Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Mathematics of vectorial Gaussian beams

Not Accessible

Your library or personal account may give you access

Abstract

Since the development of laser light sources in the early 1960s, laser beams are everywhere. Laser beams are central in many industrial applications and are essential in ample scientific research fields. Prime scientific examples are optical trapping of ultracold atoms, optical levitation of particles, and laser-based detection of gravitational waves. Mathematically, laser beams are well described by Gaussian beam expressions. Rather well covered in the literature to date are basic expressions for scalar Gaussian beams. In the past, however, higher accuracy mathematics of scalar Gaussian beams and certainly high-accuracy mathematics of vectorial Gaussian beams were far less studied. The objective of the present review then is to summarize and advance the mathematics of vectorial Gaussian beams. When a weakly diverging Gaussian beam, approximated as a linearly polarized two-component plane wave, say (Ex,By), is tightly focused by a high-numerical-aperture lens, the wave is “depolarized.” Namely, the prelens (practically) missing electric field Ey,Ez components suddenly appear. This is similar for the prelens missing Bx,Bz components. In fact, for any divergence angle (θd<1), the ratio of maximum electric field amplitudes of a Gaussian beam Ex:Ez:Ey is roughly 1:θd2:θd4. It follows that if a research case involves a tightly focused laser beam, then the case analysis calls for the mathematics of vectorial Gaussian beams. Gaussian-beam-like distributions of the six electric–magnetic vector field components that nearly exactly satisfy Maxwell’s equations are presented. We show that the near-field distributions with and without evanescent waves are markedly different from each other. The here-presented nearly exact six electric–magnetic Gaussian-beam-like field components are symmetric, meaning that the cross-sectional amplitude distribution of Ex(x,y) at any distance (z) is similar to the By(x,y) distribution, Ey(x,y) is similar to Bx(x,y), and a 90° rotated Ez(x,y) is similar to Bz(x,y). Components’ symmetry was achieved by executing the steps of an outlined symmetrization procedure. Regardless of how tightly a Gaussian beam is focused, its divergence angle is limited. We show that the full-cone angle to full width at half-maximum intensity of the dominant vector field component does not exceed 60°. The highest accuracy field distributions to date of the less familiar higher-order Hermite–Gaussian vector components are also presented. Hermite–Gaussian E-B vectors only approximately satisfy Maxwell’s equations. We have defined a Maxwell’s-residual power measure to quantify the approximation quality of different vector sets, and each set approximately (or exactly) satisfies Maxwell’s equations. Several vectorial “applications,” i.e., research fields that involve vector laser beams, are briefly discussed. The mathematics of vectorial Gaussian beams is particularly applicable to the analysis of the physical systems associated with such applications. Two user-friendly “Mathematica” programs, one for computing six high-accuracy vector components of a Hermite–Gaussian beam, and the other for computing the six practically Maxwell’s-equations-satisfying components of a focused laser beam, supplement this review.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Cylindrical vector beams: from mathematical concepts to applications

Qiwen Zhan
Adv. Opt. Photon. 1(1) 1-57 (2009)

Perspective on light-induced transport of particles: from optical forces to phoretic motion

Pavel Zemánek, Giorgio Volpe, Alexandr Jonáš, and Oto Brzobohatý
Adv. Opt. Photon. 11(3) 577-678 (2019)

Parametric upconversion imaging and its applications

Ajanta Barh, Peter John Rodrigo, Lichun Meng, Christian Pedersen, and Peter Tidemand-Lichtenberg
Adv. Opt. Photon. 11(4) 952-1019 (2019)

Supplementary Material (3)

NameDescription
Code 1       A computer code runs on “NUMERIT” intuitive computational environment.
Code 2       A “Mathematica” computer code.
Code 3       A “Mathematica” computer code.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (36)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.