Toyama, M.

Trimberger, S. M.

S. M. Trimberger, “Three ages of FPGAs: a restrospective on the first thirty years of FPGA technology,” Proc. IEEE 103, 318–331 (2015).
[Crossref]

Trotter, D. C.

Tsang, H. K.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Tu, X.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

Turletti, K. T.

B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and K. T. Turletti, “A survey of software-defined networking: past, present, future of programmable networks,” Proc. IEEE 16, 1617–1634 (2014).
[Crossref]

Utaka, K.

S. K. Hiroki Kouketsu, N. Koyama, A. Takei, T. Taniguchi, Y. Matsushima, and K. Utaka, “High-speed and compact non-blocking 8 × 8 InAlGaAs InAlAs Mach-Zehnder-type optical switch fabric,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2K.3.

Van Campenhout, J.

van der Tol, J.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Van der Tol, J. G. M.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

van der Tol, J. M.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. C. Roelkens, J. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

van Dijk, P. W. L.

van Engelen, J.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Van Thourhout, D.

Van Vaerenbergh, T.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5, 3451 (2014).
[Crossref]

Van Veldhoven, P. J.

van Veldhoven, R.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Vanacker, L.

Vandoorne, K.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5, 3451 (2014).
[Crossref]

Veldhoven, P. J.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Vera, G.

J. Lyke, C. G. Christodolou, G. Vera, and A. H. Edwards, “An introduction to reconfigurable systems,” Proc. IEEE 103, 291–317 (2015).
[Crossref]

Verstraeten, D.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5, 3451 (2014).
[Crossref]

Visscher, I.

C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8 × 8 programmable quantum photonic processor based on silicon nitride waveguides,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JTu3A.58 8.

Vitelli, C.

N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

Vlasov, Y. A.

Volet, N.

A. S. P. Khope, A. M. Netherton, T. Hirokawa, N. Volet, E. J. Stanton, C. Schow, R. Helkey, A. A. M. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic WDM optoelectronic crossbar switch with on-chip wavelength control,” in Proceedings OSA Advanced Photonics (2017), paper PTh1D.3.

Vranesic, Z.

S. D. Brown, R. J. Francis, J. Rose, and Z. Vranesic, Field-Programmable Gate Arrays (Kluwer, 1992).

Vries, T.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Wale, M. J.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Walmsley, I. A.

P. L. Mennea, W. R. Clements, D. H. Smith, J. C. Gates, B. J. Metcalf, R. H. S. Bannerman, R. Burgwal, J. J. Renema, W. S. Kolthammer, I. A. Walmsley, and P. G. R. Smith, “Modular linear optical circuits,” Optica 5, 1087–1090 (2018).
[Crossref]

W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, “Optimal design for universal multiport interferometers,” Optica 3, 1460–1465 (2016).
[Crossref]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

N. Thomas-Peter, N. K. Langford, A. Datta, L. Zhang, B. J. Smith, J. B. Spring, B. J. Metcalf, H. B. Coldenstrodt-Ronge, M. Hu, J. Nunn, and I. A. Walmsley, “Integrated photonic sensing,” New J. Phys. 13, 055024 (2011).
[Crossref]

C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8 × 8 programmable quantum photonic processor based on silicon nitride waveguides,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JTu3A.58 8.

Wang, B.

Wang, H.

Wang, J.

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Wang, J. B.

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Wang, M.

Wang, X.

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25, 9712–9733 (2017).
[Crossref]

H. Zhou, Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “Self-learning photonic signal processor with an optical neural network chip,” arXiv:1902.07318 [eess.SP] (2019).

Wang, Y.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Wang, Z.

H. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

Watts, M. R.

Watts, P. M.

Wei, Y.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

Weinfurter, H.

G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, 2003).

Welch, D.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Werner, R.

G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, 2003).

White, I.

White, I. H.

Wilkes, C. M.

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Williams, K.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Williams, K. A.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

P. DasMahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Optical crosspoint matrix using broadband resonant switches,” IEEE J. Sel. Top. Quantum Electron. 20, 5900410 (2014).
[Crossref]

Williams, R. J.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT, 1986), Vol. 1: Foundations.

Wolterink, T. A. W.

C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8 × 8 programmable quantum photonic processor based on silicon nitride waveguides,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JTu3A.58 8.

Wonfor, A.

S. Liu, Q. Cheng, M. R. Madarbux, A. Wonfor, R. V. Penty, I. H. White, and P. M. Watts, “Low latency optical switch for high performance computing with minimized processor energy load,” J. Opt. Commun. Netw. 7, A498–A510 (2015).
[Crossref]

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Lightwave Technol. 31, 3077–3084 (2013).
[Crossref]

A. Wonfor, H. Wang, R. Penty, and I. White, “Large port count high-speed optical switch fabric for use within datacenters,” J. Opt. Commun. Netw. 3, A32–A39 (2011).
[Crossref]

Wong, F. N. C.

N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Wong-Foy, A.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Wu, M. C.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lightwave Technol. 36, 1824–1830 (2018).
[Crossref]

H. Y. Hwang, J. S. Lee, T. J. Seok, A. Forencich, H. R. Grant, D. Knutson, N. Quack, S. Han, R. S. Muller, G. C. Papen, M. C. Wu, and P. O’brien, “Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre,” IEEE Photon. J. 9, 2900210 (2017).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3, 64–70 (2016).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
[Crossref]

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[Crossref]

M.-C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14, 4703–4712 (2006).
[Crossref]

N. Seok, N. Quack, S. Han, and M. C. Wu, “50 × 50 digital silicon photonic switches with MEMS actuated adiabatic couplers,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2015), pp. 1–3.

Wymeersch, H.

D. Zibar, H. Wymeersch, and I. Lyubomirsky, “Machine learning under the spotlight,” Nat. Photonics 11, 749–751 (2017).
[Crossref]

Xu, D. X.

Xu, F.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Xu, P.

Yan, L.

Yan, S.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

Yao, J.

W. Zhang and J. Yao, “Photonic integrated field-programmable disk array signal processor,” Nat. Commun. 11, 406 (2020).
[Crossref]

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[Crossref]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
[Crossref]

Yao, J. P.

D. Marpaung, J. P. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

Yao, W.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Yariv, A.

S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
[Crossref]

A. Yariv, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).

Yokoyama, N.

Yoo, B.-W.

Yu, K.

Yu, M.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electrooptical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
[Crossref]

Yu, M. B.

J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

Zecevic, N.

N. Zecevic, M. Hofbauer, and H. Zimmermann, “Integrated pulsewidth modulation control for a scalable optical switch matrix,” IEEE Photon. J. 7, 7803007 (2015).
[Crossref]

Zeilinger, A.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, 2003).

Zhang, C.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

Zhang, L.

N. Thomas-Peter, N. K. Langford, A. Datta, L. Zhang, B. J. Smith, J. B. Spring, B. J. Metcalf, H. B. Coldenstrodt-Ronge, M. Hu, J. Nunn, and I. A. Walmsley, “Integrated photonic sensing,” New J. Phys. 13, 055024 (2011).
[Crossref]

Zhang, W.

W. Zhang and J. Yao, “Photonic integrated field-programmable disk array signal processor,” Nat. Commun. 11, 406 (2020).
[Crossref]

Zhang, X.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

H. Zhou, Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “Self-learning photonic signal processor with an optical neural network chip,” arXiv:1902.07318 [eess.SP] (2019).

Zhao, F.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

Zhao, H. J.

C. Madsen and H. J. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

Zhao, J.

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Zhao, J. H.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

Zhao, S.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach–Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]

Zhao, X.

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

Zhao, Y.

H. Zhou, Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “Self-learning photonic signal processor with an optical neural network chip,” arXiv:1902.07318 [eess.SP] (2019).

Zheng, D.

Zheng, J.

Zhou, H.

H. Zhou, Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “Self-learning photonic signal processor with an optical neural network chip,” arXiv:1902.07318 [eess.SP] (2019).

Zhou, L.

Zhou, W.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

Zhou, X.

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Zhu, N.

Zhu, Z.

Zhuang, L.

Ziari, M.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

Zibar, D.

D. Zibar, H. Wymeersch, and I. Lyubomirsky, “Machine learning under the spotlight,” Nat. Photonics 11, 749–751 (2017).
[Crossref]

Zimmermann, H.

N. Zecevic, M. Hofbauer, and H. Zimmermann, “Integrated pulsewidth modulation control for a scalable optical switch matrix,” IEEE Photon. J. 7, 7803007 (2015).
[Crossref]

Zortman, W. A.

Zou, X.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. C. Roelkens, J. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  µm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Appl. Sci. (1)

L. Carroll, J. S. Lee, C. Scarcella, K. Gradkowski, M. Duperron, H. Lu, and S. Collins, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci. 6, 426 (2016).
[Crossref]

Electron. Lett. (2)

K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto, and I. Mito, “First 8*8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers,” Electron. Lett. 28, 441–443 (1992).
[Crossref]

K. Lee and P. Gulak, “Field programmable analogue array based on MOSFET transconductor,” Electron. Lett. 28, 28–29 (1992).
[Crossref]

IEEE Commun. Mag. (1)

J. Mitola, “The software radio architecture,” IEEE Commun. Mag. 33(5), 26–38 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (12)

W. Bogaerts, M. Fiers, and P. Dumon, “Design challenges in silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20, 8202008 (2014).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

R. G. Heideman, M. Hoekman, and F. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1583–1596 (2012).
[Crossref]

J. G. M. Van der Tol, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. van Veldhoven, T. de Vries, E.-J. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, “Indium phosphide integrated photonics in membranes,” IEEE J. Sel. Top. Quantum Electron. 24, 6100809 (2018).
[Crossref]

P. DasMahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Optical crosspoint matrix using broadband resonant switches,” IEEE J. Sel. Top. Quantum Electron. 20, 5900410 (2014).
[Crossref]

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[Crossref]

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

D. Pérez, “Programmable integrated silicon photonics waveguide meshes: optimized designs and control algorithms,” IEEE J. Sel. Top. Quantum Electron. 26, 8301312 (2019).
[Crossref]

A. Politi, J. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

H. Peng, M. A. Nahmias, T. F. de Lima, A. N. Tait, and B. J. Shastri, “Neuromorphic photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24, 6101715 (2018).
[Crossref]

IEEE Photon. J. (3)

N. Zecevic, M. Hofbauer, and H. Zimmermann, “Integrated pulsewidth modulation control for a scalable optical switch matrix,” IEEE Photon. J. 7, 7803007 (2015).
[Crossref]

H. Y. Hwang, J. S. Lee, T. J. Seok, A. Forencich, H. R. Grant, D. Knutson, N. Quack, S. Han, R. S. Muller, G. C. Papen, M. C. Wu, and P. O’brien, “Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre,” IEEE Photon. J. 9, 2900210 (2017).
[Crossref]

L. N. Chen, E. Hall, L. Theogarajan, and J. Bowers, “Photonic switching for data center applications,” IEEE Photon. J. 3, 834–844 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (5)

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electrooptical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett. 24, 821–823 (2012).
[Crossref]

A. N. Tait, T. F. de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photon. Technol. Lett. 28, 887–890 (2016).
[Crossref]

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, “Programmable photonic lattice filters in InGaAsP–InP,” IEEE Photon. Technol. Lett. 22, 109–111 (2010).
[Crossref]

IEEE Trans. Comput. (1)

C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-Pastor, and A. Monje, “On the optimal allocation of virtual resources in cloud computing networks,” IEEE Trans. Comput. 62, 1060–1071 (2013).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

H. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
[Crossref]

IET Circuits Devices Syst. (1)

M. G. Thompson, A. Politi, J. C. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst. 5, 94–102 (2011).
[Crossref]

J. Lightwave Technol. (13)

G. Choo, S. Cai, B. Wang, C. K. Madsen, K. Entesari, and S. Palermo, “Automatic monitor-based tuning of reconfigurable silicon photonic APF-based pole/zero filters,” J. Lightwave Technol. 36, 1899–1911 (2018).
[Crossref]

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Lightwave Technol. 36, 773–788 (2018).
[Crossref]

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Lightwave Technol. 31, 3077–3084 (2013).
[Crossref]

Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16 × 16 silicon optical switch based on dual-ring-assisted Mach–Zehnder interferometers,” J. Lightwave Technol. 36, 225–232 (2018).
[Crossref]

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lightwave Technol. 36, 1824–1830 (2018).
[Crossref]

B. G. Lee and N. Dupuis, “Silicon photonic switch fabrics: technology and architecture,” J. Lightwave Technol. 37, 6–20 (2019).
[Crossref]

N. Dupuis, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 Mach–Zehnder silicon photonic switches,” J. Lightwave Technol. 33, 3597–3606 (2015).
[Crossref]

J. Capmany, I. Gasulla, and D. Pérez, “Toward programmable microwave photonics processors,” J. Lightwave Technol. 36, 519–532 (2018).
[Crossref]

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—a tutorial,” J. Lightwave Technol. 29, 554–570 (2011).
[Crossref]

L. H. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995).
[Crossref]

D. Pérez, E. Sánchez, and J. Capmany, “Programmable true-time delay lines using integrated waveguide meshes,” J. Lightwave Technol. 36, 4591–4601 (2018).
[Crossref]

E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP–InGaAsP,” J. Lightwave Technol. 29, 1611–1619 (2011).
[Crossref]

J. Opt. Commun. Netw. (2)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (2)

D. Pérez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon photonics rectangular universal interferometer,” Laser Photon. Rev. 11, 1700219 (2017).
[Crossref]

D. Marpaung, Y. Liu, B. Isaac, J. Kalkavage, E. Adles, and T. Clark, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Light Sci. Appl. (1)

A. Anoni, E. Guglielmi, M. Carminati, G. Ferrari, M. Sampietro, D. A. B. Miller, A. Melloni, and F. Morichetti, “Unscrambling light—automatically undoing strong mixing between modes,” Light Sci. Appl. 6, e17110 (2016).
[Crossref]

Nanophotonics (2)

T. Ferreira de Lima, B. J. Shastri, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Progress in neuromorphic photonics,” Nanophotonics 6, 577–599 (2017).
[Crossref]

N. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5, 456–468 (2016).
[Crossref]

Nat. Commun. (5)

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5, 3451 (2014).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8, 636 (2017).
[Crossref]

A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L. O’Brien, “Multimode quantum interference of photons in multiport integrated devices,” Nat. Commun. 2, 224 (2011).
[Crossref]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

W. Zhang and J. Yao, “Photonic integrated field-programmable disk array signal processor,” Nat. Commun. 11, 406 (2020).
[Crossref]

Nat. Photonics (15)

D. Marpaung, J. P. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13, 80–90 (2019).
[Crossref]

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).
[Crossref]

N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

O. Graydon, “Birth of the programmable optical chip,” Nat. Photonics 10, 1 (2016).
[Crossref]

J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10, 6–8 (2016).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

D. A. B. Miller, “Silicon photonics: meshing optics with applications,” Nat. Photonics 11, 403–404 (2017).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010).
[Crossref]

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11, 124–129 (2016).
[Crossref]

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, “Experimental validation of photonic boson sampling,” Nat. Photonics 8, 615–620 (2014).
[Crossref]

X. Qian, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

D. Zibar, H. Wymeersch, and I. Lyubomirsky, “Machine learning under the spotlight,” Nat. Photonics 11, 749–751 (2017).
[Crossref]

Nature (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

New J. Phys. (1)

N. Thomas-Peter, N. K. Langford, A. Datta, L. Zhang, B. J. Smith, J. B. Spring, B. J. Metcalf, H. B. Coldenstrodt-Ronge, M. Hu, J. Nunn, and I. A. Walmsley, “Integrated photonic sensing,” New J. Phys. 13, 055024 (2011).
[Crossref]

Opt. Express (25)

D. Pérez, I. Gasulla, J. Capmany, and R. A. Soref, “Reconfigurable lattice mesh designs for programmable photonic processors,” Opt. Express 24, 12093–12106 (2016).
[Crossref]

D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express 21, 6360–6370 (2013).
[Crossref]

D. Pérez-López, A. M. Gutierrez, E. Sánchez, P. DasMahapatra, and J. Capmany, “Integrated photonic tunable basic units using dual-drive directional couplers,” Opt. Express 27, 38071–38086 (2019).
[Crossref]

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express 20, 23985–23993 (2012).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

A. López, D. Pérez, P. DasMahapatra, and J. Capmany, “Auto-routing algorithm for field-programmable photonic gate arrays,” Opt. Express 28, 737–752 (2020).
[Crossref]

C. J. Oton, C. Manganelli, F. Bontempi, M. Fournier, D. Fowler, and C. Kopp, “Silicon photonic waveguide metrology using Mach-Zehnder interferometers,” Opt. Express 24, 6265–6270 (2016).
[Crossref]

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25, 9712–9733 (2017).
[Crossref]

A. Densmore, S. Janz, R. Ma, J. H. Schmid, D. X. Xu, A. Delâge, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17, 10457–10465 (2009).
[Crossref]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
[Crossref]

D. Pérez, I. Gasulla, and J. Capmany, “Field-programmable photonic arrays,” Opt. Express 26, 27265–27278 (2018).
[Crossref]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
[Crossref]

M. Poot, C. Schuck, X.-S. Ma, X. Guo, and H. X. Tang, “Design and characterization of integrated components for SiN photonic quantum circuits,” Opt. Express 24, 6843–6860 (2016).
[Crossref]

M. F. Saleh, G. Di Giuseppe, B. E. A. Saleh, and M. C. Teich, “Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate,” Opt. Express 18, 20475–20490 (2010).
[Crossref]

J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020–24029 (2009).
[Crossref]

M.-C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14, 4703–4712 (2006).
[Crossref]

A. N. Tait, T. Ferreira de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Multichannel control for microring weight banks,” Opt. Express 24, 8895–8906 (2016).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23, 17599–17606 (2015).
[Crossref]

L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach–Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]

J. Tang, T. Hao, W. Li, D. Domenech, R. Baños, P. Muñoz, N. Zhu, J. Capmany, and M. Li, “Integrated optoelectronic oscillator,” Opt. Express 26, 12257–12265 (2018).
[Crossref]

R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19, 7816–7826 (2011).
[Crossref]

D. Pérez, I. Gasulla, J. Capmany, J. S. Fandiño, P. Muñoz, and H. Alavi, “Figures of merit for self-beating filtered microwave photonic systems,” Opt. Express 24, 10087–10102 (2016).
[Crossref]

D. Perez, I. Gasulla, and J. Capmany, “Software-defined universal microwave photonics processor,” Opt. Express 23, 14640–14654 (2015).
[Crossref]

A. N. Tait, H. Jayatilleka, T. Ferreira De Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26, 26422–26443 (2018).
[Crossref]

R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18, 25151–25157 (2010).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (2)

Optica (9)

P. L. Mennea, W. R. Clements, D. H. Smith, J. C. Gates, B. J. Metcalf, R. H. S. Bannerman, R. Burgwal, J. J. Renema, W. S. Kolthammer, I. A. Walmsley, and P. G. R. Smith, “Modular linear optical circuits,” Optica 5, 1087–1090 (2018).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2, 854–859 (2015).
[Crossref]

D. A. B. Miller, “Perfect optics with imperfect components,” Optica 2, 747–750 (2015).
[Crossref]

A. Ribeiro, A. Ruocco, L. Vanacker, and W. Bogaerts, “Demonstration of a 4 × 4-port universal linear circuit,” Optica 3, 1348–1357 (2016).
[Crossref]

W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, “Optimal design for universal multiport interferometers,” Optica 3, 1460–1465 (2016).
[Crossref]

D. Pérez and J. Capmany, “Scalable analysis for arbitrary photonic integrated waveguide meshes,” Optica 6, 19–24 (2019).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3, 64–70 (2016).
[Crossref]

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophonic processor,” Optica 5, 1623–1631 (2018).
[Crossref]

Photon. Res. (1)

Phys. Rev. A (1)

J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).
[Crossref]

Phys. Rev. Lett. (1)

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

Proc. IEEE (5)

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large-scale III–V photonic integrated circuits,” Proc. IEEE 101, 2255–2270 (2013).
[Crossref]

B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and K. T. Turletti, “A survey of software-defined networking: past, present, future of programmable networks,” Proc. IEEE 16, 1617–1634 (2014).
[Crossref]

J. Lyke, C. G. Christodolou, G. Vera, and A. H. Edwards, “An introduction to reconfigurable systems,” Proc. IEEE 103, 291–317 (2015).
[Crossref]

S. M. Trimberger, “Three ages of FPGAs: a restrospective on the first thirty years of FPGA technology,” Proc. IEEE 103, 318–331 (2015).
[Crossref]

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Prog. Quantum Electron. (1)

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

Rev. Mod. Phys. (1)

P. Kok, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Sci. Rep. (1)

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref]

Science (3)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Semicond. Sci. Technol. (1)

M. K. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. A. J. M. Bente, J. J. G. M. Tol van der, E. Smalbrugge, T. Vries, E. J. Geluk, J. Bolk, P. J. Veldhoven, L. M. Augustin, P. J. A. Thijs, D. D’Agostino, H. R. Haghighi, K. Lawniczuk, S. T. Stopinski, M. S. Tahvili, A. Corradi, E. Kleijn, D. O. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. M. Lemos, A. Dos Santos, G. Gilardi, W. Yao, K. A. Williams, R. Stabile, P. I. Kuindersma, J. Pello, S. P. Bhat, Y. Jiao, D. Heiss, G. C. Roelkens, M. J. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Sens. Actuators A (1)

G. Cocorullo, F. G. D. Corte, I. Rendina, and P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A 71, 19–26 (1998).
[Crossref]

Other (40)

N. Seok, N. Quack, S. Han, and M. C. Wu, “50 × 50 digital silicon photonic switches with MEMS actuated adiabatic couplers,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2015), pp. 1–3.

P. Edinger, C. Errando-Herranz, and K. Gylfason, “Low-loss MEMS phase shifter for large scale reconfigurable silicon photonics,” in 32nd IEEE International Conference on Micro Electro Mechanical Systems, Seoul, South Korea (27–31 January2019).

http://www.europractice-ic.com/index.php .

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 silicon photonic switch,” in 21st OptoElectronics and Communications Conference (OECC) (2016), pp. 1–3.

J. Capmany and D. Pérez, “Reversible gates for programmable photonics,” in IEEE Photonics Society Summer Topical Meeting Series, Florida, USA (2019), pp. 1–2.

H. Zhou, Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “Self-learning photonic signal processor with an optical neural network chip,” arXiv:1902.07318 [eess.SP] (2019).

R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University, 2000).

C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge University, 2005).

A. López, “Implementation of self-reconfigurable integrated optical filters based on mixture density networks,” Master thesis (Universidad Politécnica de Madrid, 2019).

X. Chen and W. Bogaerts, “A graph-based design and programming strategy for reconfigurable photonic circuits,” in IEEE Photonics Society Summer Topical Meeting Series, Fort Lauderdale, Fla., USA (8–10 July2019).

A. López, D. Pérez, P. DasMahapatra, and J. Capmany, “Dynamic reconfiguration in field-programmable photonic arrays,” in 45th European Conference on Optical Communications, Dublin, Ireland (2019).

A. S. P. Khope, A. M. Netherton, T. Hirokawa, N. Volet, E. J. Stanton, C. Schow, R. Helkey, A. A. M. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic WDM optoelectronic crossbar switch with on-chip wavelength control,” in Proceedings OSA Advanced Photonics (2017), paper PTh1D.3.

S. K. Hiroki Kouketsu, N. Koyama, A. Takei, T. Taniguchi, Y. Matsushima, and K. Utaka, “High-speed and compact non-blocking 8 × 8 InAlGaAs InAlAs Mach-Zehnder-type optical switch fabric,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2K.3.

P. R. Prucnal and B. J. Shastri, Neuromorphic Photonics (CRC Press, 2017).

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in Nanophotonic Information Physics, M. Naruse, ed. (Springer, 2014), pp. 183–222.

“JePPIX roadmap,” 2015, http://www.jeppix.eu .

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).

H. Kaeslin, Digital Integrated Circuit Design: From VLSI Architectures to CMOS (Cambridge University, 2008).

K. Kerpez and G. Ginis, “Software-defined access network (SDAN),” in Proceedings 48th Annual Conference on Information Sciences and Systems (CISS) (2014), pp. 1–16.

C. M. Cristensen, The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail (Harvard Business School, 1997).

C. Madsen and H. J. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

S. M. Trimberger, ed., Field-Programmable Gate Array Technology (Springer, 1994).

E. Desurvire, Classical and Quantum Information Theory: An Introduction for the Telecom Scientist (Cambridge University, 2009).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2001).

A. Yariv, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2011).

C. Pollock and M. Lipson, Integrated Photonics (Kluwer Academic, 2009).

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).

H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

K. Iizuka, Elements of Photonics (Wiley, 2002).

K. Iizuka, Engineering Optics, 3rd ed. (Springer-Verlag, 2009).

D. Pérez, “Integrated microwave photonic processors using waveguide mesh cores,” Ph.D. thesis (Universitat Politècnica de València, 2017).

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

J. Capmany and D. Pérez, Programmable Integrated Photonics (Oxford University, 2020).

C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8 × 8 programmable quantum photonic processor based on silicon nitride waveguides,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JTu3A.58 8.

G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, 2003).

S. D. Brown, R. J. Francis, J. Rose, and Z. Vranesic, Field-Programmable Gate Arrays (Kluwer, 1992).

K. Lee and P. Gulak, “A transconductor-based field-programmable analog array,” in Proceedings of IEEE International Solid-Sate Circuits Conference (1995), pp. 198–199.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT, 1986), Vol. 1: Foundations.

M. Sagues, “Applications and correspondence between the optical and electrical domain established by optical single sideband modulation,” Ph.D thesis (in Spanish) (Universidad Pública de Navarra, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (40)

Figure 1.
Figure 1. Classification and features of the main programmable integrated photonic families (authors’ elaboration).
Figure 2.
Figure 2. Waveguide structures for the InP (upper row), SOI (intermediate row), and ${\text{Si}_3}{\text{N}_4} - {\text{SiO}_2}$ (lower row) platforms (authors’ elaboration).
Figure 3.
Figure 3. (a) Top view representation of a photonic integrated waveguide of length L with input and output fields corresponding to the different propagated modes. (b) Black-box representation of the integrated waveguide action over the fundamental ${\text{TE}_{01}}$ mode. Reprinted with permission from Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984) [49].
Figure 4.
Figure 4. (a) Schematic layout of an integrated phase shifter where an actuator placed on top of the waveguide generates a change in its refractive index ${n_{\text{TE}}}(s)$ and a subsequent phase shift by means of a control signal $s$ . (b) A two waveguide tunable phase shifter. (c) Representation of bulk beam splitter including input and output fields corresponding to its two surfaces. Reprinted with permission from Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984) [49].
Figure 5.
Figure 5. Schematic (a) cross-section and lateral and (b) top view of a directional coupler. (c) Tunable dual drive directional coupler layout including common mode and differential control signals. (d) Tuning curve for the coupling constant value of a reconfigurable directional coupler versus the differential bias signal. Reprinted with permission from Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984) [49].
Figure 6.
Figure 6. (a) Tunable 3 dB MZI coupler, (b) layout of the $2 \times 2$ 3 dB multimode interference (MMI) coupler used to embed the balanced interferometer. Reprinted with permission from Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984) [49].
Figure 7.
Figure 7. (a) Schematic layout of an electronic FPGA containing a set of interconnected configurable logic elements (CLEs), input/output pads and high-performance blocks (HPBs), and examples of irreversible logic Boolean gates employed in the design of CLEs. (b) XOR gate; (c) AND gate. Reprinted with permission from Trimberger, ed., Field-Programmable Gate Array Technology (Springer, 1994) [55].
Figure 8.
Figure 8. (a) Schematic layout for the photonic implementation of $Rx(\theta)$ based on a tunable directional coupler. (b) Schematic layout for the photonic implementation of $Ry(\theta)$ based on a tunable 3 dB MZI coupler. (c) Schematic layout for the photonic implementation of $Rz(\theta)$ based on a differential push–pull phase shifter. (d) Integrated photonic implementation of an arbitrary unitary $2 \times 2$ matrix transform using a cascade of $Rx(\theta)$ and $Rz(\theta)$ rotations. (e) Integrated photonic implementation of an arbitrary unitary $2 \times 2$ matrix transform using a cascade of $Ry(\theta)$ and $Rz(\theta)$ rotations. Reprinted from [59].
Figure 9.
Figure 9. (a) Bulk optics implementation of a tunable beam splitter (adapted from [21]). (b) Symbol representation of the beam splitter layout. (c) Triangular decomposition implementing a general $U(4)$ ${4}\times {4}$ unitary transformation and layout (d). Colors represent the propagation of a given input port. (e)  $U(4)$ layout of Fig. 8(d) and its implementation using MZI-based TBUs. TBUs in red color operate as phase shifters.
Figure 10.
Figure 10. Illustration of the algorithm for programming a universal multiport interferometer for the $U(5)$ interferometer. The left-hand side presents the decomposition procedure, and the right-hand side shows the decomposition for building up the corresponding interferometer. (a) The starting point is any random unitary matrix $U(5)$ and a blank interferometer. (b)–(e) Successive stages of the implementation algorithm. (f) Final expression for $U(5)$ in terms of a cascade of $U(2)$ interferometers and a diagonal matrix. Reprinted with permission from [22]. Copyright 2016 Optical Society of America.
Figure 11.
Figure 11. Integrated rectangular interferometers. (a) Design layout for a U(9) transformer (after [22]) and (b) implementation layout suitable for integrated optics using 3 dB MZIs (after [23]). (c) Photograph of a three-module silica on silicon rectangular interferometer. (d) Detail of an individual module showing 10 parallel TBUs. (c) and (d) Reprinted with permission from [63]. Copyright 2018 Optical Society of America.
Figure 12.
Figure 12. Different integrated waveguide mesh arrangements: (a) squared feedforward/backward and implementation in ${\text{Si}_3}{\text{N}_{4.}}$ Reprinted with permission from [17]. Copyright 2015 Optical Society of America. (b) Hexagonal feedforward/backward (reprinted from [20]) and implementation in SOI. (c) Triangular feedforward/backward and implementation in ${\text{Si}_3}{\text{N}_{4.}}$ Reprinted from [66].
Figure 13.
Figure 13. (a) Upper, labeled schematic of a general tunable coupler acting as the basic building block of the mesh. The basic unit length (BUL) is illustrated as the sum of the tunable coupler length and the arc length of the access waveguides. Lower, particular case of an integrated balanced MZI-based tunable coupler. (b) Signal flow for the different TBU configuration states. Reprinted from [18].
Figure 14.
Figure 14. Basic programming of medium-complex circuits in square waveguide mesh topology: delay line, unbalanced MZI, and optical ring resonator (after [18]).
Figure 15.
Figure 15. Basic programming of medium-complex circuits in triangular waveguide mesh topology: delay line, unbalanced MZI, and optical ring resonator (after [18]).
Figure 16.
Figure 16. Basic programming of medium-complex circuits in hexagonal waveguide mesh topology: delay line, unbalanced MZI, and optical ring resonator (after [18]).
Figure 17.
Figure 17. FIR filter implementations (after [20]). Left, hexagonal mesh setting for, right, three different targeted UMZI filters. Note the color code that describes the programming status of each TBU in the mesh.
Figure 18.
Figure 18. Single-cavity IIR filter implementations (after [20]). Left, hexagonal mesh setting for, right, three different targeted ORR filters. Note the color code that describes the programming status of each TBU in the mesh.
Figure 19.
Figure 19. ${1}\times {8}$ delay line array based on discrete optical delay lines (after [65]): configuration examples for 0-, 2-, 4-, 6-, 8-, 10-, 12-, and 14-BUL path differences. Each path length is labeled at each output. The color code used for each TBU configuration is Cross State (black), Bar State (Orange), Tunable Coupler (Green).
Figure 20.
Figure 20. Universal interferometers emulated using an hexagonal waveguide mesh (after [23]): (a) classical triangular arrangement and (b) hexagonal mesh-based implementation of a $4\times 4$ interferometer. (c) Beam splitter for the classical approach and (d) corresponding beam splitter implementation with 3 TBUs for the hexagonal waveguide mesh.
Figure 21.
Figure 21. Schematic diagram example of the proposed FPPGA device. The zoom shows a detail of the programmable photonic analog block (PPAB) as it pertains to the left-up to right-bottom direction of propagation (after [78]).
Figure 22.
Figure 22. (a) Two-dimensional array arrangement of reversible $G$ gates. (b) Detailed explanation of how the concatenation of a given Gate ${G_{\textit{ij}}}$ actually results in the possibility of implementing a unitary arbitrary transformation by the ${{\textit{ij}}}$ element. Reprinted from [79].
Figure 23.
Figure 23. Physical layouts for the implementation of the 2D gate array in Figure 21 (after [78]). Each square box represents a ${2\times 2}$ tunable coupling element and a (preceding) phase shifter. The internal broken-dotted lines illustrate the possible physical connections between input and output ports. (a) and (b) show structures where the gates in adjacent columns are rotated by 180º. (c) and (d) show structures where the gates in adjacent columns are rotated by 90º.
Figure 24.
Figure 24. Identification between the fundamental unit blocks employed to construct integrated waveguide meshes and the main physical layouts for 2D gate arrays shown in Fig. 23 (after [78]).
Figure 25.
Figure 25. Left, main steps involved in the design flow of a FPPGA device (after [78]). Right, FPPGA soft and hard tiers and expanded layout including peripheral high-performance blocks.
Figure 26.
Figure 26. (a) Schematic and photo of the ${\text{Si}_3}{\text{N}_4}$ waveguide technology (TriPleX) chip implementing a two square cell waveguide mesh reported in [17]. (b) Experimental results for different programmed circuit configurations obtained by varying phase-tuning elements in the chip and the measurements of their corresponding frequency responses. Reprinted with permission from [17]. Copyright 2015 Optical Society of America.
Figure 27.
Figure 27. Experimental results for 6-BUL ring resonator IIR and FIR + IIR filters (after [20]). (a) Waveguide mesh connection diagram, (b) circuit layout, and (c) measured modulus transfer function for a IIR filter for different values of the coupling constants ${K_1}$ and ${K_2};$ (d) IIR filter along a full spectral period for different values of the optical ring resonator round trip phase shift; (e) time response for critical coupling condition.
Figure 28.
Figure 28. Triangular feedforward/feedbackward waveguide mesh arrangement based on dual-drive directional couplers. (a) Targeted layout and TBU settings; (b) reflection response of optical circuits; (c) transmission response of optical circuits. First row, single ring resonator and add–drop. Second row, coupled ring resonator structure. Reprinted from [66].
Figure 29.
Figure 29. Overall power consumption for waveguide meshes of 50, 100, and 150 activated TBUs for four different TBU power consumption. Reprinted from [18].
Figure 30.
Figure 30. (a) Schematic bulk optics implementation of a programmable photonic quantum processor including all the relevant optical and electronic elements. (b) A proposed mock-up for implementation of the main parts of the processor in SOI technology (after [116]). From left to right, photon sources (magenta), pump removal filters (yellow), passive and active optics (green), single-photon detectors (cyan), and control and feedback electronics (blue). Labels indicate the following: i, pump input and splitter; ii, spiralled waveguide photon-pair source; iii, ring resonator photon-pair source; iv, Bragg reflector pump removal filter; v, coupled-resonator optical waveguide (CROW) pump removal filter; vi, asymmetric MZI wavelength division multiplexer (WDM); vii, ring resonator WDM; viii, thermal phase tuner; ix, multimode interference waveguide coupler (MMI); x, waveguide crossing; xi, superconducting nanowire single-photon detector; xii, grating-based fiber-to-chip coupler; xiii, control and logic electronics. Reprinted from [59].
Figure 31.
Figure 31. (a) Rectangular arrangement of a $9\times 9$ interferometer as proposed in [22]. (b) Equivalent implementation using the hexagonal waveguide mesh (after [23]).
Figure 32.
Figure 32. Layout of a probabilistic implementation of a linear combiner of operators. The linear combination is implemented when all $n$ control qubits are measured to be 0. The success probability is ${1/}k$ . Reprinted by permission from Macmillan Publishers Ltd.: Qian et al., Nat. Photonics 12, 534-539 (2018) [120].
Figure 33.
Figure 33. Layout of the one photon quantum walker circuit (adapted from [15]). Time $(\tau)$ is defined from left to right. Space (i) is defined from top to bottom.
Figure 34.
Figure 34. (a) Layout of a passive ${8}\times {8}$ InP switch fabric (after [140]). (b) Detail of the elementary ${2}\times {2}$ switch cell corresponding to (a). (c) Active ${2}\times {2}$ interferometric InP switch cell combining an MZI and semiconductor optical amplifiers and construction of a ${4}\times {4}$ switch fabric by dilated combination of such cells (after [142]). (d) Photograph and detail of a ${2}\times {2}$ switch cell of a silicon photonics ${32}\times {32}$ switch fabric incorporating 1024 MZIs switching cells and thermo-optic phase shifters (after [143]). (e) Layout and chip photograph of a ${32}\times {32}$ switch fabric incorporating 144 MZIs switching cells and carrier injection PIN activated phase shifters. Also shown: the basic switch cell unit with push–pull biasing and the ${8}\times {8}$ Benes building block (after [135]).
Figure 35.
Figure 35. Schematic description of a neuromorphic processor (adapted from [147]). While two layers of electronics provide control, supervision, and reconfigurability, the programmable artificial neural network operates as the core processor.
Figure 36.
Figure 36. (a) The schematic feedforward artificial neural network architecture implemented in [24] composed of an input layer, a number of hidden layers, and an output layer. (b) Decomposition of the general neural network into individual layers with a detail of the optical interference and nonlinearity units that compose each layer of the artificial neural network. (c) Representation of the two-layer ONN experiment reported in [24]. (d) Experimental feedback and control loop used in the experiment. Laser light is coupled to the OIU, transformed, measured on a photodiode array, and then read on a computer (drawings adapted from [24]).
Figure 37.
Figure 37. General-purpose photonic integrated processor architecture and candidate fabrication platforms for each subsystem (after [27]).
Figure 38.
Figure 38. General-purpose signal processor configuration for RF filtering implementation (left) based on a self-homodyne modulation/detection scheme (right). The optical filter is composed of six cascaded ORRs defined by a cavity length of 6 BULs (after [27]).
Figure 39.
Figure 39. General-purpose signal processor configuration for microwave and mm-wave tone generation based on external modulator approach (upper) and optoelectronic oscillation approach (bottom). The right-hand figures illustrate the targeted configuration schemes (after [27]).
Figure 40.
Figure 40. Significant milestones and evolution periods in integrated electronics and photonics (authors’ elaboration).

Tables (6)

Tables Icon

Table 1. Summary of Values for the Figures of Merit of the Different Waveguide Mesh Designs

Tables Icon

Table 2. Experimental Demonstrators of Feedforward Meshes/ Multiport Interferometers a

Tables Icon

Table 3. Summary of the Main Figures of the Multipurpose Waveguide Meshes a

Tables Icon

Table 4. Required Minimal Number of TBU and Phase Actuators for Waveguide Meshes a

Tables Icon

Table 5. Maximum Number of TBUs Defining a Synthetized Path for a Mean Insertion Loss per TBU and Maximum Mesh Loss

Tables Icon

Table 6. Frequency Grid Associated with Four Different BULs

Equations (49)

Equations on this page are rendered with MathJax. Learn more.

E = μ e μ [ a f μ e j β μ z + a b μ e j β μ z ] , H = μ h μ [ a f μ e j β μ z a b μ e j β μ z ] ,
e μ = E ( x , y ) e ^ μ , h μ = H ( x , y ) h ^ μ ,
b 2 = a f e j β d = a 1 e j β d , b 1 = a b e j β d = a 2 e j β d .
S = ( 0 e j β d e j β d 0 ) .
β TE = 2 π n TE d λ .
S = e j θ ( s ) ( 0 1 1 0 ) , θ ( s ) = 2 π n TE ( s ) d λ .
S DPP ( ϕ 1 , ϕ 2 ) = ( e j 2 π n TE ( s 1 ) d λ 0 0 e j 2 π n TE ( s 2 ) d λ ) = e j ( ϕ 1 + ϕ 2 ) 2 ( e j Δ ϕ 2 0 0 e j Δ ϕ 2 ) , ϕ 1 = 2 π n TE ( s 1 ) d λ , ϕ 2 = 2 π n TE ( s 2 ) d λ .
E 1 = r 11 E 1 + + t 12 E 2 + , E 2 = t 21 E 1 + + r 22 E 2 + .
S = ( r 11 t 12 t 21 r 22 ) .
t 21 = t 12 = t .
| r 11 | 2 + | t | 2 = 1 , | r 22 | 2 + | t | 2 = 1 , | r 11 t | e j ( ϕ 12 ϕ 11 ) + | r 22 t | e j ( ϕ 22 ϕ 21 ) = 0.
| r 11 | 2 = | r 22 | 2 = | r | 2 = 1 | t | 2 ,
ϕ 12 ϕ 11 ϕ 22 + ϕ 21 = ± ( 2 k + 1 ) π , k N .
2 ϕ = π ϕ = π 2 .
S = ( r j t j t r ) ; t = 1 r 2 .
d a 1 d z = j β 1 a 1 + κ 12 a 2 d a 2 d z = j β 2 a 2 + κ 21 a 1 ,
( a 1 ( z ) a 2 ( z ) ) = S TCD ( θ = f ( β 1 , β 2 , κ ) ) ( a 1 ( 0 ) a 2 ( 0 ) ) , S TCD ( θ = f ( β 1 , β 2 , κ ) ) = e j ( β 1 + β 2 ) z 2 ( e j φ ( Δ β ) cos ( θ / 2 ) j sin ( θ / 2 ) j sin ( θ / 2 ) e j φ ( Δ β ) cos ( θ / 2 ) ) , K = ( κ sin β o z β o ) 2 = sin 2 ( θ / 2 ) , Δ β = β 2 β 1 , β o = ( Δ β 2 ) 2 + κ 2 , φ ( Δ β ) = tan 1 [ Δ β 2 β o tan β o z ] ,
S TDC ( β , θ ) = e j β z ( cos ( θ / 2 ) j sin ( θ / 2 ) j sin ( θ / 2 ) cos ( θ / 2 ) ) , K = sin 2 β o z = sin 2 ( θ 2 ) .
β 1 = β + γ ( s o + δ s ) , β 2 = β + γ ( s o δ s ) ,
δ s = 3 | κ | γ .
Δ = ( β 1 + β 2 2 ) = β + γ s o .
φ ( δ s ) = tan 1 [ 1 1 + ( | κ | γ δ s ) 2 tan ( π γ δ s 2 | κ | 1 + ( | κ | γ δ s ) 2 ) ] .
S = j e j φ o 2 ( 1 j j 1 ) ,
Δ = 2 φ o + γ ( s 1 + s 2 ) 2 , θ = γ ( s 2 s 1 ) + π ,
S MZI ( Δ , θ ) = j e j Δ ( cos ( θ / 2 ) sin ( θ / 2 ) sin ( θ / 2 ) cos ( θ / 2 ) ) .
σ o = I = ( 1 0 0 1 ) ; σ 1 = X = ( 0 1 1 0 ) , σ 2 = Y = ( 0 j j 0 ) , σ 3 = Z = ( 1 0 0 1 ) .
R x ( θ ) = e j θ 2 X , R y ( θ ) = e j θ 2 Y , R z ( θ ) = e j θ 2 Z .
R x ( θ ) = ( cos ( θ / 2 ) j sin ( θ / 2 ) j sin ( θ / 2 ) cos ( θ / 2 ) ) , R y ( θ ) = ( cos ( θ / 2 ) sin ( θ / 2 ) sin ( θ / 2 ) cos ( θ / 2 ) ) , R z ( θ ) = ( e j ( θ / 2 ) 0 0 e j ( θ / 2 ) ) .
R x ( θ ) = ( cos ( θ / 2 ) j sin ( θ / 2 ) j sin ( θ / 2 ) cos ( θ / 2 ) ) = e j ( β 1 + β 2 ) z 2 e j ( β 1 + β 2 ) z 2 ( e j φ ( Δ β ) / 2 0 0 e j φ ( Δ β ) / 2 ) ( e j φ ( Δ β ) cos ( θ / 2 ) j sin ( θ / 2 ) j sin ( θ / 2 ) e j φ ( Δ β ) cos ( θ / 2 ) ) ( e j φ ( Δ β ) / 2 0 0 e j φ ( Δ β ) / 2 ) = e j ( β 1 + β 2 ) z 2 e j 2 φ o S DPP ( φ o + φ ( Δ β ) , φ o φ ( Δ β ) ) S TDC ( θ = f ( β 1 , β 2 , κ ) ) × S DPP ( φ o + φ ( Δ β ) 2 , φ o φ ( Δ β ) 2 ) .
R x ( θ ) = S DPP ( φ o + φ ( Δ β ) , φ o φ ( Δ β ) ) S TDC ( θ = f ( β 1 , β 2 , κ ) ) × S DPP ( φ o + φ ( Δ β ) , φ o φ ( Δ β ) ) .
R y ( θ ) = ( cos ( θ / 2 ) sin ( θ / 2 ) sin ( θ / 2 ) cos ( θ / 2 ) ) = j e j Δ ( j e j Δ ) ( cos ( θ / 2 ) sin ( θ / 2 ) sin ( θ / 2 ) cos ( θ / 2 ) ) × ( 1 0 0 1 ) = j e j Δ e j φ o S MZI ( Δ , θ ) S DPP ( φ o + π , φ o π ) .
R y ( θ ) = S MZI ( Δ , θ ) S DPP ( φ o + π , φ o π ) .
R z ( θ ) = ( e j ( θ / 2 ) 0 0 e j ( θ / 2 ) ) = S DPP ( θ , θ ) .
U = e j δ R z ( α ) R y ( β ) R z ( γ ) , U = e j δ R z ( α ) R x ( β ) R z ( γ ) ,
T mn ( φ , θ ) = ( 1 0 0 0 1 0 0 0 e j φ cos θ sin θ 0 0 0 0 e j φ sin θ cos θ 0 0 0 0 0 1 ) 1 2 m n N ,
T mn 1 ( φ , θ ) = ( 1 0 0 0 1 0 0 0 e j φ cos θ e j φ sin θ 0 0 0 0 sin θ cos θ 0 0 0 0 0 1 ) 1 2 m n N
U ( N ) T N N 1 1 T N N 2 1 T N 1 1 = ( 0 0 0 0 0 0 0 0 e j α N ) = ( U ( N 1 ) 0 0 e j α N ) .
U ( N ) T N N 1 1 T N N 2 1 T N 1 1 T 32 1 T 31 1 T 21 1 = ( e j α 1 0 0 0 0 0 e j α 2 0 0 0 0 0 0 e j α N 1 0 0 0 0 0 e j α N ) = D .
U 1 ( N ) = T N N 1 1 T N N 2 1 T N 1 1 T 32 1 T 31 1 T 21 1 D 1 ,
U ( N ) = D T 21 T 31 T 32 T N 1 N 2 T N 1 T N N 2 T N N 1 = D i = 2 N [ j = 1 i 1 T i j ] .
T 45 T 34 T 23 T 12 T 45 T 34 U T 12 1 T 34 1 T 23 1 T 12 1 = D .
U = D T 34 T 45 T 12 T 23 T 34 T 45 T 12 T 23 T 34 T 12 .
BUL = L access + L Tunable Coupler ,
BUD = n g BUL / c ,
I L ( dB ) = 20 log 10 ( γ ) = 10 log 10 ( | a out1 | 2 + | a out2 | 2 | a in1 | 2 + | a in2 | 2 ) , C T Bar/Cross ( dB ) | | a in1 | 2 = 1 | a in2 | 2 = 0 = 10 log 10 ( | a out2,1 | 2 | a out1,2 | 2 ) .
Δ ν FSR = c n g N BULs ,
G = e j δ R y ( β ) R z ( γ ) , G = e j δ R x ( β ) R z ( γ ) .
U = i = 0 3 α i A i B i = i = 0 3 α i ( P 1 σ i Q 1 ) ( P 2 σ i Q 2 ) ,
i ( t ) s | H ( f o ) | | H ( f o + f R F ) | cos ( 2 π f R F H ( f o ) + H ( f o + f R F ) ) ,

Metrics