Abstract

We review recent developments in directly modulated lasers (DMLs) with low operating energy for datacom and computercom applications. Key issues are their operating energy and the cost for employing them in these applications. To decrease the operating energy, it is important to reduce the active volume of the laser while maintaining the cavity Q-factor or photon lifetime in the cavity. Therefore, how to achieve high-reflectivity mirrors has been the main challenge in reducing the operating energy. In terms of the required output power from the lasers, the required input power into the photodetector and the transmission distance determine the lower limit of laser active volume. Therefore, the operating energy and output power are in a trade-off relationship. In designing the lasers, the cavity volume, quantum well number, and optical confinement factor are critical parameters. For reducing the cost, it is important to fabricate a large-scale photonic integrated circuit (PIC) comprising DMLs, an optical multiplexer, and monitor photodetectors because the lower assembly cost reduces the overall cost. In this context, silicon (Si) photonics technology plays a key role in fabricating large-scale PICs with low cost, and heterogeneous integration of DMLs and Si photonics devices has attracted much attention. We will describe fabrication technologies for heterogeneous integration and experimental results for DMLs on a Si substrate.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects

Koji Takeda, Tomonari Sato, Takuro Fujii, Eiichi Kuramochi, Masaya Notomi, Koichi Hasebe, Takaaki Kakitsuka, and Shinji Matsuo
Opt. Express 23(2) 702-708 (2015)

20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption

Shinji Matsuo, Akihiko Shinya, Chin-Hui Chen, Kengo Nozaki, Tomonari Sato, Yoshihiro Kawaguchi, Hideaki Taniyama, and Masaya Notomi
Opt. Express 19(3) 2242-2250 (2011)

Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer

Shinji Matsuo, Takuro Fujii, Koichi Hasebe, Koji Takeda, Tomonari Sato, and Takaaki Kakitsuka
Opt. Express 22(10) 12139-12147 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Tanaka, F. Kitasawa, and J.-I. Nishizawa, “Amplitude modulation of diode laser light in millimeter-wave region,” Proc. IEEE 56, 135–136 (1968).
    [Crossref]
  2. M. Chown, A. R. Goodwin, D. F. Lovelace, G. H. B. Thompson, and P. R. Selway, “Direct modulation of double-heterostructure lasers at rates up to 1  Gbit/s,” Electron. Lett. 9, 34–35 (1973).
    [Crossref]
  3. T. Ozeki and T. Ito, “Pulse modulation of DH-(GaAl)As lasers,” IEEE J. Quantum Electron. 9, 388–391 (1973).
    [Crossref]
  4. J. E. Goell, “A 274-Mb/s optical-repeater experiment employing a GaAs laser,” Proc. IEEE 61, 1504–1505 (1973).
    [Crossref]
  5. H. Kroemer, “A proposed class of heterojunction injection lasers,” Proc. IEEE 51, 1782–1783 (1963).
    [Crossref]
  6. Zh. I. Alferov, V. M. Andreev, E. L. Portnoi, and M. K. Trukan, “AlAs-GaAs heterojunction injection lasers with a low room-temperature threshold,” Fiz. Tekh. Poluprovodn. 3, 1328–1332 (1969).
  7. I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17, 109–111 (1970).
    [Crossref]
  8. H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
    [Crossref]
  9. Y. Suematsu and M. Yamada, “Transverse mode control in semiconductor laser,” in Proceedings of IEEE Semiconductor Laser Conference (1972), pp. 305–310.
  10. K. Utaka, K. Kobayashi, and Y. Suematsu, “Lasing characteristics of GaInAsP/InP integrated twin-guide lasers with first-order distributed Bragg reflectors,” IEEE J. Quantum Electron. 17, 651–658 (1981).
    [Crossref]
  11. K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “Room-temperature CW operation of distributed-feedback buried-heterostructure InGaAsP/InP lasers emitting at 1.57  μm,” Electron. Lett. 17, 961–962 (1981).
    [Crossref]
  12. T. Matsuoka, H. Nagai, Y. Itaya, Y. Noguchi, Y. Suzuki, and T. Ikegami, “CW operation of DFB-BH GaInAsP/InP lasers in 1.5  μm wavelength region,” Electron. Lett. 18, 27–28 (1982).
    [Crossref]
  13. T. Ikegami and Y. Suematsu, “Resonance-like characteristics of the direct modulation of a junction laser,” Proc. IEEE 55, 122–123 (1967).
    [Crossref]
  14. T. Ikegami and Y. Suematsu, “Carrier lifetime measurement of a junction laser using direct modulation,” IEEE J. Quantum Electron. 4, 148–151 (1968).
    [Crossref]
  15. K. Iga, Laboratory Notebook (1977).
  16. Y. Suematsu and K. Iga, “Semiconductor lasers in photonics,” J. Lightwave Technol. 26, 1132–1144 (2008).
    [Crossref]
  17. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
    [Crossref]
  18. Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
    [Crossref]
  19. R. S. Geels and L. A. Coldren, “Submilliamp threshold vertical-cavity laser diodes,” Appl. Phys. Lett. 57, 1605–1607 (1990).
    [Crossref]
  20. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  21. K. Nakahara, T. Tsuchiya, S. Tanaka, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, E. Nomoto, S. Fujisaki, and M. Kudo, “115°C, 12.5-Gb/s direct modulation of 1.3-μm InGaAlAs-MQW RWG DFB laser with notch-free grating structure for datacom applications,” in Optical Fiber Communication Conference (OFC) (2003), paper PD40-1.
  22. W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μmm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
    [Crossref]
  23. K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
    [Crossref]
  24. P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
    [Crossref]
  25. J. B. Heroux, T. Kise, M. Funabashi, T. Aoki, C. L. Schow, A. V. Rylyakov, and S. Nakagawa, “Energy-efficient 1060-nm optical link operating up to 28  Gb/s,” J. Lightwave Technol. 33, 733–740 (2015).
    [Crossref]
  26. E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2016).
    [Crossref]
  27. M. Müller, P. Wolf, T. Gründl, C. Grasse, J. Rosskopf, W. Hofmann, D. Bimberg, and M.-C. Amann, “Energy-efficient 1.3  μm short-cavity VCSELs for 30  Gb/s error-free optical links,” in International Semiconductor Laser Conference (ISLC) (2012), paper PD 1.2.
  28. S. Spiga, W. Soenen, A. Andrejew, D. M. Schoke, X. Yin, J. Bauwelinck, G. Boehm, and M.-C. Amann, “Single-mode high-speed 1.5-μm VCSELs,” J. Lightwave Technol. 35, 727–733 (2017).
    [Crossref]
  29. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [Crossref]
  30. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308–6315 (2006).
    [Crossref]
  31. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15, 7506–7514 (2007).
    [Crossref]
  32. K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6, 479–481 (1994).
    [Crossref]
  33. C. M. Long, A. V. Giannopoulos, and K. D. Choquette, “Modified spontaneous emission from laterally injected photonic crystal emitter,” Electron. Lett. 45, 227–228 (2009).
    [Crossref]
  34. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
    [Crossref]
  35. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
    [Crossref]
  36. K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “A few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
    [Crossref]
  37. S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
    [Crossref]
  38. S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, and T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47, 023001 (2014).
    [Crossref]
  39. T. Sato, K. Takeda, A. Shinya, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Photonic crystal lasers for chip-to-chip and on-chip optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 4900410 (2015).
    [Crossref]
  40. R. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
    [Crossref]
  41. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  42. Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), S67–S72 (2012).
    [Crossref]
  43. M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  μm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
    [Crossref]
  44. M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
    [Crossref]
  45. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
    [Crossref]
  46. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
    [Crossref]
  47. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
    [Crossref]
  48. M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
    [Crossref]
  49. R. Stengl, T. Tan, and U. Gösele, “A model for the silicon wafer bonding process,” Jpn. J. Appl. Phys. 28, 1735–1741 (1989).
    [Crossref]
  50. H. Wada, Y. Ogawa, and T. Kamijoh, “Electrical characteristics of directly-bonded GaAs and InP,” Appl. Phys. Lett. 62, 738–740 (1993).
    [Crossref]
  51. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [Crossref]
  52. S. Matsuo, T. Nakahara, K. Tateno, and T. Kurokawa, “Novel technology for hybrid integration of photonic and electronic circuits,” IEEE Photon. Technol. Lett. 8, 1507–1509 (1996).
    [Crossref]
  53. S. Matsuo, K. Tateno, T. Nakahara, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997).
    [Crossref]
  54. F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99, 031101 (2006).
    [Crossref]
  55. G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express 14, 8154–8159 (2006).
    [Crossref]
  56. S. Matsuo, T. Fujii, K. Hasebe, T. Takeda, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
    [Crossref]
  57. T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
    [Crossref]
  58. S. Matsuo, T. Fujii, K. Hasebe, T. Takeda, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33, 1217–1222 (2015).
    [Crossref]
  59. H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
    [Crossref]
  60. T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Evaluation of device parameters for membrane lasers on Si fabricated with active-layer bonding followed by epitaxial growth,” IEICE Trans. Electron. E100-C, 196–203 (2017).
    [Crossref]
  61. T. Fujii, K. Takeda, N.-P. Diamantopouloss, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
    [Crossref]
  62. E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-μm-long active region on Si substrates,” Opt. Express 26, 1268–1277 (2018).
    [Crossref]
  63. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
    [Crossref]
  64. W. Kobayashi, T. Fujisawa, S. Kanazawa, and H. Sanjoh, “25  Gbaud/s 4-PAM (50  Gbit/s) modulation and 10  km SMF transmission with 1.3  μm InGaAlAs-based DML,” Electron. Lett. 50, 299–300 (2014).
    [Crossref]
  65. A. Abbasi, C. Spatharakis, G. Kanakis, N. Sequeira André, H. Louchet, A. Katumba, J. Verbist, H. Avramopoulos, P. Bienstman, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “High speed direct modulation of a heterogeneously integrated InP/SOI DFB laser,” J. Lightwave Technol. 34, 1683–1687 (2016).
    [Crossref]
  66. W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s Optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (OFC) (2013), paper OM3H.1.
  67. D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
    [Crossref]
  68. U. Troppenz, J. Kreissl, M. Mohrle, C. Bornholdt, W. Rhebein, B. Sartorius, I. Woods, and M. Schell, “40  Gbit/s directly modulated lasers: physics and application,” Proc. SPIE 7953, 79530F (2011).
    [Crossref]
  69. Y. Matsui, R. Schatz, T. Pham, W. A. Ling, G. Carey, H. M. Daghighian, D. Adams, T. Sudo, and C. Roxlo, “55  GHz bandwidth distributed reflector laser,” J. Lightwave Technol. 35, 397–403 (2017).
    [Crossref]
  70. R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
    [Crossref]
  71. M. K. Smit, J. J. G. M. van der Tol, and M. T. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6, 1–13 (2012).
    [Crossref]
  72. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
    [Crossref]
  73. H. Statz, C. L. Tang, and J. M. Lavine, “Spectral output of semiconductor lasers,” J. Appl. Phys. 35, 2581–2585 (1964).
    [Crossref]
  74. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, 1993).
  75. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  76. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 37–38 (1946).
    [Crossref]
  77. T. Baba, “Photonic crystals and microdisk cavities based on GaAInAs-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
    [Crossref]
  78. K. Y. Lau, N. Bar-Chaim, I. Ury, Ch. Harder, and A. Yariv, “Direct amplitude modulation of short-cavity GaAs lasers up to X-band frequencies,” Appl. Phys. Lett. 43, 1–3 (1983).
    [Crossref]
  79. R. S. Tucker, J. M. Wiesenfeld, P. M. Downey, and J. E. Bowers, “Propagation delays and transition times in pulse-modulated semiconductor lasers,” Appl. Phys. Lett. 48, 1707–1709 (1986).
    [Crossref]
  80. T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1361–1366 (2003).
    [Crossref]
  81. R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL’s bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11, 1554–1556 (1999).
    [Crossref]
  82. A. N. AL-Omari, G. P. Carey, S. Hallstein, J. P. Watson, G. Dang, and K. L. Lear, “Low thermal resistance high-speed top-emitting 980-nm VCSELs,” IEEE Photon. Technol. Lett. 18, 1225–1227 (2006).
    [Crossref]
  83. D. M. Byrne and B. A. Keating, “A laser diode model based on temperature dependent rate equations,” IEEE Photon. Technol. Lett. 1, 356–359 (1989).
    [Crossref]
  84. N. Bewtra, D. A. Suda, G. L. Tan, F. Chatenoud, and J. M. Xu, “Modeling of quantum-well lasers with electro-opto-thermal interaction,” IEEE J. Sel. Top. Quantum Electron. 1, 331–340 (1995).
    [Crossref]
  85. P. V. Mena, J. J. Morikuni, S.-M. Kang, A. V. Harton, and K. W. Wyatt, “A simple rate-equation-based thermal VCSEL model,” J. Lightwave Technol. 17, 865–872 (1999).
    [Crossref]
  86. W. Kobayashi, M. Arai, T. Yamanaka, N. Fujiwara, T. Fujisawa, T. Tadokoro, K. Tsuzuki, Y. Kondo, and F. Kano, “Design and fabrication of 10-/40-Gb/s, uncooled electroabsorption modulator integrated DFB laser with butt-joint structure,” J. Lightwave Technol. 28, 164–171 (2010).
    [Crossref]
  87. S. L. Chuang, Physics of Optoelectronics Devices (Wiley, 1995).
  88. C. Y. P. Chao and S. L. Chuang, “Spin-orbit-coupling effects on the valence band structure of strained semiconductor quantum wells,” Phys. Rev. B 46, 4110–4122 (1992).
    [Crossref]
  89. I. Vurgaftman and J. R. Meyer, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
    [Crossref]
  90. R. Eppenga, M. F. H. Shuurmans, and S. Colack, “New k.p theory for GaAs/Ga1-xAlxAs-type quantum wells,” Phys. Rev. B 36, 1554–1564 (1987).
    [Crossref]
  91. M. Yamada, S. Ogita, M. Yamagishi, and K. Tabata, “Anisotropy and broadening of optical gain in a GaAs/AIGaAs multiquantum-well laser,” IEEE J. Quantum Electron. 21, 640–645 (1985).
    [Crossref]
  92. Y. Arakawa and A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 21, 1666–1674 (1985).
    [Crossref]
  93. G. P. Agrawal, “Effect of gain nonlinearities on the dynamic response of single-mode semiconductor lasers,” IEEE Photon. Technol. Lett. 1, 419–421 (1989).
    [Crossref]
  94. M. Asada and Y. Suematsu, “Measurement of spontaneous emission efficiency and nonradiative recombination in 1.58-μm wavelength GaInAsP/InP crystals,” Appl. Phys. Lett. 41, 353–355 (1982).
    [Crossref]
  95. R. Olshansky, C. B. Su, J. Manning, and W. Powazinik, “Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources,” IEEE J. Quantum Electron. 20, 838–854 (1984).
    [Crossref]
  96. J. Piprek, Semiconductor Optoelectronic Devices, Introduction to Physics and Simulations (Academic, 2003).
  97. T. Takahashi and Y. Arakawa, “Nonlinear gain effects in quantum well, quantum well wire, and quantum well box lasers,” IEEE J. Quantum Electron. 27, 1824–1829 (1991).
    [Crossref]
  98. R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3  μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
    [Crossref]
  99. T. Shindo, M. Futami, K. Doi, T. Amemiya, N. Nishiyama, and S. Arai, “Design of lateral-current-injection-type membrane distributed-feedback lasers for on-chip optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 19, 1502009 (2013).
    [Crossref]
  100. K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19, 1436–1438 (2007).
    [Crossref]
  101. K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “Uncooled 25  Gbit/s direct modulation of semi-insulating buried-heterostructure1.3  μm AlGaInAs quantum-well DFB lasers,” Electron. Lett. 44, 631–633 (2008).
    [Crossref]
  102. T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85ºC,” IEEE Photon. Technol. Lett. 21, 1154–1156 (2009).
    [Crossref]
  103. M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21, 1502307 (2015).
    [Crossref]
  104. K. Adachi, K. Shinoda, T. Kitatani, T. Fukamachi, Y. Matsuoka, T. Sugawara, and S. Tsuji, “25-Gb/s multichannel 1.3-μm surface-emitting lens integrated DFB laser arrays,” J. Lightwave Technol. 29, 2899–2905 (2011).
    [Crossref]
  105. M. Okai, “Spectral characteristics of distributed feedback semiconductor lasers and their improvements by corrugation-pitch-modulated structure,” J. Appl. Phys. 75, 1–29 (1994).
    [Crossref]
  106. K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
    [Crossref]
  107. D. Kuchta, “High-capacity VCSEL links,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Tu3C.4.
  108. H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85ºC,” Electron. Lett. 50, 103–105 (2014).
    [Crossref]
  109. E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
    [Crossref]
  110. E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
    [Crossref]
  111. Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
    [Crossref]
  112. S. Spiga, D. Schoke, A. Andrejew, G. Boehm, and M.-C. Amann, “Effect of cavity length, strain, and mesa capacitance on 1.5-μm VCSELs performance,” J. Lightwave Technol. 35, 3130–3141 (2017).
    [Crossref]
  113. A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
    [Crossref]
  114. D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh- microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
    [Crossref]
  115. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [Crossref]
  116. M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999).
    [Crossref]
  117. T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron. 9, 1340–1346 (2003).
    [Crossref]
  118. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
    [Crossref]
  119. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17206–17213 (2007).
    [Crossref]
  120. S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011).
    [Crossref]
  121. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
    [Crossref]
  122. Y. Matsushima, K. Sakai, S. Akiba, and T. Yamamoto, “Zn-diffused In0.53Ga0.47As/InP avalanche photodetector,” Appl. Phys. Lett. 35, 466–468 (1979).
    [Crossref]
  123. Y. Yamamoto and H. Kanbe, “Zn diffusion in InxGa1-xAs with ZnAs2 source,” Jpn. J. Appl. Phys. 19, 121–128 (1980).
    [Crossref]
  124. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
    [Crossref]
  125. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
    [Crossref]
  126. S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, M. Notomi, K. Hasebe, and T. Kakitsuka, “28.5-fJ/bit on-chip optical interconnect using monolithically integrated photonic crystal laser and photodetector,” in European Conference and Exhibition on Optical Communication (2012), paper Th.3.B.2.
  127. K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Integrated on-chip optical links using photonic-crystal lasers and photodetectors with current blocking trenches,” in Optical Fiber Communication Conference (2013), paper OM2J.5.
  128. K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, M. Ono, A. Shakoor, E. Kuramochi, and M. Notomi, “Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier,” Optica 3, 483–492 (2016).
    [Crossref]
  129. M. Kitamura, M. Yamaguchi, S. Murata, I. Mito, and K. Kobayashi, “Low-threshold and high temperature single-longitudinal-mode operation of 1.55  μm-band DFB-DC-PBH LDs,” Electron. Lett. 18, 27–28 (1982).
    [Crossref]
  130. Y. Itaya, M. Oishi, M. Nakao, K. Sato, Y. Kondo, and Y. Imamura, “Low-threshold operation of 1.5  μm buried-heterostructure DFB lasers grown entirely by low-pressure MOVPE,” Electron. Lett. 23, 193–194 (1987).
    [Crossref]
  131. Y. Ohkura, N. Yoshida, A. Takemoto, and S. Kakimoto, “Extremely low-threshold 1.3  μm GaInAsP/InP DFB PPIBH laser,” Electron. Lett. 24, 1508–1510 (1988).
    [Crossref]
  132. T. R. Chen, P. C. Chen, J. Ungar, S. Oh, H. Luong, and N. Bar-Chaim, “Wide temperature range linear DFB lasers at 1.3  μm with very low threshold,” in 15th IEEE International Semiconductor Laser Conference (1996), pp. 169–170, paper Th2.2.
  133. N. Nunoya, M. Nakamura, H. Yasumoto, M. Morahed, I. Fukuda, S. Tamura, and S. Arai, “Sub-milliampere operation of 1.55  μm wavelength high index-coupled buried heterostructure distributed feedback lasers,” Electron. Lett. 36, 1213–1214 (2000).
    [Crossref]
  134. F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett. 55, 221–222 (1989).
    [Crossref]
  135. C. J. Chang-Hasnain, Y. A. Wu, G. S. Li, G. Hasnain, K. D. Choquette, C. Caneau, and L. T. Florez, “Low threshold buried heterostructure vertical cavity surface emitting laser,” Appl. Phys. Lett. 63, 1307–1309 (1993).
    [Crossref]
  136. G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
    [Crossref]
  137. D. I. Babic, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, Y. Long, and K. Carey, “Room-temperature continuous-wave operation of 1.54-m vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
    [Crossref]
  138. N. M. Margalit, D. I. Babic, K. Streubel, R. P. Mirin, R. L. Naone, J. E. Bowers, and E. L. Hu, “Submilliamp long wavelength vertical-cavity lasers,” Electron. Lett. 32, 1675–1677 (1996).
    [Crossref]
  139. N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11, 990–998 (2005).
    [Crossref]
  140. M. Fujita, R. Ushigome, and T. Baba, “Continuous wave lasing in GalnAsP microdisk injection laser with threshold current of 40  μA,” Electron. Lett. 36, 790–791 (2000).
    [Crossref]
  141. M. Matsuda, T. Simoyama, A. Uetake, S. Okumura, M. Ekawa, and T. Yamamoto, “Uncooled, low-driving-current 25.8  Gbit/s direct modulation using 1.3  μm AlGaInAs MQW distributed-reflector lasers,” Electron. Lett. 48, 450–452 (2012).
    [Crossref]
  142. Y.-C. Chang and L. A. Coldren, “Optimization of VCSEL structure for high-speed operation,” in IEEE 21st International Semiconductor Laser Conference (2008), pp. 159–160.
  143. K. Takaki, S. Imaia, S. Kamivab, H. Shimizua, Y. Kawakita, K. Hiraiwa, T. Takagia, H. Shimizua, J. Yoshida, T. Ishikawab, N. Tsukijia, and A. Kasukawa, “1060  nm VCSEL for inter-chip optical interconnection,” Proc. SPIE 7952, 795204 (2011).
    [Crossref]
  144. S. Sakai, T. Soga, M. Takeyasu, and M. Umeno, “Room-temperature laser operation of AlGaAs/GaAs double heterostructures fabricated on Si substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 48, 413–414 (1986).
    [Crossref]
  145. H. Z. Chen, A. Ghaffari, H. Wang, H. Morkoq, and A. Yariv, “Continuous-wave operation of extremely low-threshold GaAs/AlGaAs broad-area injection lasers on (100) Si substrates at room temperature,” Opt. Lett. 12, 812–813 (1987).
    [Crossref]
  146. A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
    [Crossref]
  147. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  148. A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
    [Crossref]
  149. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
    [Crossref]
  150. R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
    [Crossref]
  151. Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
    [Crossref]
  152. L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (2015), paper T173.
  153. C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
    [Crossref]
  154. A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413–5415 (2003).
    [Crossref]
  155. K. Matsumoto, T. Makino, K. Kimura, and K. Shimomura, “Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate,” J. Cryst. Growth 370, 133–135 (2013).
    [Crossref]
  156. C. Zhang, D. Liang, and J. E. Bowers, “MOCVD regrowth of InP on hybrid silicon substrate,” Electrochem. Solid State Lett. 2, Q82–Q86 (2013).
    [Crossref]
  157. T. Sato, Y. Kondo, T. Sekiguchi, and T. Suemasu, “Sb surfactant effect on defect evolution in compressively strained In0.80Ga0.20As quantum well on InP grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 1, 111202 (2008).
    [Crossref]
  158. J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth 27, 118–125 (1974).
    [Crossref]
  159. R. H. M. Van De Leur, A. J. G. Schellingerhout, F. Tuinstra, and J. E. Mooij, “Critical thickness for pseudomorphic growth of Si/Ge alloys and superlattices,” J. Appl. Phys. 64, 3043–3050 (1988).
    [Crossref]
  160. A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
    [Crossref]
  161. C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
    [Crossref]
  162. A. Abbasi, J. Verbist, J. Van Kerrebrouck, F. Lelarge, G.-H. Duan, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “28  Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser,” Opt. Express 23, 26479–26485 (2015).
    [Crossref]
  163. V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
    [Crossref]
  164. H. Tsuda, T. Nakahara, and T. Kurokawa, “Hybrid-integrated smart pixels for dense optical interconnects,” IEICE Trans. Electron. E84-C, 1771–1777 (2001).
  165. E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, G. Roelkens, R. Baets, and A. Larsson, “Silicon-integrated short-wavelength hybrid-cavity VCSEL,” Opt. Express 23, 33634–33640 (2015).
    [Crossref]
  166. E. P. Haglund, S. Kumari, E. Haglund, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “Silicon-integrated hybrid-cavity 850-nm VCSELs by adhesive bonding: impact of bonding interface thickness on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23, 1700109 (2017).
    [Crossref]
  167. S. Kumari, J. Gustavsson, E. P. Haglund, J. Bengtsson, A. Larsson, G. Roelkens, and R. Baets, “Design of an 845-nm GaAs vertical-cavity silicon-integrated laser with an intracavity grating for coupling to a SiN waveguide circuit,” IEEE Photon. J. 9, 1504109 (2017).
    [Crossref]
  168. S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
    [Crossref]
  169. D. Inoue, T. Hiratani, K. Fukuda, T. Tomiyasu, T. Amemiya, N. Nishiyama, and S. Arai, “High-modulation efficiency operation of GaInAsP/InP membrane distributed feedback laser on Si substrate,” Opt. Express 23, 29024–29031 (2015).
    [Crossref]
  170. H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Park, R. Kou, K. Yamada, and S. Itabashi, “Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structures,” Appl. Phys. Express 3, 102203 (2010).
    [Crossref]
  171. H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic integration of InP wire and SiOx waveguides on Si platform,” IEEE Photon. J. 7, 4900308 (2015).
    [Crossref]
  172. K. Takeda, E. Kanno, T. Fujii, K. Hasebe, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Continuous-wave operation of ultra-short cavity distributed Bragg reflector lasers on Si substrates,” in Compound Semiconductor Week (2016), paper ThD1-2.
  173. G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
    [Crossref]
  174. K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Proceedings of European Conference on Lasers and Electro-Optics (2017), paper CK-9.4.
  175. T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits 40, 2633–2645 (2005).
    [Crossref]
  176. D. M. Kuchta, T. N. Huynh, F. E. Doany, L. Schares, C. W. Baks, C. Neumeyr, A. Daly, B. Kogel, J. Rosskopf, and M. Ortsiefer, “Error-free 56  Gb/s NRZ modulation of a 1530-nm VCSEL Link,” J. Lightwave Technol. 34, 3275–3282 (2016).
    [Crossref]
  177. Y. Matsui, T. Pham, T. Sudo, G. Carey, B. Young, J. Xu, C. Cole, and C. Roxlo, “28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB laser,” J. Lightwave Technol. 34, 2677–2683 (2016).
    [Crossref]
  178. J. Lavrencik, S. Varughese, J. S. Gustavsson, E. Haglund, A. Larsson, and S. E. Ralph, “Error-free 100  Gbps PAM-4 transmission over 100  m wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (2017), paper W.1.A3.
  179. N. P. Diamantopoulos, W. Kobayashi, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “40-km SSMF transmission of 56/64-Gb/s PAM-4 signals using 1.3-μm directly modulated laser and PIN photodiode,” in Advanced Photonic Congress (2017), paper PW2D.4.
  180. W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (2013), paper OM3H.1.
  181. T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Optical Fiber Communication Conference (2014), paper M2I.5.
  182. N. P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 120-Gbps DMT transmission using a 1.3-μm membrane laser on Si,” in Optical Fiber Communication Conference (2018), paper M2D.5.
  183. T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in 42nd European Conference on Optical Communication (2016), paper Th.3.A.2.
  184. “Ethernet, clause 91,” (2015).
  185. D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Optical Fiber Communication Conference (2012), paper OW1H.4.
  186. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “Two-section InGaAsP DBR-lasers at 1.55-μm wavelength with 31  GHz direct modulation bandwidth,” in International Conference on Indium Phosphide Related Materials (1997), pp. 665–668, paper ThF4.
  187. U. Feiste, “Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors,” IEEE J. Quantum Electron. 34, 2371–2379 (1998).
    [Crossref]
  188. J. P. Reithmaier, W. Kaiser, L. Bach, A. Forchel, V. Feies, M. Gioannini, I. Montrosset, T. W. Berg, and B. Tromborg, “Modulation speed enhancement by coupling to higher order resonances: a road towards 40  GHz bandwidth lasers on InP,” in International Conference on Indium Phosphide Related Materials (2005), pp. 118–123.
  189. M. Chacinski and R. Schatz, “Impact of losses in the Bragg section on the dynamics of detuned loaded DBR lasers,” IEEE J. Quantum Electron. 46, 1360–1367 (2010).
    [Crossref]
  190. A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
    [Crossref]
  191. A. Abbasi, B. Moeneclaey, J. Verbist, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “56  Gb/s direct modulation of an InP-on-Si DFB laser diode,” in Proceedings IEEE Optical Interconnects Conference (2017), pp. 31–32.
  192. H. Dalir and F. Koyama, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8, 1075–1081 (2011).
    [Crossref]
  193. H. Dalir and F. Koyama, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance,” Appl. Phys. Express 7, 022102 (2014).
    [Crossref]
  194. M. Ahmed, A. Bakry, M. S. Alghamdi, H. Dalir, and F. Koyama, “Enhancing the modulation bandwidth of VCSELs to the millimeter-waveband using strong transverse slow-light feedback,” Opt. Express 23, 15365–15371 (2015).
    [Crossref]
  195. S. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
    [Crossref]
  196. W. Kobayashi, S. Kanazawa, Y. Ueda, T. Ohno, T. Yoshimatsu, T. Shindo, H. Sanjoh, H. Ishii, S. Matsuo, and M. Itoh, “Monolithically integrated directly modulated DFB laser array with MMI coupler for 100GBASE-LR4 application,” in Optical Fiber Communication Conference (2015), paper Tu3I.2.
  197. W. Kobayashi, S. Kanazawa, Y. Ueda, T. Fujisawa, H. Sanjoh, and M. Itoh, “4 × 25.8  Gbit/s (100  Gbit/s) simultaneous operation of InGaAlAs based DML array monolithically integrated with MMI coupler,” Electron. Lett. 51, 1516–1517 (2015).
    [Crossref]
  198. T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, H. Takahashi, and E. Yoshida, “Compact and high-sensitivity 100-Gb/s (4 × 25  Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt. Express 20, B393–B398 (2012).
    [Crossref]
  199. H. Nishi, T. Fujii, N. P. Diamantopoulos, K. Takeda, E. Kanno, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Monolithic integration of an 8-channel directly modulated membrane-laser array and a SiN AWG filter on Si,” in Optical Fiber Communication Conference (2018), paper Th3B.2.
  200. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
    [Crossref]
  201. H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100  GHz spacing Si arrayed- waveguide grating using minimal terrace at slab-array interface,” Electron. Lett. 52, 1545–1546 (2016).
    [Crossref]
  202. T. Hiraki, T. Aihara, H. Nishi, and T. Tsuchizawa, “Deuterated SiN/SiON waveguides on Si platform and their application to C-band WDM filters,” IEEE Photon. J. 9, 2500207 (2017).
    [Crossref]
  203. “Ethernet task force,” , available at http://www.ieee802.org/3/bs/ .
  204. D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett. 14, 146–148 (1989).
    [Crossref]
  205. K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
    [Crossref]
  206. T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

2018 (3)

T. Fujii, K. Takeda, N.-P. Diamantopouloss, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-μm-long active region on Si substrates,” Opt. Express 26, 1268–1277 (2018).
[Crossref]

S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

2017 (13)

E. P. Haglund, S. Kumari, E. Haglund, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “Silicon-integrated hybrid-cavity 850-nm VCSELs by adhesive bonding: impact of bonding interface thickness on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23, 1700109 (2017).
[Crossref]

S. Kumari, J. Gustavsson, E. P. Haglund, J. Bengtsson, A. Larsson, G. Roelkens, and R. Baets, “Design of an 845-nm GaAs vertical-cavity silicon-integrated laser with an intracavity grating for coupling to a SiN waveguide circuit,” IEEE Photon. J. 9, 1504109 (2017).
[Crossref]

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

T. Hiraki, T. Aihara, H. Nishi, and T. Tsuchizawa, “Deuterated SiN/SiON waveguides on Si platform and their application to C-band WDM filters,” IEEE Photon. J. 9, 2500207 (2017).
[Crossref]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Evaluation of device parameters for membrane lasers on Si fabricated with active-layer bonding followed by epitaxial growth,” IEICE Trans. Electron. E100-C, 196–203 (2017).
[Crossref]

Y. Matsui, R. Schatz, T. Pham, W. A. Ling, G. Carey, H. M. Daghighian, D. Adams, T. Sudo, and C. Roxlo, “55  GHz bandwidth distributed reflector laser,” J. Lightwave Technol. 35, 397–403 (2017).
[Crossref]

S. Spiga, W. Soenen, A. Andrejew, D. M. Schoke, X. Yin, J. Bauwelinck, G. Boehm, and M.-C. Amann, “Single-mode high-speed 1.5-μm VCSELs,” J. Lightwave Technol. 35, 727–733 (2017).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

S. Spiga, D. Schoke, A. Andrejew, G. Boehm, and M.-C. Amann, “Effect of cavity length, strain, and mesa capacitance on 1.5-μm VCSELs performance,” J. Lightwave Technol. 35, 3130–3141 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

2016 (8)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, M. Ono, A. Shakoor, E. Kuramochi, and M. Notomi, “Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier,” Optica 3, 483–492 (2016).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2016).
[Crossref]

A. Abbasi, C. Spatharakis, G. Kanakis, N. Sequeira André, H. Louchet, A. Katumba, J. Verbist, H. Avramopoulos, P. Bienstman, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “High speed direct modulation of a heterogeneously integrated InP/SOI DFB laser,” J. Lightwave Technol. 34, 1683–1687 (2016).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

D. M. Kuchta, T. N. Huynh, F. E. Doany, L. Schares, C. W. Baks, C. Neumeyr, A. Daly, B. Kogel, J. Rosskopf, and M. Ortsiefer, “Error-free 56  Gb/s NRZ modulation of a 1530-nm VCSEL Link,” J. Lightwave Technol. 34, 3275–3282 (2016).
[Crossref]

Y. Matsui, T. Pham, T. Sudo, G. Carey, B. Young, J. Xu, C. Cole, and C. Roxlo, “28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB laser,” J. Lightwave Technol. 34, 2677–2683 (2016).
[Crossref]

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100  GHz spacing Si arrayed- waveguide grating using minimal terrace at slab-array interface,” Electron. Lett. 52, 1545–1546 (2016).
[Crossref]

2015 (17)

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, G. Roelkens, R. Baets, and A. Larsson, “Silicon-integrated short-wavelength hybrid-cavity VCSEL,” Opt. Express 23, 33634–33640 (2015).
[Crossref]

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic integration of InP wire and SiOx waveguides on Si platform,” IEEE Photon. J. 7, 4900308 (2015).
[Crossref]

M. Ahmed, A. Bakry, M. S. Alghamdi, H. Dalir, and F. Koyama, “Enhancing the modulation bandwidth of VCSELs to the millimeter-waveband using strong transverse slow-light feedback,” Opt. Express 23, 15365–15371 (2015).
[Crossref]

S. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
[Crossref]

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Fujisawa, H. Sanjoh, and M. Itoh, “4 × 25.8  Gbit/s (100  Gbit/s) simultaneous operation of InGaAlAs based DML array monolithically integrated with MMI coupler,” Electron. Lett. 51, 1516–1517 (2015).
[Crossref]

A. Abbasi, J. Verbist, J. Van Kerrebrouck, F. Lelarge, G.-H. Duan, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “28  Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser,” Opt. Express 23, 26479–26485 (2015).
[Crossref]

D. Inoue, T. Hiratani, K. Fukuda, T. Tomiyasu, T. Amemiya, N. Nishiyama, and S. Arai, “High-modulation efficiency operation of GaInAsP/InP membrane distributed feedback laser on Si substrate,” Opt. Express 23, 29024–29031 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, T. Takeda, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33, 1217–1222 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

T. Sato, K. Takeda, A. Shinya, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Photonic crystal lasers for chip-to-chip and on-chip optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 4900410 (2015).
[Crossref]

J. B. Heroux, T. Kise, M. Funabashi, T. Aoki, C. L. Schow, A. V. Rylyakov, and S. Nakagawa, “Energy-efficient 1060-nm optical link operating up to 28  Gb/s,” J. Lightwave Technol. 33, 733–740 (2015).
[Crossref]

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21, 1502307 (2015).
[Crossref]

2014 (9)

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85ºC,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, and T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47, 023001 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

W. Kobayashi, T. Fujisawa, S. Kanazawa, and H. Sanjoh, “25  Gbaud/s 4-PAM (50  Gbit/s) modulation and 10  km SMF transmission with 1.3  μm InGaAlAs-based DML,” Electron. Lett. 50, 299–300 (2014).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, T. Takeda, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
[Crossref]

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
[Crossref]

H. Dalir and F. Koyama, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance,” Appl. Phys. Express 7, 022102 (2014).
[Crossref]

2013 (9)

K. Matsumoto, T. Makino, K. Kimura, and K. Shimomura, “Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate,” J. Cryst. Growth 370, 133–135 (2013).
[Crossref]

C. Zhang, D. Liang, and J. E. Bowers, “MOCVD regrowth of InP on hybrid silicon substrate,” Electrochem. Solid State Lett. 2, Q82–Q86 (2013).
[Crossref]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μmm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “A few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

T. Shindo, M. Futami, K. Doi, T. Amemiya, N. Nishiyama, and S. Arai, “Design of lateral-current-injection-type membrane distributed-feedback lasers for on-chip optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 19, 1502009 (2013).
[Crossref]

2012 (6)

M. K. Smit, J. J. G. M. van der Tol, and M. T. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6, 1–13 (2012).
[Crossref]

M. Matsuda, T. Simoyama, A. Uetake, S. Okumura, M. Ekawa, and T. Yamamoto, “Uncooled, low-driving-current 25.8  Gbit/s direct modulation using 1.3  μm AlGaInAs MQW distributed-reflector lasers,” Electron. Lett. 48, 450–452 (2012).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), S67–S72 (2012).
[Crossref]

T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, H. Takahashi, and E. Yoshida, “Compact and high-sensitivity 100-Gb/s (4 × 25  Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt. Express 20, B393–B398 (2012).
[Crossref]

2011 (8)

H. Dalir and F. Koyama, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8, 1075–1081 (2011).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

U. Troppenz, J. Kreissl, M. Mohrle, C. Bornholdt, W. Rhebein, B. Sartorius, I. Woods, and M. Schell, “40  Gbit/s directly modulated lasers: physics and application,” Proc. SPIE 7953, 79530F (2011).
[Crossref]

K. Takaki, S. Imaia, S. Kamivab, H. Shimizua, Y. Kawakita, K. Hiraiwa, T. Takagia, H. Shimizua, J. Yoshida, T. Ishikawab, N. Tsukijia, and A. Kasukawa, “1060  nm VCSEL for inter-chip optical interconnection,” Proc. SPIE 7952, 795204 (2011).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011).
[Crossref]

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

K. Adachi, K. Shinoda, T. Kitatani, T. Fukamachi, Y. Matsuoka, T. Sugawara, and S. Tsuji, “25-Gb/s multichannel 1.3-μm surface-emitting lens integrated DFB laser arrays,” J. Lightwave Technol. 29, 2899–2905 (2011).
[Crossref]

2010 (5)

W. Kobayashi, M. Arai, T. Yamanaka, N. Fujiwara, T. Fujisawa, T. Tadokoro, K. Tsuzuki, Y. Kondo, and F. Kano, “Design and fabrication of 10-/40-Gb/s, uncooled electroabsorption modulator integrated DFB laser with butt-joint structure,” J. Lightwave Technol. 28, 164–171 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

M. Chacinski and R. Schatz, “Impact of losses in the Bragg section on the dynamics of detuned loaded DBR lasers,” IEEE J. Quantum Electron. 46, 1360–1367 (2010).
[Crossref]

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Park, R. Kou, K. Yamada, and S. Itabashi, “Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structures,” Appl. Phys. Express 3, 102203 (2010).
[Crossref]

2009 (3)

C. M. Long, A. V. Giannopoulos, and K. D. Choquette, “Modified spontaneous emission from laterally injected photonic crystal emitter,” Electron. Lett. 45, 227–228 (2009).
[Crossref]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85ºC,” IEEE Photon. Technol. Lett. 21, 1154–1156 (2009).
[Crossref]

2008 (5)

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “Uncooled 25  Gbit/s direct modulation of semi-insulating buried-heterostructure1.3  μm AlGaInAs quantum-well DFB lasers,” Electron. Lett. 44, 631–633 (2008).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[Crossref]

Y. Suematsu and K. Iga, “Semiconductor lasers in photonics,” J. Lightwave Technol. 26, 1132–1144 (2008).
[Crossref]

T. Sato, Y. Kondo, T. Sekiguchi, and T. Suemasu, “Sb surfactant effect on defect evolution in compressively strained In0.80Ga0.20As quantum well on InP grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 1, 111202 (2008).
[Crossref]

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

2007 (4)

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15, 7506–7514 (2007).
[Crossref]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17206–17213 (2007).
[Crossref]

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19, 1436–1438 (2007).
[Crossref]

2006 (7)

A. N. AL-Omari, G. P. Carey, S. Hallstein, J. P. Watson, G. Dang, and K. L. Lear, “Low thermal resistance high-speed top-emitting 980-nm VCSELs,” IEEE Photon. Technol. Lett. 18, 1225–1227 (2006).
[Crossref]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308–6315 (2006).
[Crossref]

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99, 031101 (2006).
[Crossref]

G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express 14, 8154–8159 (2006).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

2005 (3)

T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits 40, 2633–2645 (2005).
[Crossref]

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11, 990–998 (2005).
[Crossref]

2004 (2)

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh- microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

2003 (3)

T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron. 9, 1340–1346 (2003).
[Crossref]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1361–1366 (2003).
[Crossref]

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413–5415 (2003).
[Crossref]

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

2001 (2)

I. Vurgaftman and J. R. Meyer, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

H. Tsuda, T. Nakahara, and T. Kurokawa, “Hybrid-integrated smart pixels for dense optical interconnects,” IEICE Trans. Electron. E84-C, 1771–1777 (2001).

2000 (3)

K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
[Crossref]

M. Fujita, R. Ushigome, and T. Baba, “Continuous wave lasing in GalnAsP microdisk injection laser with threshold current of 40  μA,” Electron. Lett. 36, 790–791 (2000).
[Crossref]

N. Nunoya, M. Nakamura, H. Yasumoto, M. Morahed, I. Fukuda, S. Tamura, and S. Arai, “Sub-milliampere operation of 1.55  μm wavelength high index-coupled buried heterostructure distributed feedback lasers,” Electron. Lett. 36, 1213–1214 (2000).
[Crossref]

1999 (4)

M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999).
[Crossref]

P. V. Mena, J. J. Morikuni, S.-M. Kang, A. V. Harton, and K. W. Wyatt, “A simple rate-equation-based thermal VCSEL model,” J. Lightwave Technol. 17, 865–872 (1999).
[Crossref]

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL’s bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11, 1554–1556 (1999).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]

1998 (1)

U. Feiste, “Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors,” IEEE J. Quantum Electron. 34, 2371–2379 (1998).
[Crossref]

1997 (2)

S. Matsuo, K. Tateno, T. Nakahara, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997).
[Crossref]

T. Baba, “Photonic crystals and microdisk cavities based on GaAInAs-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
[Crossref]

1996 (2)

N. M. Margalit, D. I. Babic, K. Streubel, R. P. Mirin, R. L. Naone, J. E. Bowers, and E. L. Hu, “Submilliamp long wavelength vertical-cavity lasers,” Electron. Lett. 32, 1675–1677 (1996).
[Crossref]

S. Matsuo, T. Nakahara, K. Tateno, and T. Kurokawa, “Novel technology for hybrid integration of photonic and electronic circuits,” IEEE Photon. Technol. Lett. 8, 1507–1509 (1996).
[Crossref]

1995 (3)

G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
[Crossref]

D. I. Babic, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, Y. Long, and K. Carey, “Room-temperature continuous-wave operation of 1.54-m vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[Crossref]

N. Bewtra, D. A. Suda, G. L. Tan, F. Chatenoud, and J. M. Xu, “Modeling of quantum-well lasers with electro-opto-thermal interaction,” IEEE J. Sel. Top. Quantum Electron. 1, 331–340 (1995).
[Crossref]

1994 (2)

M. Okai, “Spectral characteristics of distributed feedback semiconductor lasers and their improvements by corrugation-pitch-modulated structure,” J. Appl. Phys. 75, 1–29 (1994).
[Crossref]

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6, 479–481 (1994).
[Crossref]

1993 (3)

H. Wada, Y. Ogawa, and T. Kamijoh, “Electrical characteristics of directly-bonded GaAs and InP,” Appl. Phys. Lett. 62, 738–740 (1993).
[Crossref]

R. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
[Crossref]

C. J. Chang-Hasnain, Y. A. Wu, G. S. Li, G. Hasnain, K. D. Choquette, C. Caneau, and L. T. Florez, “Low threshold buried heterostructure vertical cavity surface emitting laser,” Appl. Phys. Lett. 63, 1307–1309 (1993).
[Crossref]

1992 (3)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

C. Y. P. Chao and S. L. Chuang, “Spin-orbit-coupling effects on the valence band structure of strained semiconductor quantum wells,” Phys. Rev. B 46, 4110–4122 (1992).
[Crossref]

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

1991 (2)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

T. Takahashi and Y. Arakawa, “Nonlinear gain effects in quantum well, quantum well wire, and quantum well box lasers,” IEEE J. Quantum Electron. 27, 1824–1829 (1991).
[Crossref]

1990 (2)

R. S. Geels and L. A. Coldren, “Submilliamp threshold vertical-cavity laser diodes,” Appl. Phys. Lett. 57, 1605–1607 (1990).
[Crossref]

M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  μm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
[Crossref]

1989 (6)

R. Stengl, T. Tan, and U. Gösele, “A model for the silicon wafer bonding process,” Jpn. J. Appl. Phys. 28, 1735–1741 (1989).
[Crossref]

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

G. P. Agrawal, “Effect of gain nonlinearities on the dynamic response of single-mode semiconductor lasers,” IEEE Photon. Technol. Lett. 1, 419–421 (1989).
[Crossref]

D. M. Byrne and B. A. Keating, “A laser diode model based on temperature dependent rate equations,” IEEE Photon. Technol. Lett. 1, 356–359 (1989).
[Crossref]

F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett. 55, 221–222 (1989).
[Crossref]

D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett. 14, 146–148 (1989).
[Crossref]

1988 (2)

R. H. M. Van De Leur, A. J. G. Schellingerhout, F. Tuinstra, and J. E. Mooij, “Critical thickness for pseudomorphic growth of Si/Ge alloys and superlattices,” J. Appl. Phys. 64, 3043–3050 (1988).
[Crossref]

Y. Ohkura, N. Yoshida, A. Takemoto, and S. Kakimoto, “Extremely low-threshold 1.3  μm GaInAsP/InP DFB PPIBH laser,” Electron. Lett. 24, 1508–1510 (1988).
[Crossref]

1987 (4)

H. Z. Chen, A. Ghaffari, H. Wang, H. Morkoq, and A. Yariv, “Continuous-wave operation of extremely low-threshold GaAs/AlGaAs broad-area injection lasers on (100) Si substrates at room temperature,” Opt. Lett. 12, 812–813 (1987).
[Crossref]

Y. Itaya, M. Oishi, M. Nakao, K. Sato, Y. Kondo, and Y. Imamura, “Low-threshold operation of 1.5  μm buried-heterostructure DFB lasers grown entirely by low-pressure MOVPE,” Electron. Lett. 23, 193–194 (1987).
[Crossref]

R. Eppenga, M. F. H. Shuurmans, and S. Colack, “New k.p theory for GaAs/Ga1-xAlxAs-type quantum wells,” Phys. Rev. B 36, 1554–1564 (1987).
[Crossref]

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3  μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[Crossref]

1986 (3)

R. S. Tucker, J. M. Wiesenfeld, P. M. Downey, and J. E. Bowers, “Propagation delays and transition times in pulse-modulated semiconductor lasers,” Appl. Phys. Lett. 48, 1707–1709 (1986).
[Crossref]

S. Sakai, T. Soga, M. Takeyasu, and M. Umeno, “Room-temperature laser operation of AlGaAs/GaAs double heterostructures fabricated on Si substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 48, 413–414 (1986).
[Crossref]

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[Crossref]

1985 (2)

M. Yamada, S. Ogita, M. Yamagishi, and K. Tabata, “Anisotropy and broadening of optical gain in a GaAs/AIGaAs multiquantum-well laser,” IEEE J. Quantum Electron. 21, 640–645 (1985).
[Crossref]

Y. Arakawa and A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 21, 1666–1674 (1985).
[Crossref]

1984 (1)

R. Olshansky, C. B. Su, J. Manning, and W. Powazinik, “Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources,” IEEE J. Quantum Electron. 20, 838–854 (1984).
[Crossref]

1983 (1)

K. Y. Lau, N. Bar-Chaim, I. Ury, Ch. Harder, and A. Yariv, “Direct amplitude modulation of short-cavity GaAs lasers up to X-band frequencies,” Appl. Phys. Lett. 43, 1–3 (1983).
[Crossref]

1982 (3)

M. Asada and Y. Suematsu, “Measurement of spontaneous emission efficiency and nonradiative recombination in 1.58-μm wavelength GaInAsP/InP crystals,” Appl. Phys. Lett. 41, 353–355 (1982).
[Crossref]

M. Kitamura, M. Yamaguchi, S. Murata, I. Mito, and K. Kobayashi, “Low-threshold and high temperature single-longitudinal-mode operation of 1.55  μm-band DFB-DC-PBH LDs,” Electron. Lett. 18, 27–28 (1982).
[Crossref]

T. Matsuoka, H. Nagai, Y. Itaya, Y. Noguchi, Y. Suzuki, and T. Ikegami, “CW operation of DFB-BH GaInAsP/InP lasers in 1.5  μm wavelength region,” Electron. Lett. 18, 27–28 (1982).
[Crossref]

1981 (2)

K. Utaka, K. Kobayashi, and Y. Suematsu, “Lasing characteristics of GaInAsP/InP integrated twin-guide lasers with first-order distributed Bragg reflectors,” IEEE J. Quantum Electron. 17, 651–658 (1981).
[Crossref]

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “Room-temperature CW operation of distributed-feedback buried-heterostructure InGaAsP/InP lasers emitting at 1.57  μm,” Electron. Lett. 17, 961–962 (1981).
[Crossref]

1980 (1)

Y. Yamamoto and H. Kanbe, “Zn diffusion in InxGa1-xAs with ZnAs2 source,” Jpn. J. Appl. Phys. 19, 121–128 (1980).
[Crossref]

1979 (1)

Y. Matsushima, K. Sakai, S. Akiba, and T. Yamamoto, “Zn-diffused In0.53Ga0.47As/InP avalanche photodetector,” Appl. Phys. Lett. 35, 466–468 (1979).
[Crossref]

1974 (1)

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth 27, 118–125 (1974).
[Crossref]

1973 (3)

M. Chown, A. R. Goodwin, D. F. Lovelace, G. H. B. Thompson, and P. R. Selway, “Direct modulation of double-heterostructure lasers at rates up to 1  Gbit/s,” Electron. Lett. 9, 34–35 (1973).
[Crossref]

T. Ozeki and T. Ito, “Pulse modulation of DH-(GaAl)As lasers,” IEEE J. Quantum Electron. 9, 388–391 (1973).
[Crossref]

J. E. Goell, “A 274-Mb/s optical-repeater experiment employing a GaAs laser,” Proc. IEEE 61, 1504–1505 (1973).
[Crossref]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

1970 (1)

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17, 109–111 (1970).
[Crossref]

1969 (1)

Zh. I. Alferov, V. M. Andreev, E. L. Portnoi, and M. K. Trukan, “AlAs-GaAs heterojunction injection lasers with a low room-temperature threshold,” Fiz. Tekh. Poluprovodn. 3, 1328–1332 (1969).

1968 (2)

S. Tanaka, F. Kitasawa, and J.-I. Nishizawa, “Amplitude modulation of diode laser light in millimeter-wave region,” Proc. IEEE 56, 135–136 (1968).
[Crossref]

T. Ikegami and Y. Suematsu, “Carrier lifetime measurement of a junction laser using direct modulation,” IEEE J. Quantum Electron. 4, 148–151 (1968).
[Crossref]

1967 (1)

T. Ikegami and Y. Suematsu, “Resonance-like characteristics of the direct modulation of a junction laser,” Proc. IEEE 55, 122–123 (1967).
[Crossref]

1964 (1)

H. Statz, C. L. Tang, and J. M. Lavine, “Spectral output of semiconductor lasers,” J. Appl. Phys. 35, 2581–2585 (1964).
[Crossref]

1963 (1)

H. Kroemer, “A proposed class of heterojunction injection lasers,” Proc. IEEE 51, 1782–1783 (1963).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 37–38 (1946).
[Crossref]

Abbasi, A.

Absil, P.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Adachi, K.

Adams, D.

Agrawal, G. P.

G. P. Agrawal, “Effect of gain nonlinearities on the dynamic response of single-mode semiconductor lasers,” IEEE Photon. Technol. Lett. 1, 419–421 (1989).
[Crossref]

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, 1993).

Ahmed, M.

Ahrenkiel, S. P.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413–5415 (2003).
[Crossref]

Aihara, T.

T. Hiraki, T. Aihara, H. Nishi, and T. Tsuchizawa, “Deuterated SiN/SiON waveguides on Si platform and their application to C-band WDM filters,” IEEE Photon. J. 9, 2500207 (2017).
[Crossref]

Ainspan, H.

T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits 40, 2633–2645 (2005).
[Crossref]

Akiba, S.

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “Room-temperature CW operation of distributed-feedback buried-heterostructure InGaAsP/InP lasers emitting at 1.57  μm,” Electron. Lett. 17, 961–962 (1981).
[Crossref]

Y. Matsushima, K. Sakai, S. Akiba, and T. Yamamoto, “Zn-diffused In0.53Ga0.47As/InP avalanche photodetector,” Appl. Phys. Lett. 35, 466–468 (1979).
[Crossref]

Alferov, Zh. I.

Zh. I. Alferov, V. M. Andreev, E. L. Portnoi, and M. K. Trukan, “AlAs-GaAs heterojunction injection lasers with a low room-temperature threshold,” Fiz. Tekh. Poluprovodn. 3, 1328–1332 (1969).

Alghamdi, M. S.

Allouti, N.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

AL-Omari, A. N.

A. N. AL-Omari, G. P. Carey, S. Hallstein, J. P. Watson, G. Dang, and K. L. Lear, “Low thermal resistance high-speed top-emitting 980-nm VCSELs,” IEEE Photon. Technol. Lett. 18, 1225–1227 (2006).
[Crossref]

Amann, M.-C.

S. Spiga, W. Soenen, A. Andrejew, D. M. Schoke, X. Yin, J. Bauwelinck, G. Boehm, and M.-C. Amann, “Single-mode high-speed 1.5-μm VCSELs,” J. Lightwave Technol. 35, 727–733 (2017).
[Crossref]

S. Spiga, D. Schoke, A. Andrejew, G. Boehm, and M.-C. Amann, “Effect of cavity length, strain, and mesa capacitance on 1.5-μm VCSELs performance,” J. Lightwave Technol. 35, 3130–3141 (2017).
[Crossref]

M. Müller, P. Wolf, T. Gründl, C. Grasse, J. Rosskopf, W. Hofmann, D. Bimberg, and M.-C. Amann, “Energy-efficient 1.3  μm short-cavity VCSELs for 30  Gb/s error-free optical links,” in International Semiconductor Laser Conference (ISLC) (2012), paper PD 1.2.

Amemiya, T.

D. Inoue, T. Hiratani, K. Fukuda, T. Tomiyasu, T. Amemiya, N. Nishiyama, and S. Arai, “High-modulation efficiency operation of GaInAsP/InP membrane distributed feedback laser on Si substrate,” Opt. Express 23, 29024–29031 (2015).
[Crossref]

T. Shindo, M. Futami, K. Doi, T. Amemiya, N. Nishiyama, and S. Arai, “Design of lateral-current-injection-type membrane distributed-feedback lasers for on-chip optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 19, 1502009 (2013).
[Crossref]

Andreev, V. M.

Zh. I. Alferov, V. M. Andreev, E. L. Portnoi, and M. K. Trukan, “AlAs-GaAs heterojunction injection lasers with a low room-temperature threshold,” Fiz. Tekh. Poluprovodn. 3, 1328–1332 (1969).

Andrejew, A.

Aoki, M.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19, 1436–1438 (2007).
[Crossref]

Aoki, T.

Arai, M.

Arai, S.

D. Inoue, T. Hiratani, K. Fukuda, T. Tomiyasu, T. Amemiya, N. Nishiyama, and S. Arai, “High-modulation efficiency operation of GaInAsP/InP membrane distributed feedback laser on Si substrate,” Opt. Express 23, 29024–29031 (2015).
[Crossref]

T. Shindo, M. Futami, K. Doi, T. Amemiya, N. Nishiyama, and S. Arai, “Design of lateral-current-injection-type membrane distributed-feedback lasers for on-chip optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 19, 1502009 (2013).
[Crossref]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1361–1366 (2003).
[Crossref]

N. Nunoya, M. Nakamura, H. Yasumoto, M. Morahed, I. Fukuda, S. Tamura, and S. Arai, “Sub-milliampere operation of 1.55  μm wavelength high index-coupled buried heterostructure distributed feedback lasers,” Electron. Lett. 36, 1213–1214 (2000).
[Crossref]

Arakawa, Y.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308–6315 (2006).
[Crossref]

T. Takahashi and Y. Arakawa, “Nonlinear gain effects in quantum well, quantum well wire, and quantum well box lasers,” IEEE J. Quantum Electron. 27, 1824–1829 (1991).
[Crossref]

Y. Arakawa and A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 21, 1666–1674 (1985).
[Crossref]

Aratake, A.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

Armani, D.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh- microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

Asada, M.

M. Asada and Y. Suematsu, “Measurement of spontaneous emission efficiency and nonradiative recombination in 1.58-μm wavelength GaInAsP/InP crystals,” Appl. Phys. Lett. 41, 353–355 (1982).
[Crossref]

Asano, T.

Asghari, M.

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

Atwater, H. A.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413–5415 (2003).
[Crossref]

Avramopoulos, H.

Baba, T.

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15, 7506–7514 (2007).
[Crossref]

T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron. 9, 1340–1346 (2003).
[Crossref]

M. Fujita, R. Ushigome, and T. Baba, “Continuous wave lasing in GalnAsP microdisk injection laser with threshold current of 40  μA,” Electron. Lett. 36, 790–791 (2000).
[Crossref]

M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999).
[Crossref]

T. Baba, “Photonic crystals and microdisk cavities based on GaAInAs-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
[Crossref]

Babic, D. I.

N. M. Margalit, D. I. Babic, K. Streubel, R. P. Mirin, R. L. Naone, J. E. Bowers, and E. L. Hu, “Submilliamp long wavelength vertical-cavity lasers,” Electron. Lett. 32, 1675–1677 (1996).
[Crossref]

D. I. Babic, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, Y. Long, and K. Carey, “Room-temperature continuous-wave operation of 1.54-m vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[Crossref]

Bach, L.

J. P. Reithmaier, W. Kaiser, L. Bach, A. Forchel, V. Feies, M. Gioannini, I. Montrosset, T. W. Berg, and B. Tromborg, “Modulation speed enhancement by coupling to higher order resonances: a road towards 40  GHz bandwidth lasers on InP,” in International Conference on Indium Phosphide Related Materials (2005), pp. 118–123.

Backbom, L.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “Two-section InGaAsP DBR-lasers at 1.55-μm wavelength with 31  GHz direct modulation bandwidth,” in International Conference on Indium Phosphide Related Materials (1997), pp. 665–668, paper ThF4.

Baek, J.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Baets, R.

S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

S. Kumari, J. Gustavsson, E. P. Haglund, J. Bengtsson, A. Larsson, G. Roelkens, and R. Baets, “Design of an 845-nm GaAs vertical-cavity silicon-integrated laser with an intracavity grating for coupling to a SiN waveguide circuit,” IEEE Photon. J. 9, 1504109 (2017).
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, G. Roelkens, R. Baets, and A. Larsson, “Silicon-integrated short-wavelength hybrid-cavity VCSEL,” Opt. Express 23, 33634–33640 (2015).
[Crossref]

G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express 14, 8154–8159 (2006).
[Crossref]

Baets, R. G.

E. P. Haglund, S. Kumari, E. Haglund, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “Silicon-integrated hybrid-cavity 850-nm VCSELs by adhesive bonding: impact of bonding interface thickness on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23, 1700109 (2017).
[Crossref]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Bakry, A.

Baks, C. W.

D. M. Kuchta, T. N. Huynh, F. E. Doany, L. Schares, C. W. Baks, C. Neumeyr, A. Daly, B. Kogel, J. Rosskopf, and M. Ortsiefer, “Error-free 56  Gb/s NRZ modulation of a 1530-nm VCSEL Link,” J. Lightwave Technol. 34, 3275–3282 (2016).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

Bao, X. Y.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Bar-Chaim, N.

K. Y. Lau, N. Bar-Chaim, I. Ury, Ch. Harder, and A. Yariv, “Direct amplitude modulation of short-cavity GaAs lasers up to X-band frequencies,” Appl. Phys. Lett. 43, 1–3 (1983).
[Crossref]

T. R. Chen, P. C. Chen, J. Ungar, S. Oh, H. Luong, and N. Bar-Chaim, “Wide temperature range linear DFB lasers at 1.3  μm with very low threshold,” in 15th IEEE International Semiconductor Laser Conference (1996), pp. 169–170, paper Th2.2.

Barnes, J. P.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Baron, T.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Bassani, F.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Bauwelinck, J.

Beakes, M.

T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits 40, 2633–2645 (2005).
[Crossref]

Beaudoin, G.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Beckx, S.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Bengtsson, J.

S. Kumari, J. Gustavsson, E. P. Haglund, J. Bengtsson, A. Larsson, G. Roelkens, and R. Baets, “Design of an 845-nm GaAs vertical-cavity silicon-integrated laser with an intracavity grating for coupling to a SiN waveguide circuit,” IEEE Photon. J. 9, 1504109 (2017).
[Crossref]

Berg, T. W.

J. P. Reithmaier, W. Kaiser, L. Bach, A. Forchel, V. Feies, M. Gioannini, I. Montrosset, T. W. Berg, and B. Tromborg, “Modulation speed enhancement by coupling to higher order resonances: a road towards 40  GHz bandwidth lasers on InP,” in International Conference on Indium Phosphide Related Materials (2005), pp. 118–123.

Beukema, T.

T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits 40, 2633–2645 (2005).
[Crossref]

Bewtra, N.

N. Bewtra, D. A. Suda, G. L. Tan, F. Chatenoud, and J. M. Xu, “Modeling of quantum-well lasers with electro-opto-thermal interaction,” IEEE J. Sel. Top. Quantum Electron. 1, 331–340 (1995).
[Crossref]

Bhat, R.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11, 990–998 (2005).
[Crossref]

Bienstman, P.

Bimberg, D.

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85ºC,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

M. Müller, P. Wolf, T. Gründl, C. Grasse, J. Rosskopf, W. Hofmann, D. Bimberg, and M.-C. Amann, “Energy-efficient 1.3  μm short-cavity VCSELs for 30  Gb/s error-free optical links,” in International Semiconductor Laser Conference (ISLC) (2012), paper PD 1.2.

Blakeslee, A. E.

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth 27, 118–125 (1974).
[Crossref]

Boehm, G.

Bogaerts, W.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Bogumilowicz, Y.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Bornholdt, C.

U. Troppenz, J. Kreissl, M. Mohrle, C. Bornholdt, W. Rhebein, B. Sartorius, I. Woods, and M. Schell, “40  Gbit/s directly modulated lasers: physics and application,” Proc. SPIE 7953, 79530F (2011).
[Crossref]

Bouchoule, S.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Bowers, J. E.

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

C. Zhang, D. Liang, and J. E. Bowers, “MOCVD regrowth of InP on hybrid silicon substrate,” Electrochem. Solid State Lett. 2, Q82–Q86 (2013).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

N. M. Margalit, D. I. Babic, K. Streubel, R. P. Mirin, R. L. Naone, J. E. Bowers, and E. L. Hu, “Submilliamp long wavelength vertical-cavity lasers,” Electron. Lett. 32, 1675–1677 (1996).
[Crossref]

D. I. Babic, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, Y. Long, and K. Carey, “Room-temperature continuous-wave operation of 1.54-m vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[Crossref]

R. S. Tucker, J. M. Wiesenfeld, P. M. Downey, and J. E. Bowers, “Propagation delays and transition times in pulse-modulated semiconductor lasers,” Appl. Phys. Lett. 48, 1707–1709 (1986).
[Crossref]

Bramerie, L.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Byrne, D. M.

D. M. Byrne and B. A. Keating, “A laser diode model based on temperature dependent rate equations,” IEEE Photon. Technol. Lett. 1, 356–359 (1989).
[Crossref]

Cai, Y.

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Optical Fiber Communication Conference (2012), paper OW1H.4.

Caimi, D.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (2015), paper T173.

Campenhout, J. V.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Caneau, C.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11, 990–998 (2005).
[Crossref]

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6, 479–481 (1994).
[Crossref]

C. J. Chang-Hasnain, Y. A. Wu, G. S. Li, G. Hasnain, K. D. Choquette, C. Caneau, and L. T. Florez, “Low threshold buried heterostructure vertical cavity surface emitting laser,” Appl. Phys. Lett. 63, 1307–1309 (1993).
[Crossref]

Carey, G.

Carey, G. P.

A. N. AL-Omari, G. P. Carey, S. Hallstein, J. P. Watson, G. Dang, and K. L. Lear, “Low thermal resistance high-speed top-emitting 980-nm VCSELs,” IEEE Photon. Technol. Lett. 18, 1225–1227 (2006).
[Crossref]

Carey, K.

D. I. Babic, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, Y. Long, and K. Carey, “Room-temperature continuous-wave operation of 1.54-m vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[Crossref]

Chacinski, M.

M. Chacinski and R. Schatz, “Impact of losses in the Bragg section on the dynamics of detuned loaded DBR lasers,” IEEE J. Quantum Electron. 46, 1360–1367 (2010).
[Crossref]

Chaibi, M. E.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Chang, D.

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Optical Fiber Communication Conference (2012), paper OW1H.4.

Chang, Y.-C.

Y.-C. Chang and L. A. Coldren, “Optimization of VCSEL structure for high-speed operation,” in IEEE 21st International Semiconductor Laser Conference (2008), pp. 159–160.

Chang-Hasnain, C. J.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

C. J. Chang-Hasnain, Y. A. Wu, G. S. Li, G. Hasnain, K. D. Choquette, C. Caneau, and L. T. Florez, “Low threshold buried heterostructure vertical cavity surface emitting laser,” Appl. Phys. Lett. 63, 1307–1309 (1993).
[Crossref]

Chao, C. Y. P.

C. Y. P. Chao and S. L. Chuang, “Spin-orbit-coupling effects on the valence band structure of strained semiconductor quantum wells,” Phys. Rev. B 46, 4110–4122 (1992).
[Crossref]

Chase, C.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Chatenoud, F.

N. Bewtra, D. A. Suda, G. L. Tan, F. Chatenoud, and J. M. Xu, “Modeling of quantum-well lasers with electro-opto-thermal interaction,” IEEE J. Sel. Top. Quantum Electron. 1, 331–340 (1995).
[Crossref]

Chauvin, N.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Chen, C.-H.

Chen, H. Z.

Chen, P. C.

T. R. Chen, P. C. Chen, J. Ungar, S. Oh, H. Luong, and N. Bar-Chaim, “Wide temperature range linear DFB lasers at 1.3  μm with very low threshold,” in 15th IEEE International Semiconductor Laser Conference (1996), pp. 169–170, paper Th2.2.

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Chen, T. R.

T. R. Chen, P. C. Chen, J. Ungar, S. Oh, H. Luong, and N. Bar-Chaim, “Wide temperature range linear DFB lasers at 1.3  μm with very low threshold,” in 15th IEEE International Semiconductor Laser Conference (1996), pp. 169–170, paper Th2.2.

Chitgarha, M. R.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Choquette, K. D.

S. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
[Crossref]

C. M. Long, A. V. Giannopoulos, and K. D. Choquette, “Modified spontaneous emission from laterally injected photonic crystal emitter,” Electron. Lett. 45, 227–228 (2009).
[Crossref]

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL’s bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11, 1554–1556 (1999).
[Crossref]

C. J. Chang-Hasnain, Y. A. Wu, G. S. Li, G. Hasnain, K. D. Choquette, C. Caneau, and L. T. Florez, “Low threshold buried heterostructure vertical cavity surface emitting laser,” Appl. Phys. Lett. 63, 1307–1309 (1993).
[Crossref]

Chown, M.

M. Chown, A. R. Goodwin, D. F. Lovelace, G. H. B. Thompson, and P. R. Selway, “Direct modulation of double-heterostructure lasers at rates up to 1  Gbit/s,” Electron. Lett. 9, 34–35 (1973).
[Crossref]

Chuang, S. L.

C. Y. P. Chao and S. L. Chuang, “Spin-orbit-coupling effects on the valence band structure of strained semiconductor quantum wells,” Phys. Rev. B 46, 4110–4122 (1992).
[Crossref]

S. L. Chuang, Physics of Optoelectronics Devices (Wiley, 1995).

Cipro, R.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Cohen, O.

Colack, S.

R. Eppenga, M. F. H. Shuurmans, and S. Colack, “New k.p theory for GaAs/Ga1-xAlxAs-type quantum wells,” Phys. Rev. B 36, 1554–1564 (1987).
[Crossref]

Coldren, L. A.

R. S. Geels and L. A. Coldren, “Submilliamp threshold vertical-cavity laser diodes,” Appl. Phys. Lett. 57, 1605–1607 (1990).
[Crossref]

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Y.-C. Chang and L. A. Coldren, “Optimization of VCSEL structure for high-speed operation,” in IEEE 21st International Semiconductor Laser Conference (2008), pp. 159–160.

Cole, C.

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cristofori, V.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Crosnier, G.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Cunningham, J. E.

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

Czornomaz, L.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (2015), paper T173.

Daghighian, H. M.

Dalir, H.

M. Ahmed, A. Bakry, M. S. Alghamdi, H. Dalir, and F. Koyama, “Enhancing the modulation bandwidth of VCSELs to the millimeter-waveband using strong transverse slow-light feedback,” Opt. Express 23, 15365–15371 (2015).
[Crossref]

H. Dalir and F. Koyama, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance,” Appl. Phys. Express 7, 022102 (2014).
[Crossref]

H. Dalir and F. Koyama, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8, 1075–1081 (2011).
[Crossref]

Daly, A.

Dang, G.

A. N. AL-Omari, G. P. Carey, S. Hallstein, J. P. Watson, G. Dang, and K. L. Lear, “Low thermal resistance high-speed top-emitting 980-nm VCSELs,” IEEE Photon. Technol. Lett. 18, 1225–1227 (2006).
[Crossref]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]

G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
[Crossref]

Davenport, M. L.

C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

David, S.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Dentai, A. G.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Deshpande, V.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (2015), paper T173.

Desikan, T.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Diamantopoulos, N. P.

N. P. Diamantopoulos, W. Kobayashi, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “40-km SSMF transmission of 56/64-Gb/s PAM-4 signals using 1.3-μm directly modulated laser and PIN photodiode,” in Advanced Photonic Congress (2017), paper PW2D.4.

N. P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 120-Gbps DMT transmission using a 1.3-μm membrane laser on Si,” in Optical Fiber Communication Conference (2018), paper M2D.5.

H. Nishi, T. Fujii, N. P. Diamantopoulos, K. Takeda, E. Kanno, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Monolithic integration of an 8-channel directly modulated membrane-laser array and a SiN AWG filter on Si,” in Optical Fiber Communication Conference (2018), paper Th3B.2.

Diamantopouloss, N.-P.

T. Fujii, K. Takeda, N.-P. Diamantopouloss, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

Ding, Y.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Djara, V.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (2015), paper T173.

Doany, F. E.

D. M. Kuchta, T. N. Huynh, F. E. Doany, L. Schares, C. W. Baks, C. Neumeyr, A. Daly, B. Kogel, J. Rosskopf, and M. Ortsiefer, “Error-free 56  Gb/s NRZ modulation of a 1530-nm VCSEL Link,” J. Lightwave Technol. 34, 3275–3282 (2016).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

Doi, K.

T. Shindo, M. Futami, K. Doi, T. Amemiya, N. Nishiyama, and S. Arai, “Design of lateral-current-injection-type membrane distributed-feedback lasers for on-chip optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 19, 1502009 (2013).
[Crossref]

Doi, Y.

Dominic, V. G.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Downey, P. M.

R. S. Tucker, J. M. Wiesenfeld, P. M. Downey, and J. E. Bowers, “Propagation delays and transition times in pulse-modulated semiconductor lasers,” Appl. Phys. Lett. 48, 1707–1709 (1986).
[Crossref]

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Drenski, T.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s Optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (OFC) (2013), paper OM3H.1.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (2013), paper OM3H.1.

Duan, G. H.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Duan, G.-H.

Dumon, P.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Dutta, N. K.

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, 1993).

Ekawa, M.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21, 1502307 (2015).
[Crossref]

M. Matsuda, T. Simoyama, A. Uetake, S. Okumura, M. Ekawa, and T. Yamamoto, “Uncooled, low-driving-current 25.8  Gbit/s direct modulation using 1.3  μm AlGaInAs MQW distributed-reflector lasers,” Electron. Lett. 48, 450–452 (2012).
[Crossref]

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “Uncooled 25  Gbit/s direct modulation of semi-insulating buried-heterostructure1.3  μm AlGaInAs quantum-well DFB lasers,” Electron. Lett. 44, 631–633 (2008).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Eppenga, R.

R. Eppenga, M. F. H. Shuurmans, and S. Colack, “New k.p theory for GaAs/Ga1-xAlxAs-type quantum wells,” Phys. Rev. B 36, 1554–1564 (1987).
[Crossref]

Erni, R.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (2015), paper T173.

Evans, P. W.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Fang, A. W.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Feies, V.

J. P. Reithmaier, W. Kaiser, L. Bach, A. Forchel, V. Feies, M. Gioannini, I. Montrosset, T. W. Berg, and B. Tromborg, “Modulation speed enhancement by coupling to higher order resonances: a road towards 40  GHz bandwidth lasers on InP,” in International Conference on Indium Phosphide Related Materials (2005), pp. 118–123.

Feiste, U.

U. Feiste, “Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors,” IEEE J. Quantum Electron. 34, 2371–2379 (1998).
[Crossref]

Feng, D.

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

Florez, L. T.

C. J. Chang-Hasnain, Y. A. Wu, G. S. Li, G. Hasnain, K. D. Choquette, C. Caneau, and L. T. Florez, “Low threshold buried heterostructure vertical cavity surface emitting laser,” Appl. Phys. Lett. 63, 1307–1309 (1993).
[Crossref]

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

Fompeyrine, J.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (2015), paper T173.

Fontcuberta i Morral, A.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413–5415 (2003).
[Crossref]

Forchel, A.

J. P. Reithmaier, W. Kaiser, L. Bach, A. Forchel, V. Feies, M. Gioannini, I. Montrosset, T. W. Berg, and B. Tromborg, “Modulation speed enhancement by coupling to higher order resonances: a road towards 40  GHz bandwidth lasers on InP,” in International Conference on Indium Phosphide Related Materials (2005), pp. 118–123.

Foy, P. W.

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17, 109–111 (1970).
[Crossref]

Fryslie, S.

S. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
[Crossref]

Fujii, T.

T. Fujii, K. Takeda, N.-P. Diamantopouloss, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-μm-long active region on Si substrates,” Opt. Express 26, 1268–1277 (2018).
[Crossref]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Evaluation of device parameters for membrane lasers on Si fabricated with active-layer bonding followed by epitaxial growth,” IEICE Trans. Electron. E100-C, 196–203 (2017).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, M. Ono, A. Shakoor, E. Kuramochi, and M. Notomi, “Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier,” Optica 3, 483–492 (2016).
[Crossref]

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic integration of InP wire and SiOx waveguides on Si platform,” IEEE Photon. J. 7, 4900308 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, T. Takeda, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33, 1217–1222 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, T. Takeda, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, and T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47, 023001 (2014).
[Crossref]

K. Takeda, E. Kanno, T. Fujii, K. Hasebe, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Continuous-wave operation of ultra-short cavity distributed Bragg reflector lasers on Si substrates,” in Compound Semiconductor Week (2016), paper ThD1-2.

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Proceedings of European Conference on Lasers and Electro-Optics (2017), paper CK-9.4.

N. P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 120-Gbps DMT transmission using a 1.3-μm membrane laser on Si,” in Optical Fiber Communication Conference (2018), paper M2D.5.

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in 42nd European Conference on Optical Communication (2016), paper Th.3.A.2.

H. Nishi, T. Fujii, N. P. Diamantopoulos, K. Takeda, E. Kanno, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Monolithic integration of an 8-channel directly modulated membrane-laser array and a SiN AWG filter on Si,” in Optical Fiber Communication Conference (2018), paper Th3B.2.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

Fujisaki, S.

K. Nakahara, T. Tsuchiya, S. Tanaka, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, E. Nomoto, S. Fujisaki, and M. Kudo, “115°C, 12.5-Gb/s direct modulation of 1.3-μm InGaAlAs-MQW RWG DFB laser with notch-free grating structure for datacom applications,” in Optical Fiber Communication Conference (OFC) (2003), paper PD40-1.

Fujisawa, T.

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Fujisawa, H. Sanjoh, and M. Itoh, “4 × 25.8  Gbit/s (100  Gbit/s) simultaneous operation of InGaAlAs based DML array monolithically integrated with MMI coupler,” Electron. Lett. 51, 1516–1517 (2015).
[Crossref]

W. Kobayashi, T. Fujisawa, S. Kanazawa, and H. Sanjoh, “25  Gbaud/s 4-PAM (50  Gbit/s) modulation and 10  km SMF transmission with 1.3  μm InGaAlAs-based DML,” Electron. Lett. 50, 299–300 (2014).
[Crossref]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μmm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

W. Kobayashi, M. Arai, T. Yamanaka, N. Fujiwara, T. Fujisawa, T. Tadokoro, K. Tsuzuki, Y. Kondo, and F. Kano, “Design and fabrication of 10-/40-Gb/s, uncooled electroabsorption modulator integrated DFB laser with butt-joint structure,” J. Lightwave Technol. 28, 164–171 (2010).
[Crossref]

Fujita, M.

M. Fujita, R. Ushigome, and T. Baba, “Continuous wave lasing in GalnAsP microdisk injection laser with threshold current of 40  μA,” Electron. Lett. 36, 790–791 (2000).
[Crossref]

M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999).
[Crossref]

Fujiwara, N.

Fukamachi, T.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

K. Adachi, K. Shinoda, T. Kitatani, T. Fukamachi, Y. Matsuoka, T. Sugawara, and S. Tsuji, “25-Gb/s multichannel 1.3-μm surface-emitting lens integrated DFB laser arrays,” J. Lightwave Technol. 29, 2899–2905 (2011).
[Crossref]

Fukuda, H.

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[Crossref]

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in 42nd European Conference on Optical Communication (2016), paper Th.3.A.2.

H. Nishi, T. Fujii, N. P. Diamantopoulos, K. Takeda, E. Kanno, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Monolithic integration of an 8-channel directly modulated membrane-laser array and a SiN AWG filter on Si,” in Optical Fiber Communication Conference (2018), paper Th3B.2.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

Fukuda, I.

N. Nunoya, M. Nakamura, H. Yasumoto, M. Morahed, I. Fukuda, S. Tamura, and S. Arai, “Sub-milliampere operation of 1.55  μm wavelength high index-coupled buried heterostructure distributed feedback lasers,” Electron. Lett. 36, 1213–1214 (2000).
[Crossref]

Fukuda, K.

Funabashi, M.

Furukawa, K.

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[Crossref]

Futami, M.

T. Shindo, M. Futami, K. Doi, T. Amemiya, N. Nishiyama, and S. Arai, “Design of lateral-current-injection-type membrane distributed-feedback lasers for on-chip optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 19, 1502009 (2013).
[Crossref]

Gallet, A.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Geels, R. S.

R. S. Geels and L. A. Coldren, “Submilliamp threshold vertical-cavity laser diodes,” Appl. Phys. Lett. 57, 1605–1607 (1990).
[Crossref]

Geen, M.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

Geib, K. M.

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL’s bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11, 1554–1556 (1999).
[Crossref]

Ghaffari, A.

Giannopoulos, A. V.

C. M. Long, A. V. Giannopoulos, and K. D. Choquette, “Modified spontaneous emission from laterally injected photonic crystal emitter,” Electron. Lett. 45, 227–228 (2009).
[Crossref]

Gioannini, M.

J. P. Reithmaier, W. Kaiser, L. Bach, A. Forchel, V. Feies, M. Gioannini, I. Montrosset, T. W. Berg, and B. Tromborg, “Modulation speed enhancement by coupling to higher order resonances: a road towards 40  GHz bandwidth lasers on InP,” in International Conference on Indium Phosphide Related Materials (2005), pp. 118–123.

Goell, J. E.

J. E. Goell, “A 274-Mb/s optical-repeater experiment employing a GaAs laser,” Proc. IEEE 61, 1504–1505 (1973).
[Crossref]

Goodwin, A. R.

M. Chown, A. R. Goodwin, D. F. Lovelace, G. H. B. Thompson, and P. R. Selway, “Direct modulation of double-heterostructure lasers at rates up to 1  Gbit/s,” Electron. Lett. 9, 34–35 (1973).
[Crossref]

Goossen, K. W.

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

Gorbenko, V.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Gösele, U.

R. Stengl, T. Tan, and U. Gösele, “A model for the silicon wafer bonding process,” Jpn. J. Appl. Phys. 28, 1735–1741 (1989).
[Crossref]

Gossard, A. C.

Grasse, C.

M. Müller, P. Wolf, T. Gründl, C. Grasse, J. Rosskopf, W. Hofmann, D. Bimberg, and M.-C. Amann, “Energy-efficient 1.3  μm short-cavity VCSELs for 30  Gb/s error-free optical links,” in International Semiconductor Laser Conference (ISLC) (2012), paper PD 1.2.

Grubb, S. G.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Gründl, T.

M. Müller, P. Wolf, T. Gründl, C. Grasse, J. Rosskopf, W. Hofmann, D. Bimberg, and M.-C. Amann, “Energy-efficient 1.3  μm short-cavity VCSELs for 30  Gb/s error-free optical links,” in International Semiconductor Laser Conference (ISLC) (2012), paper PD 1.2.

Guo, W.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Guryanov, G.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11, 990–998 (2005).
[Crossref]

Gustavsson, J.

S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

S. Kumari, J. Gustavsson, E. P. Haglund, J. Bengtsson, A. Larsson, G. Roelkens, and R. Baets, “Design of an 845-nm GaAs vertical-cavity silicon-integrated laser with an intracavity grating for coupling to a SiN waveguide circuit,” IEEE Photon. J. 9, 1504109 (2017).
[Crossref]

Gustavsson, J. S.

E. P. Haglund, S. Kumari, E. Haglund, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “Silicon-integrated hybrid-cavity 850-nm VCSELs by adhesive bonding: impact of bonding interface thickness on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23, 1700109 (2017).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2016).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, G. Roelkens, R. Baets, and A. Larsson, “Silicon-integrated short-wavelength hybrid-cavity VCSEL,” Opt. Express 23, 33634–33640 (2015).
[Crossref]

J. Lavrencik, S. Varughese, J. S. Gustavsson, E. Haglund, A. Larsson, and S. E. Ralph, “Error-free 100  Gbps PAM-4 transmission over 100  m wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (2017), paper W.1.A3.

Gutmann, R. J.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99, 031101 (2006).
[Crossref]

Hagino, H.

Haglund, E.

E. P. Haglund, S. Kumari, E. Haglund, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “Silicon-integrated hybrid-cavity 850-nm VCSELs by adhesive bonding: impact of bonding interface thickness on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23, 1700109 (2017).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2016).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

J. Lavrencik, S. Varughese, J. S. Gustavsson, E. Haglund, A. Larsson, and S. E. Ralph, “Error-free 100  Gbps PAM-4 transmission over 100  m wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (2017), paper W.1.A3.

Haglund, E. P.

S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

S. Kumari, J. Gustavsson, E. P. Haglund, J. Bengtsson, A. Larsson, G. Roelkens, and R. Baets, “Design of an 845-nm GaAs vertical-cavity silicon-integrated laser with an intracavity grating for coupling to a SiN waveguide circuit,” IEEE Photon. J. 9, 1504109 (2017).
[Crossref]

E. P. Haglund, S. Kumari, E. Haglund, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “Silicon-integrated hybrid-cavity 850-nm VCSELs by adhesive bonding: impact of bonding interface thickness on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23, 1700109 (2017).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2016).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, G. Roelkens, R. Baets, and A. Larsson, “Silicon-integrated short-wavelength hybrid-cavity VCSEL,” Opt. Express 23, 33634–33640 (2015).
[Crossref]

Hall, B.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11, 990–998 (2005).
[Crossref]

Hallstein, S.

A. N. AL-Omari, G. P. Carey, S. Hallstein, J. P. Watson, G. Dang, and K. L. Lear, “Low thermal resistance high-speed top-emitting 980-nm VCSELs,” IEEE Photon. Technol. Lett. 18, 1225–1227 (2006).
[Crossref]

Harbison, J. P.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

Harder, Ch.

K. Y. Lau, N. Bar-Chaim, I. Ury, Ch. Harder, and A. Yariv, “Direct amplitude modulation of short-cavity GaAs lasers up to X-band frequencies,” Appl. Phys. Lett. 43, 1–3 (1983).
[Crossref]

Harton, A. V.

Hasebe, K.

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-μm-long active region on Si substrates,” Opt. Express 26, 1268–1277 (2018).
[Crossref]

T. Fujii, K. Takeda, N.-P. Diamantopouloss, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Evaluation of device parameters for membrane lasers on Si fabricated with active-layer bonding followed by epitaxial growth,” IEICE Trans. Electron. E100-C, 196–203 (2017).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, T. Takeda, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33, 1217–1222 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

T. Sato, K. Takeda, A. Shinya, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Photonic crystal lasers for chip-to-chip and on-chip optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 4900410 (2015).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, and T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47, 023001 (2014).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, T. Takeda, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “A few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Integrated on-chip optical links using photonic-crystal lasers and photodetectors with current blocking trenches,” in Optical Fiber Communication Conference (2013), paper OM2J.5.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, M. Notomi, K. Hasebe, and T. Kakitsuka, “28.5-fJ/bit on-chip optical interconnect using monolithically integrated photonic crystal laser and photodetector,” in European Conference and Exhibition on Optical Communication (2012), paper Th.3.B.2.

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Proceedings of European Conference on Lasers and Electro-Optics (2017), paper CK-9.4.

K. Takeda, E. Kanno, T. Fujii, K. Hasebe, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Continuous-wave operation of ultra-short cavity distributed Bragg reflector lasers on Si substrates,” in Compound Semiconductor Week (2016), paper ThD1-2.

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in 42nd European Conference on Optical Communication (2016), paper Th.3.A.2.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

Hasnain, G.

C. J. Chang-Hasnain, Y. A. Wu, G. S. Li, G. Hasnain, K. D. Choquette, C. Caneau, and L. T. Florez, “Low threshold buried heterostructure vertical cavity surface emitting laser,” Appl. Phys. Lett. 63, 1307–1309 (1993).
[Crossref]

Hassan, K.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Hauske, F. N.

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Optical Fiber Communication Conference (2012), paper OW1H.4.

Hayashi, I.

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17, 109–111 (1970).
[Crossref]

Heck, M. J. R.

C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Heroux, J. B.

Hill, M. T.

M. K. Smit, J. J. G. M. van der Tol, and M. T. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6, 1–13 (2012).
[Crossref]

Hill, P.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3  μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[Crossref]

Hiraiwa, K.

K. Takaki, S. Imaia, S. Kamivab, H. Shimizua, Y. Kawakita, K. Hiraiwa, T. Takagia, H. Shimizua, J. Yoshida, T. Ishikawab, N. Tsukijia, and A. Kasukawa, “1060  nm VCSEL for inter-chip optical interconnection,” Proc. SPIE 7952, 795204 (2011).
[Crossref]

Hiraki, T.

T. Hiraki, T. Aihara, H. Nishi, and T. Tsuchizawa, “Deuterated SiN/SiON waveguides on Si platform and their application to C-band WDM filters,” IEEE Photon. J. 9, 2500207 (2017).
[Crossref]

Hiratani, T.

Ho, R.

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

Hofmann, W.

M. Müller, P. Wolf, T. Gründl, C. Grasse, J. Rosskopf, W. Hofmann, D. Bimberg, and M.-C. Amann, “Energy-efficient 1.3  μm short-cavity VCSELs for 30  Gb/s error-free optical links,” in International Semiconductor Laser Conference (ISLC) (2012), paper PD 1.2.

Hogg, R.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Hu, E. L.

N. M. Margalit, D. I. Babic, K. Streubel, R. P. Mirin, R. L. Naone, J. E. Bowers, and E. L. Hu, “Submilliamp long wavelength vertical-cavity lasers,” Electron. Lett. 32, 1675–1677 (1996).
[Crossref]

D. I. Babic, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, Y. Long, and K. Carey, “Room-temperature continuous-wave operation of 1.54-m vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[Crossref]

Hu, M. H.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11, 990–998 (2005).
[Crossref]

Huang, M. C. Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Huang, X.

Huynh, T. N.

Ide, S.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “Uncooled 25  Gbit/s direct modulation of semi-insulating buried-heterostructure1.3  μm AlGaInAs quantum-well DFB lasers,” Electron. Lett. 44, 631–633 (2008).
[Crossref]

Iga, K.

Y. Suematsu and K. Iga, “Semiconductor lasers in photonics,” J. Lightwave Technol. 26, 1132–1144 (2008).
[Crossref]

K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
[Crossref]

F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett. 55, 221–222 (1989).
[Crossref]

K. Iga, Laboratory Notebook (1977).

Ikegami, T.

T. Matsuoka, H. Nagai, Y. Itaya, Y. Noguchi, Y. Suzuki, and T. Ikegami, “CW operation of DFB-BH GaInAsP/InP lasers in 1.5  μm wavelength region,” Electron. Lett. 18, 27–28 (1982).
[Crossref]

T. Ikegami and Y. Suematsu, “Carrier lifetime measurement of a junction laser using direct modulation,” IEEE J. Quantum Electron. 4, 148–151 (1968).
[Crossref]

T. Ikegami and Y. Suematsu, “Resonance-like characteristics of the direct modulation of a junction laser,” Proc. IEEE 55, 122–123 (1967).
[Crossref]

Imaia, S.

K. Takaki, S. Imaia, S. Kamivab, H. Shimizua, Y. Kawakita, K. Hiraiwa, T. Takagia, H. Shimizua, J. Yoshida, T. Ishikawab, N. Tsukijia, and A. Kasukawa, “1060  nm VCSEL for inter-chip optical interconnection,” Proc. SPIE 7952, 795204 (2011).
[Crossref]

Imamura, Y.

Y. Itaya, M. Oishi, M. Nakao, K. Sato, Y. Kondo, and Y. Imamura, “Low-threshold operation of 1.5  μm buried-heterostructure DFB lasers grown entirely by low-pressure MOVPE,” Electron. Lett. 23, 193–194 (1987).
[Crossref]

Inoue, D.

Ishida, S.

Ishii, H.

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Ohno, T. Yoshimatsu, T. Shindo, H. Sanjoh, H. Ishii, S. Matsuo, and M. Itoh, “Monolithically integrated directly modulated DFB laser array with MMI coupler for 100GBASE-LR4 application,” in Optical Fiber Communication Conference (2015), paper Tu3I.2.

Ishikawab, T.

K. Takaki, S. Imaia, S. Kamivab, H. Shimizua, Y. Kawakita, K. Hiraiwa, T. Takagia, H. Shimizua, J. Yoshida, T. Ishikawab, N. Tsukijia, and A. Kasukawa, “1060  nm VCSEL for inter-chip optical interconnection,” Proc. SPIE 7952, 795204 (2011).
[Crossref]

Itabashi, S.

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Park, R. Kou, K. Yamada, and S. Itabashi, “Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structures,” Appl. Phys. Express 3, 102203 (2010).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[Crossref]

Itaya, Y.

Y. Itaya, M. Oishi, M. Nakao, K. Sato, Y. Kondo, and Y. Imamura, “Low-threshold operation of 1.5  μm buried-heterostructure DFB lasers grown entirely by low-pressure MOVPE,” Electron. Lett. 23, 193–194 (1987).
[Crossref]

T. Matsuoka, H. Nagai, Y. Itaya, Y. Noguchi, Y. Suzuki, and T. Ikegami, “CW operation of DFB-BH GaInAsP/InP lasers in 1.5  μm wavelength region,” Electron. Lett. 18, 27–28 (1982).
[Crossref]

Ito, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μmm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

T. Ozeki and T. Ito, “Pulse modulation of DH-(GaAl)As lasers,” IEEE J. Quantum Electron. 9, 388–391 (1973).
[Crossref]

Itoh, M.

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Fujisawa, H. Sanjoh, and M. Itoh, “4 × 25.8  Gbit/s (100  Gbit/s) simultaneous operation of InGaAlAs based DML array monolithically integrated with MMI coupler,” Electron. Lett. 51, 1516–1517 (2015).
[Crossref]

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Ohno, T. Yoshimatsu, T. Shindo, H. Sanjoh, H. Ishii, S. Matsuo, and M. Itoh, “Monolithically integrated directly modulated DFB laser array with MMI coupler for 100GBASE-LR4 application,” in Optical Fiber Communication Conference (2015), paper Tu3I.2.

Itoh, Y.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  μm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
[Crossref]

Iwamoto, S.

Jacobsen, G.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Jaenen, P.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Jan, W.

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

Jewell, J. L.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

Ji, B. L.

T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits 40, 2633–2645 (2005).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Joel, A.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

Johnson, M. T.

S. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
[Crossref]

Jones, R.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

Joyner, C. H.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Jung, D.

Kaiser, W.

J. P. Reithmaier, W. Kaiser, L. Bach, A. Forchel, V. Feies, M. Gioannini, I. Montrosset, T. W. Berg, and B. Tromborg, “Modulation speed enhancement by coupling to higher order resonances: a road towards 40  GHz bandwidth lasers on InP,” in International Conference on Indium Phosphide Related Materials (2005), pp. 118–123.

Kakimoto, S.

Y. Ohkura, N. Yoshida, A. Takemoto, and S. Kakimoto, “Extremely low-threshold 1.3  μm GaInAsP/InP DFB PPIBH laser,” Electron. Lett. 24, 1508–1510 (1988).
[Crossref]

Kakitsuka, T.

T. Fujii, K. Takeda, N.-P. Diamantopouloss, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-μm-long active region on Si substrates,” Opt. Express 26, 1268–1277 (2018).
[Crossref]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Evaluation of device parameters for membrane lasers on Si fabricated with active-layer bonding followed by epitaxial growth,” IEICE Trans. Electron. E100-C, 196–203 (2017).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, T. Takeda, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33, 1217–1222 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

T. Sato, K. Takeda, A. Shinya, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Photonic crystal lasers for chip-to-chip and on-chip optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 4900410 (2015).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, and T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47, 023001 (2014).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, T. Takeda, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “A few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, M. Notomi, K. Hasebe, and T. Kakitsuka, “28.5-fJ/bit on-chip optical interconnect using monolithically integrated photonic crystal laser and photodetector,” in European Conference and Exhibition on Optical Communication (2012), paper Th.3.B.2.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Integrated on-chip optical links using photonic-crystal lasers and photodetectors with current blocking trenches,” in Optical Fiber Communication Conference (2013), paper OM2J.5.

N. P. Diamantopoulos, W. Kobayashi, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “40-km SSMF transmission of 56/64-Gb/s PAM-4 signals using 1.3-μm directly modulated laser and PIN photodiode,” in Advanced Photonic Congress (2017), paper PW2D.4.

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in 42nd European Conference on Optical Communication (2016), paper Th.3.A.2.

N. P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 120-Gbps DMT transmission using a 1.3-μm membrane laser on Si,” in Optical Fiber Communication Conference (2018), paper M2D.5.

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Proceedings of European Conference on Lasers and Electro-Optics (2017), paper CK-9.4.

K. Takeda, E. Kanno, T. Fujii, K. Hasebe, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Continuous-wave operation of ultra-short cavity distributed Bragg reflector lasers on Si substrates,” in Compound Semiconductor Week (2016), paper ThD1-2.

H. Nishi, T. Fujii, N. P. Diamantopoulos, K. Takeda, E. Kanno, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Monolithic integration of an 8-channel directly modulated membrane-laser array and a SiN AWG filter on Si,” in Optical Fiber Communication Conference (2018), paper Th3B.2.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

Kamijoh, T.

H. Wada, Y. Ogawa, and T. Kamijoh, “Electrical characteristics of directly-bonded GaAs and InP,” Appl. Phys. Lett. 62, 738–740 (1993).
[Crossref]

Kamivab, S.

K. Takaki, S. Imaia, S. Kamivab, H. Shimizua, Y. Kawakita, K. Hiraiwa, T. Takagia, H. Shimizua, J. Yoshida, T. Ishikawab, N. Tsukijia, and A. Kasukawa, “1060  nm VCSEL for inter-chip optical interconnection,” Proc. SPIE 7952, 795204 (2011).
[Crossref]

Kanakis, G.

Kanazawa, S.

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Fujisawa, H. Sanjoh, and M. Itoh, “4 × 25.8  Gbit/s (100  Gbit/s) simultaneous operation of InGaAlAs based DML array monolithically integrated with MMI coupler,” Electron. Lett. 51, 1516–1517 (2015).
[Crossref]

W. Kobayashi, T. Fujisawa, S. Kanazawa, and H. Sanjoh, “25  Gbaud/s 4-PAM (50  Gbit/s) modulation and 10  km SMF transmission with 1.3  μm InGaAlAs-based DML,” Electron. Lett. 50, 299–300 (2014).
[Crossref]

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Ohno, T. Yoshimatsu, T. Shindo, H. Sanjoh, H. Ishii, S. Matsuo, and M. Itoh, “Monolithically integrated directly modulated DFB laser array with MMI coupler for 100GBASE-LR4 application,” in Optical Fiber Communication Conference (2015), paper Tu3I.2.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

Kanbe, H.

Y. Yamamoto and H. Kanbe, “Zn diffusion in InxGa1-xAs with ZnAs2 source,” Jpn. J. Appl. Phys. 19, 121–128 (1980).
[Crossref]

Kang, S.-M.

Kanno, E.

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-μm-long active region on Si substrates,” Opt. Express 26, 1268–1277 (2018).
[Crossref]

T. Fujii, K. Takeda, N.-P. Diamantopouloss, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Evaluation of device parameters for membrane lasers on Si fabricated with active-layer bonding followed by epitaxial growth,” IEICE Trans. Electron. E100-C, 196–203 (2017).
[Crossref]

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in 42nd European Conference on Optical Communication (2016), paper Th.3.A.2.

K. Takeda, E. Kanno, T. Fujii, K. Hasebe, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Continuous-wave operation of ultra-short cavity distributed Bragg reflector lasers on Si substrates,” in Compound Semiconductor Week (2016), paper ThD1-2.

H. Nishi, T. Fujii, N. P. Diamantopoulos, K. Takeda, E. Kanno, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Monolithic integration of an 8-channel directly modulated membrane-laser array and a SiN AWG filter on Si,” in Optical Fiber Communication Conference (2018), paper Th3B.2.

Kano, F.

W. Kobayashi, M. Arai, T. Yamanaka, N. Fujiwara, T. Fujisawa, T. Tadokoro, K. Tsuzuki, Y. Kondo, and F. Kano, “Design and fabrication of 10-/40-Gb/s, uncooled electroabsorption modulator integrated DFB laser with butt-joint structure,” J. Lightwave Technol. 28, 164–171 (2010).
[Crossref]

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85ºC,” IEEE Photon. Technol. Lett. 21, 1154–1156 (2009).
[Crossref]

Kasukawa, A.

K. Takaki, S. Imaia, S. Kamivab, H. Shimizua, Y. Kawakita, K. Hiraiwa, T. Takagia, H. Shimizua, J. Yoshida, T. Ishikawab, N. Tsukijia, and A. Kasukawa, “1060  nm VCSEL for inter-chip optical interconnection,” Proc. SPIE 7952, 795204 (2011).
[Crossref]

Kato, M.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Katsurai, H.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

Katumba, A.

Kauffman, M.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Kawaguchi, Y.

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Kawajiri, Y.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

Kawakita, Y.

K. Takaki, S. Imaia, S. Kamivab, H. Shimizua, Y. Kawakita, K. Hiraiwa, T. Takagia, H. Shimizua, J. Yoshida, T. Ishikawab, N. Tsukijia, and A. Kasukawa, “1060  nm VCSEL for inter-chip optical interconnection,” Proc. SPIE 7952, 795204 (2011).
[Crossref]

Keating, B. A.

D. M. Byrne and B. A. Keating, “A laser diode model based on temperature dependent rate equations,” IEEE Photon. Technol. Lett. 1, 356–359 (1989).
[Crossref]

Keyvaninia, S.

Khaleghi, S.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Kikawa, T.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19, 1436–1438 (2007).
[Crossref]

K. Nakahara, T. Tsuchiya, S. Tanaka, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, E. Nomoto, S. Fujisaki, and M. Kudo, “115°C, 12.5-Gb/s direct modulation of 1.3-μm InGaAlAs-MQW RWG DFB laser with notch-free grating structure for datacom applications,” in Optical Fiber Communication Conference (OFC) (2003), paper PD40-1.

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]

Kim, S.-B.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Kim, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Kimura, K.

K. Matsumoto, T. Makino, K. Kimura, and K. Shimomura, “Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate,” J. Cryst. Growth 370, 133–135 (2013).
[Crossref]

Kinoshita, S.

F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett. 55, 221–222 (1989).
[Crossref]

Kise, T.

Kish, F. A.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Kishi, K.

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85ºC,” IEEE Photon. Technol. Lett. 21, 1154–1156 (2009).
[Crossref]

Kishi, T.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

Kita, S.

Kitamura, M.

M. Kitamura, M. Yamaguchi, S. Murata, I. Mito, and K. Kobayashi, “Low-threshold and high temperature single-longitudinal-mode operation of 1.55  μm-band DFB-DC-PBH LDs,” Electron. Lett. 18, 27–28 (1982).
[Crossref]

Kitasawa, F.

S. Tanaka, F. Kitasawa, and J.-I. Nishizawa, “Amplitude modulation of diode laser light in millimeter-wave region,” Proc. IEEE 56, 135–136 (1968).
[Crossref]

Kitatani, T.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

K. Adachi, K. Shinoda, T. Kitatani, T. Fukamachi, Y. Matsuoka, T. Sugawara, and S. Tsuji, “25-Gb/s multichannel 1.3-μm surface-emitting lens integrated DFB laser arrays,” J. Lightwave Technol. 29, 2899–2905 (2011).
[Crossref]

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19, 1436–1438 (2007).
[Crossref]

K. Nakahara, T. Tsuchiya, S. Tanaka, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, E. Nomoto, S. Fujisaki, and M. Kudo, “115°C, 12.5-Gb/s direct modulation of 1.3-μm InGaAlAs-MQW RWG DFB laser with notch-free grating structure for datacom applications,” in Optical Fiber Communication Conference (OFC) (2003), paper PD40-1.

Kjebon, O.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “Two-section InGaAsP DBR-lasers at 1.55-μm wavelength with 31  GHz direct modulation bandwidth,” in International Conference on Indium Phosphide Related Materials (1997), pp. 665–668, paper ThF4.

Kobayashi, K.

M. Kitamura, M. Yamaguchi, S. Murata, I. Mito, and K. Kobayashi, “Low-threshold and high temperature single-longitudinal-mode operation of 1.55  μm-band DFB-DC-PBH LDs,” Electron. Lett. 18, 27–28 (1982).
[Crossref]

K. Utaka, K. Kobayashi, and Y. Suematsu, “Lasing characteristics of GaInAsP/InP integrated twin-guide lasers with first-order distributed Bragg reflectors,” IEEE J. Quantum Electron. 17, 651–658 (1981).
[Crossref]

Kobayashi, W.

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Fujisawa, H. Sanjoh, and M. Itoh, “4 × 25.8  Gbit/s (100  Gbit/s) simultaneous operation of InGaAlAs based DML array monolithically integrated with MMI coupler,” Electron. Lett. 51, 1516–1517 (2015).
[Crossref]

W. Kobayashi, T. Fujisawa, S. Kanazawa, and H. Sanjoh, “25  Gbaud/s 4-PAM (50  Gbit/s) modulation and 10  km SMF transmission with 1.3  μm InGaAlAs-based DML,” Electron. Lett. 50, 299–300 (2014).
[Crossref]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μmm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “A few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

W. Kobayashi, M. Arai, T. Yamanaka, N. Fujiwara, T. Fujisawa, T. Tadokoro, K. Tsuzuki, Y. Kondo, and F. Kano, “Design and fabrication of 10-/40-Gb/s, uncooled electroabsorption modulator integrated DFB laser with butt-joint structure,” J. Lightwave Technol. 28, 164–171 (2010).
[Crossref]

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Ohno, T. Yoshimatsu, T. Shindo, H. Sanjoh, H. Ishii, S. Matsuo, and M. Itoh, “Monolithically integrated directly modulated DFB laser array with MMI coupler for 100GBASE-LR4 application,” in Optical Fiber Communication Conference (2015), paper Tu3I.2.

N. P. Diamantopoulos, W. Kobayashi, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “40-km SSMF transmission of 56/64-Gb/s PAM-4 signals using 1.3-μm directly modulated laser and PIN photodiode,” in Advanced Photonic Congress (2017), paper PW2D.4.

Koch, B. R.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

Kogel, B.

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

Kohtoku, M.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μmm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

Kondo, Y.

W. Kobayashi, M. Arai, T. Yamanaka, N. Fujiwara, T. Fujisawa, T. Tadokoro, K. Tsuzuki, Y. Kondo, and F. Kano, “Design and fabrication of 10-/40-Gb/s, uncooled electroabsorption modulator integrated DFB laser with butt-joint structure,” J. Lightwave Technol. 28, 164–171 (2010).
[Crossref]

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85ºC,” IEEE Photon. Technol. Lett. 21, 1154–1156 (2009).
[Crossref]

T. Sato, Y. Kondo, T. Sekiguchi, and T. Suemasu, “Sb surfactant effect on defect evolution in compressively strained In0.80Ga0.20As quantum well on InP grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 1, 111202 (2008).
[Crossref]

Y. Itaya, M. Oishi, M. Nakao, K. Sato, Y. Kondo, and Y. Imamura, “Low-threshold operation of 1.5  μm buried-heterostructure DFB lasers grown entirely by low-pressure MOVPE,” Electron. Lett. 23, 193–194 (1987).
[Crossref]

Kou, R.

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Park, R. Kou, K. Yamada, and S. Itabashi, “Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structures,” Appl. Phys. Express 3, 102203 (2010).
[Crossref]

Koyama, F.

M. Ahmed, A. Bakry, M. S. Alghamdi, H. Dalir, and F. Koyama, “Enhancing the modulation bandwidth of VCSELs to the millimeter-waveband using strong transverse slow-light feedback,” Opt. Express 23, 15365–15371 (2015).
[Crossref]

H. Dalir and F. Koyama, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance,” Appl. Phys. Express 7, 022102 (2014).
[Crossref]

H. Dalir and F. Koyama, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8, 1075–1081 (2011).
[Crossref]

F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett. 55, 221–222 (1989).
[Crossref]

Kreissl, J.

U. Troppenz, J. Kreissl, M. Mohrle, C. Bornholdt, W. Rhebein, B. Sartorius, I. Woods, and M. Schell, “40  Gbit/s directly modulated lasers: physics and application,” Proc. SPIE 7953, 79530F (2011).
[Crossref]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

Kroemer, H.

H. Kroemer, “A proposed class of heterojunction injection lasers,” Proc. IEEE 51, 1782–1783 (1963).
[Crossref]

Kuchta, D.

D. Kuchta, “High-capacity VCSEL links,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Tu3C.4.

Kuchta, D. M.

D. M. Kuchta, T. N. Huynh, F. E. Doany, L. Schares, C. W. Baks, C. Neumeyr, A. Daly, B. Kogel, J. Rosskopf, and M. Ortsiefer, “Error-free 56  Gb/s NRZ modulation of a 1530-nm VCSEL Link,” J. Lightwave Technol. 34, 3275–3282 (2016).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

Kudo, M.

K. Nakahara, T. Tsuchiya, S. Tanaka, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, E. Nomoto, S. Fujisaki, and M. Kudo, “115°C, 12.5-Gb/s direct modulation of 1.3-μm InGaAlAs-MQW RWG DFB laser with notch-free grating structure for datacom applications,” in Optical Fiber Communication Conference (OFC) (2003), paper PD40-1.

Kumagai, N.

Kumari, S.

S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

S. Kumari, J. Gustavsson, E. P. Haglund, J. Bengtsson, A. Larsson, G. Roelkens, and R. Baets, “Design of an 845-nm GaAs vertical-cavity silicon-integrated laser with an intracavity grating for coupling to a SiN waveguide circuit,” IEEE Photon. J. 9, 1504109 (2017).
[Crossref]

E. P. Haglund, S. Kumari, E. Haglund, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “Silicon-integrated hybrid-cavity 850-nm VCSELs by adhesive bonding: impact of bonding interface thickness on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23, 1700109 (2017).
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, G. Roelkens, R. Baets, and A. Larsson, “Silicon-integrated short-wavelength hybrid-cavity VCSEL,” Opt. Express 23, 33634–33640 (2015).
[Crossref]

Kunert, B.

Kuo, Y.-H.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

Kuramochi, E.

K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, M. Ono, A. Shakoor, E. Kuramochi, and M. Notomi, “Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier,” Optica 3, 483–492 (2016).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, and T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47, 023001 (2014).
[Crossref]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Proceedings of European Conference on Lasers and Electro-Optics (2017), paper CK-9.4.

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Kurokawa, T.

H. Tsuda, T. Nakahara, and T. Kurokawa, “Hybrid-integrated smart pixels for dense optical interconnects,” IEICE Trans. Electron. E84-C, 1771–1777 (2001).

S. Matsuo, K. Tateno, T. Nakahara, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997).
[Crossref]

S. Matsuo, T. Nakahara, K. Tateno, and T. Kurokawa, “Novel technology for hybrid integration of photonic and electronic circuits,” IEEE Photon. Technol. Lett. 8, 1507–1509 (1996).
[Crossref]

Kurosaki, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μmm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

Kwon, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Lambert, D. J. H.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Lanzisera, V.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3  μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[Crossref]

Larisch, G.

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85ºC,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

Larsson, A.

S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

S. Kumari, J. Gustavsson, E. P. Haglund, J. Bengtsson, A. Larsson, G. Roelkens, and R. Baets, “Design of an 845-nm GaAs vertical-cavity silicon-integrated laser with an intracavity grating for coupling to a SiN waveguide circuit,” IEEE Photon. J. 9, 1504109 (2017).
[Crossref]

E. P. Haglund, S. Kumari, E. Haglund, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “Silicon-integrated hybrid-cavity 850-nm VCSELs by adhesive bonding: impact of bonding interface thickness on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23, 1700109 (2017).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2016).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, G. Roelkens, R. Baets, and A. Larsson, “Silicon-integrated short-wavelength hybrid-cavity VCSEL,” Opt. Express 23, 33634–33640 (2015).
[Crossref]

J. Lavrencik, S. Varughese, J. S. Gustavsson, E. Haglund, A. Larsson, and S. E. Ralph, “Error-free 100  Gbps PAM-4 transmission over 100  m wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (2017), paper W.1.A3.

Lau, K. Y.

K. Y. Lau, N. Bar-Chaim, I. Ury, Ch. Harder, and A. Yariv, “Direct amplitude modulation of short-cavity GaAs lasers up to X-band frequencies,” Appl. Phys. Lett. 43, 1–3 (1983).
[Crossref]

Lavine, J. M.

H. Statz, C. L. Tang, and J. M. Lavine, “Spectral output of semiconductor lasers,” J. Appl. Phys. 35, 2581–2585 (1964).
[Crossref]

Lavrencik, J.

J. Lavrencik, S. Varughese, J. S. Gustavsson, E. Haglund, A. Larsson, and S. E. Ralph, “Error-free 100  Gbps PAM-4 transmission over 100  m wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (2017), paper W.1.A3.

Lear, K. L.

A. N. AL-Omari, G. P. Carey, S. Hallstein, J. P. Watson, G. Dang, and K. L. Lear, “Low thermal resistance high-speed top-emitting 980-nm VCSELs,” IEEE Photon. Technol. Lett. 18, 1225–1227 (2006).
[Crossref]

Ledentsov, N. N.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

Lee, A.

Lee, M. L.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]

Lee, Y. H.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

Lee, Y.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Lelarge, F.

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Lexau, J.

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

Li, G.

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

Li, G. S.

C. J. Chang-Hasnain, Y. A. Wu, G. S. Li, G. Hasnain, K. D. Choquette, C. Caneau, and L. T. Florez, “Low threshold buried heterostructure vertical cavity surface emitting laser,” Appl. Phys. Lett. 63, 1307–1309 (1993).
[Crossref]

Li, H.

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85ºC,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

Li, L.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s Optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (OFC) (2013), paper OM3H.1.

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Optical Fiber Communication Conference (2012), paper OW1H.4.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Optical Fiber Communication Conference (2014), paper M2I.5.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (2013), paper OM3H.1.

Li, M.-J.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11, 990–998 (2005).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liang, D.

C. Zhang, D. Liang, and J. E. Bowers, “MOCVD regrowth of InP on hybrid silicon substrate,” Electrochem. Solid State Lett. 2, Q82–Q86 (2013).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

Ling, W. A.

Liu, A. W.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Liu, A. Y.

Liu, B.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s Optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (OFC) (2013), paper OM3H.1.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (2013), paper OM3H.1.

Liu, F.

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Liu, X. S.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11, 990–998 (2005).
[Crossref]

Lively, E.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Long, C. M.

C. M. Long, A. V. Giannopoulos, and K. D. Choquette, “Modified spontaneous emission from laterally injected photonic crystal emitter,” Electron. Lett. 45, 227–228 (2009).
[Crossref]

Long, Y.

D. I. Babic, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, Y. Long, and K. Carey, “Room-temperature continuous-wave operation of 1.54-m vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[Crossref]

Lott, J. A.

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85ºC,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

Louchet, H.

Loup, V.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Lourdudoss, S.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “Two-section InGaAsP DBR-lasers at 1.55-μm wavelength with 31  GHz direct modulation bandwidth,” in International Conference on Indium Phosphide Related Materials (1997), pp. 665–668, paper ThF4.

Lovelace, D. F.

M. Chown, A. R. Goodwin, D. F. Lovelace, G. H. B. Thompson, and P. R. Selway, “Direct modulation of double-heterostructure lasers at rates up to 1  Gbit/s,” Electron. Lett. 9, 34–35 (1973).
[Crossref]

Lu, J.-Q.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99, 031101 (2006).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Luong, H.

T. R. Chen, P. C. Chen, J. Ungar, S. Oh, H. Luong, and N. Bar-Chaim, “Wide temperature range linear DFB lasers at 1.3  μm with very low threshold,” in 15th IEEE International Semiconductor Laser Conference (1996), pp. 169–170, paper Th2.2.

MacDougal, M. H.

G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
[Crossref]

Makino, T.

K. Matsumoto, T. Makino, K. Kimura, and K. Shimomura, “Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate,” J. Cryst. Growth 370, 133–135 (2013).
[Crossref]

Manning, J.

R. Olshansky, C. B. Su, J. Manning, and W. Powazinik, “Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources,” IEEE J. Quantum Electron. 20, 838–854 (1984).
[Crossref]

Margalit, N. M.

N. M. Margalit, D. I. Babic, K. Streubel, R. P. Mirin, R. L. Naone, J. E. Bowers, and E. L. Hu, “Submilliamp long wavelength vertical-cavity lasers,” Electron. Lett. 32, 1675–1677 (1996).
[Crossref]

D. I. Babic, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, Y. Long, and K. Carey, “Room-temperature continuous-wave operation of 1.54-m vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[Crossref]

Mars, D. E.

D. I. Babic, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, Y. Long, and K. Carey, “Room-temperature continuous-wave operation of 1.54-m vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[Crossref]

Martin, A.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh- microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

Martin, M.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Mason, J.

T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits 40, 2633–2645 (2005).
[Crossref]

Mathai, S.

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

Mathis, S. K.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Mathur, A.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Matsuda, M.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21, 1502307 (2015).
[Crossref]

M. Matsuda, T. Simoyama, A. Uetake, S. Okumura, M. Ekawa, and T. Yamamoto, “Uncooled, low-driving-current 25.8  Gbit/s direct modulation using 1.3  μm AlGaInAs MQW distributed-reflector lasers,” Electron. Lett. 48, 450–452 (2012).
[Crossref]

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “Uncooled 25  Gbit/s direct modulation of semi-insulating buried-heterostructure1.3  μm AlGaInAs quantum-well DFB lasers,” Electron. Lett. 44, 631–633 (2008).
[Crossref]

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Optical Fiber Communication Conference (2014), paper M2I.5.

Matsui, Y.

Matsumoto, K.

K. Matsumoto, T. Makino, K. Kimura, and K. Shimomura, “Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate,” J. Cryst. Growth 370, 133–135 (2013).
[Crossref]

Matsuo, S.

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-μm-long active region on Si substrates,” Opt. Express 26, 1268–1277 (2018).
[Crossref]

T. Fujii, K. Takeda, N.-P. Diamantopouloss, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Evaluation of device parameters for membrane lasers on Si fabricated with active-layer bonding followed by epitaxial growth,” IEICE Trans. Electron. E100-C, 196–203 (2017).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, M. Ono, A. Shakoor, E. Kuramochi, and M. Notomi, “Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier,” Optica 3, 483–492 (2016).
[Crossref]

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic integration of InP wire and SiOx waveguides on Si platform,” IEEE Photon. J. 7, 4900308 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, T. Takeda, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33, 1217–1222 (2015).
[Crossref]

T. Sato, K. Takeda, A. Shinya, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Photonic crystal lasers for chip-to-chip and on-chip optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 4900410 (2015).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, and T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47, 023001 (2014).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, T. Takeda, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “A few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

S. Matsuo, K. Tateno, T. Nakahara, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997).
[Crossref]

S. Matsuo, T. Nakahara, K. Tateno, and T. Kurokawa, “Novel technology for hybrid integration of photonic and electronic circuits,” IEEE Photon. Technol. Lett. 8, 1507–1509 (1996).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Integrated on-chip optical links using photonic-crystal lasers and photodetectors with current blocking trenches,” in Optical Fiber Communication Conference (2013), paper OM2J.5.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, M. Notomi, K. Hasebe, and T. Kakitsuka, “28.5-fJ/bit on-chip optical interconnect using monolithically integrated photonic crystal laser and photodetector,” in European Conference and Exhibition on Optical Communication (2012), paper Th.3.B.2.

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Proceedings of European Conference on Lasers and Electro-Optics (2017), paper CK-9.4.

K. Takeda, E. Kanno, T. Fujii, K. Hasebe, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Continuous-wave operation of ultra-short cavity distributed Bragg reflector lasers on Si substrates,” in Compound Semiconductor Week (2016), paper ThD1-2.

N. P. Diamantopoulos, W. Kobayashi, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “40-km SSMF transmission of 56/64-Gb/s PAM-4 signals using 1.3-μm directly modulated laser and PIN photodiode,” in Advanced Photonic Congress (2017), paper PW2D.4.

N. P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 120-Gbps DMT transmission using a 1.3-μm membrane laser on Si,” in Optical Fiber Communication Conference (2018), paper M2D.5.

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in 42nd European Conference on Optical Communication (2016), paper Th.3.A.2.

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Ohno, T. Yoshimatsu, T. Shindo, H. Sanjoh, H. Ishii, S. Matsuo, and M. Itoh, “Monolithically integrated directly modulated DFB laser array with MMI coupler for 100GBASE-LR4 application,” in Optical Fiber Communication Conference (2015), paper Tu3I.2.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

H. Nishi, T. Fujii, N. P. Diamantopoulos, K. Takeda, E. Kanno, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Monolithic integration of an 8-channel directly modulated membrane-laser array and a SiN AWG filter on Si,” in Optical Fiber Communication Conference (2018), paper Th3B.2.

Matsuoka, T.

T. Matsuoka, H. Nagai, Y. Itaya, Y. Noguchi, Y. Suzuki, and T. Ikegami, “CW operation of DFB-BH GaInAsP/InP lasers in 1.5  μm wavelength region,” Electron. Lett. 18, 27–28 (1982).
[Crossref]

Matsuoka, Y.

Matsushima, Y.

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “Room-temperature CW operation of distributed-feedback buried-heterostructure InGaAsP/InP lasers emitting at 1.57  μm,” Electron. Lett. 17, 961–962 (1981).
[Crossref]

Y. Matsushima, K. Sakai, S. Akiba, and T. Yamamoto, “Zn-diffused In0.53Ga0.47As/InP avalanche photodetector,” Appl. Phys. Lett. 35, 466–468 (1979).
[Crossref]

Matthews, J. W.

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth 27, 118–125 (1974).
[Crossref]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

Mehuys, D. G.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Mena, P. V.

Merckling, C.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Meyer, J. R.

I. Vurgaftman and J. R. Meyer, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

Miller, D. A. B.

Min, B.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh- microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

Mirin, R. P.

N. M. Margalit, D. I. Babic, K. Streubel, R. P. Mirin, R. L. Naone, J. E. Bowers, and E. L. Hu, “Submilliamp long wavelength vertical-cavity lasers,” Electron. Lett. 32, 1675–1677 (1996).
[Crossref]

D. I. Babic, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, Y. Long, and K. Carey, “Room-temperature continuous-wave operation of 1.54-m vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[Crossref]

Missey, M. J.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Mitchell, M. L.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Mito, I.

M. Kitamura, M. Yamaguchi, S. Murata, I. Mito, and K. Kobayashi, “Low-threshold and high temperature single-longitudinal-mode operation of 1.55  μm-band DFB-DC-PBH LDs,” Electron. Lett. 18, 27–28 (1982).
[Crossref]

Moeneclaey, B.

A. Abbasi, B. Moeneclaey, J. Verbist, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “56  Gb/s direct modulation of an InP-on-Si DFB laser diode,” in Proceedings IEEE Optical Interconnects Conference (2017), pp. 31–32.

Moeyaert, J.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Mohrle, M.

U. Troppenz, J. Kreissl, M. Mohrle, C. Bornholdt, W. Rhebein, B. Sartorius, I. Woods, and M. Schell, “40  Gbit/s directly modulated lasers: physics and application,” Proc. SPIE 7953, 79530F (2011).
[Crossref]

Monnier, P.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Montrosset, I.

J. P. Reithmaier, W. Kaiser, L. Bach, A. Forchel, V. Feies, M. Gioannini, I. Montrosset, T. W. Berg, and B. Tromborg, “Modulation speed enhancement by coupling to higher order resonances: a road towards 40  GHz bandwidth lasers on InP,” in International Conference on Indium Phosphide Related Materials (2005), pp. 118–123.

Mooij, J. E.

R. H. M. Van De Leur, A. J. G. Schellingerhout, F. Tuinstra, and J. E. Mooij, “Critical thickness for pseudomorphic growth of Si/Ge alloys and superlattices,” J. Appl. Phys. 64, 3043–3050 (1988).
[Crossref]

Morahed, M.

N. Nunoya, M. Nakamura, H. Yasumoto, M. Morahed, I. Fukuda, S. Tamura, and S. Arai, “Sub-milliampere operation of 1.55  μm wavelength high index-coupled buried heterostructure distributed feedback lasers,” Electron. Lett. 36, 1213–1214 (2000).
[Crossref]

Mori, H.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  μm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
[Crossref]

Mori, K.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “Uncooled 25  Gbit/s direct modulation of semi-insulating buried-heterostructure1.3  μm AlGaInAs quantum-well DFB lasers,” Electron. Lett. 44, 631–633 (2008).
[Crossref]

Morikuni, J. J.

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Morkoq, H.

Morthier, G.

Moser, P.

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85ºC,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

Mukaikubo, M.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19, 1436–1438 (2007).
[Crossref]

Müller, M.

M. Müller, P. Wolf, T. Gründl, C. Grasse, J. Rosskopf, W. Hofmann, D. Bimberg, and M.-C. Amann, “Energy-efficient 1.3  μm short-cavity VCSELs for 30  Gb/s error-free optical links,” in International Semiconductor Laser Conference (ISLC) (2012), paper PD 1.2.

Murata, S.

M. Kitamura, M. Yamaguchi, S. Murata, I. Mito, and K. Kobayashi, “Low-threshold and high temperature single-longitudinal-mode operation of 1.55  μm-band DFB-DC-PBH LDs,” Electron. Lett. 18, 27–28 (1982).
[Crossref]

Murfet, P.

T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits 40, 2633–2645 (2005).
[Crossref]

Murthy, S.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Mutig, A.

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85ºC,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

Nada, M.

Nagai, H.

T. Matsuoka, H. Nagai, Y. Itaya, Y. Noguchi, Y. Suzuki, and T. Ikegami, “CW operation of DFB-BH GaInAsP/InP lasers in 1.5  μm wavelength region,” Electron. Lett. 18, 27–28 (1982).
[Crossref]

Nagarajan, R.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Nagatani, M.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

Nakagawa, S.

Nakahara, K.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19, 1436–1438 (2007).
[Crossref]

K. Nakahara, T. Tsuchiya, S. Tanaka, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, E. Nomoto, S. Fujisaki, and M. Kudo, “115°C, 12.5-Gb/s direct modulation of 1.3-μm InGaAlAs-MQW RWG DFB laser with notch-free grating structure for datacom applications,” in Optical Fiber Communication Conference (OFC) (2003), paper PD40-1.

Nakahara, T.

H. Tsuda, T. Nakahara, and T. Kurokawa, “Hybrid-integrated smart pixels for dense optical interconnects,” IEICE Trans. Electron. E84-C, 1771–1777 (2001).

S. Matsuo, K. Tateno, T. Nakahara, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997).
[Crossref]

S. Matsuo, T. Nakahara, K. Tateno, and T. Kurokawa, “Novel technology for hybrid integration of photonic and electronic circuits,” IEEE Photon. Technol. Lett. 8, 1507–1509 (1996).
[Crossref]

Nakamura, M.

N. Nunoya, M. Nakamura, H. Yasumoto, M. Morahed, I. Fukuda, S. Tamura, and S. Arai, “Sub-milliampere operation of 1.55  μm wavelength high index-coupled buried heterostructure distributed feedback lasers,” Electron. Lett. 36, 1213–1214 (2000).
[Crossref]

Nakano, S.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

Nakao, M.

Y. Itaya, M. Oishi, M. Nakao, K. Sato, Y. Kondo, and Y. Imamura, “Low-threshold operation of 1.5  μm buried-heterostructure DFB lasers grown entirely by low-pressure MOVPE,” Electron. Lett. 23, 193–194 (1987).
[Crossref]

Nakao, R.

T. Fujii, K. Takeda, N.-P. Diamantopouloss, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

Nakata, Y.

Naone, R. L.

N. M. Margalit, D. I. Babic, K. Streubel, R. P. Mirin, R. L. Naone, J. E. Bowers, and E. L. Hu, “Submilliamp long wavelength vertical-cavity lasers,” Electron. Lett. 32, 1675–1677 (1996).
[Crossref]

Neumeyr, C.

Niklaus, F.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99, 031101 (2006).
[Crossref]

Nilsson, A. C.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Nilsson, S.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “Two-section InGaAsP DBR-lasers at 1.55-μm wavelength with 31  GHz direct modulation bandwidth,” in International Conference on Indium Phosphide Related Materials (1997), pp. 665–668, paper ThF4.

Nishi, H.

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-μm-long active region on Si substrates,” Opt. Express 26, 1268–1277 (2018).
[Crossref]

T. Fujii, K. Takeda, N.-P. Diamantopouloss, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Evaluation of device parameters for membrane lasers on Si fabricated with active-layer bonding followed by epitaxial growth,” IEICE Trans. Electron. E100-C, 196–203 (2017).
[Crossref]

T. Hiraki, T. Aihara, H. Nishi, and T. Tsuchizawa, “Deuterated SiN/SiON waveguides on Si platform and their application to C-band WDM filters,” IEEE Photon. J. 9, 2500207 (2017).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic integration of InP wire and SiOx waveguides on Si platform,” IEEE Photon. J. 7, 4900308 (2015).
[Crossref]

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Park, R. Kou, K. Yamada, and S. Itabashi, “Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structures,” Appl. Phys. Express 3, 102203 (2010).
[Crossref]

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Proceedings of European Conference on Lasers and Electro-Optics (2017), paper CK-9.4.

N. P. Diamantopoulos, W. Kobayashi, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “40-km SSMF transmission of 56/64-Gb/s PAM-4 signals using 1.3-μm directly modulated laser and PIN photodiode,” in Advanced Photonic Congress (2017), paper PW2D.4.

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in 42nd European Conference on Optical Communication (2016), paper Th.3.A.2.

N. P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 120-Gbps DMT transmission using a 1.3-μm membrane laser on Si,” in Optical Fiber Communication Conference (2018), paper M2D.5.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

H. Nishi, T. Fujii, N. P. Diamantopoulos, K. Takeda, E. Kanno, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Monolithic integration of an 8-channel directly modulated membrane-laser array and a SiN AWG filter on Si,” in Optical Fiber Communication Conference (2018), paper Th3B.2.

Nishihara, M.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Optical Fiber Communication Conference (2014), paper M2I.5.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (2013), paper OM3H.1.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s Optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (OFC) (2013), paper OM3H.1.

Nishiyama, N.

D. Inoue, T. Hiratani, K. Fukuda, T. Tomiyasu, T. Amemiya, N. Nishiyama, and S. Arai, “High-modulation efficiency operation of GaInAsP/InP membrane distributed feedback laser on Si substrate,” Opt. Express 23, 29024–29031 (2015).
[Crossref]

T. Shindo, M. Futami, K. Doi, T. Amemiya, N. Nishiyama, and S. Arai, “Design of lateral-current-injection-type membrane distributed-feedback lasers for on-chip optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 19, 1502009 (2013).
[Crossref]

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11, 990–998 (2005).
[Crossref]

Nishizawa, J.-I.

S. Tanaka, F. Kitasawa, and J.-I. Nishizawa, “Amplitude modulation of diode laser light in millimeter-wave region,” Proc. IEEE 56, 135–136 (1968).
[Crossref]

Noda, S.

Noguchi, Y.

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6, 479–481 (1994).
[Crossref]

T. Matsuoka, H. Nagai, Y. Itaya, Y. Noguchi, Y. Suzuki, and T. Ikegami, “CW operation of DFB-BH GaInAsP/InP lasers in 1.5  μm wavelength region,” Electron. Lett. 18, 27–28 (1982).
[Crossref]

Nomoto, E.

K. Nakahara, T. Tsuchiya, S. Tanaka, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, E. Nomoto, S. Fujisaki, and M. Kudo, “115°C, 12.5-Gb/s direct modulation of 1.3-μm InGaAlAs-MQW RWG DFB laser with notch-free grating structure for datacom applications,” in Optical Fiber Communication Conference (OFC) (2003), paper PD40-1.

Nomura, M.

Norman, J.

Nosaka, H.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

Notomi, M.

K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, M. Ono, A. Shakoor, E. Kuramochi, and M. Notomi, “Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier,” Optica 3, 483–492 (2016).
[Crossref]

T. Sato, K. Takeda, A. Shinya, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Photonic crystal lasers for chip-to-chip and on-chip optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 4900410 (2015).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, and T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47, 023001 (2014).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “A few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, M. Notomi, K. Hasebe, and T. Kakitsuka, “28.5-fJ/bit on-chip optical interconnect using monolithically integrated photonic crystal laser and photodetector,” in European Conference and Exhibition on Optical Communication (2012), paper Th.3.B.2.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Integrated on-chip optical links using photonic-crystal lasers and photodetectors with current blocking trenches,” in Optical Fiber Communication Conference (2013), paper OM2J.5.

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Proceedings of European Conference on Lasers and Electro-Optics (2017), paper CK-9.4.

Nötzel, R.

Nozaki, K.

K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, M. Ono, A. Shakoor, E. Kuramochi, and M. Notomi, “Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier,” Optica 3, 483–492 (2016).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, and T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47, 023001 (2014).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “A few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15, 7506–7514 (2007).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Integrated on-chip optical links using photonic-crystal lasers and photodetectors with current blocking trenches,” in Optical Fiber Communication Conference (2013), paper OM2J.5.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, M. Notomi, K. Hasebe, and T. Kakitsuka, “28.5-fJ/bit on-chip optical interconnect using monolithically integrated photonic crystal laser and photodetector,” in European Conference and Exhibition on Optical Communication (2012), paper Th.3.B.2.

Nunoya, N.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1361–1366 (2003).
[Crossref]

N. Nunoya, M. Nakamura, H. Yasumoto, M. Morahed, I. Fukuda, S. Tamura, and S. Arai, “Sub-milliampere operation of 1.55  μm wavelength high index-coupled buried heterostructure distributed feedback lasers,” Electron. Lett. 36, 1213–1214 (2000).
[Crossref]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]

Oe, K.

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6, 479–481 (1994).
[Crossref]

Ogawa, I.

Ogawa, Y.

H. Wada, Y. Ogawa, and T. Kamijoh, “Electrical characteristics of directly-bonded GaAs and InP,” Appl. Phys. Lett. 62, 738–740 (1993).
[Crossref]

Ogita, S.

M. Yamada, S. Ogita, M. Yamagishi, and K. Tabata, “Anisotropy and broadening of optical gain in a GaAs/AIGaAs multiquantum-well laser,” IEEE J. Quantum Electron. 21, 640–645 (1985).
[Crossref]

Oguma, M.

Oh, S.

T. R. Chen, P. C. Chen, J. Ungar, S. Oh, H. Luong, and N. Bar-Chaim, “Wide temperature range linear DFB lasers at 1.3  μm with very low threshold,” in 15th IEEE International Semiconductor Laser Conference (1996), pp. 169–170, paper Th2.2.

Ohkura, Y.

Y. Ohkura, N. Yoshida, A. Takemoto, and S. Kakimoto, “Extremely low-threshold 1.3  μm GaInAsP/InP DFB PPIBH laser,” Electron. Lett. 24, 1508–1510 (1988).
[Crossref]

Ohno, T.

T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, H. Takahashi, and E. Yoshida, “Compact and high-sensitivity 100-Gb/s (4 × 25  Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt. Express 20, B393–B398 (2012).
[Crossref]

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Ohno, T. Yoshimatsu, T. Shindo, H. Sanjoh, H. Ishii, S. Matsuo, and M. Itoh, “Monolithically integrated directly modulated DFB laser array with MMI coupler for 100GBASE-LR4 application,” in Optical Fiber Communication Conference (2015), paper Tu3I.2.

Oishi, M.

Y. Itaya, M. Oishi, M. Nakao, K. Sato, Y. Kondo, and Y. Imamura, “Low-threshold operation of 1.5  μm buried-heterostructure DFB lasers grown entirely by low-pressure MOVPE,” Electron. Lett. 23, 193–194 (1987).
[Crossref]

Okai, M.

M. Okai, “Spectral characteristics of distributed feedback semiconductor lasers and their improvements by corrugation-pitch-modulated structure,” J. Appl. Phys. 75, 1–29 (1994).
[Crossref]

Okamoto, T.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1361–1366 (2003).
[Crossref]

Okayama, H.

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100  GHz spacing Si arrayed- waveguide grating using minimal terrace at slab-array interface,” Electron. Lett. 52, 1545–1546 (2016).
[Crossref]

Okumura, S.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21, 1502307 (2015).
[Crossref]

M. Matsuda, T. Simoyama, A. Uetake, S. Okumura, M. Ekawa, and T. Yamamoto, “Uncooled, low-driving-current 25.8  Gbit/s direct modulation using 1.3  μm AlGaInAs MQW distributed-reflector lasers,” Electron. Lett. 48, 450–452 (2012).
[Crossref]

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “Uncooled 25  Gbit/s direct modulation of semi-insulating buried-heterostructure1.3  μm AlGaInAs quantum-well DFB lasers,” Electron. Lett. 44, 631–633 (2008).
[Crossref]

Olivier, S.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Olshansky, R.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3  μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[Crossref]

R. Olshansky, C. B. Su, J. Manning, and W. Powazinik, “Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources,” IEEE J. Quantum Electron. 20, 838–854 (1984).
[Crossref]

Onawa, Y.

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100  GHz spacing Si arrayed- waveguide grating using minimal terrace at slab-array interface,” Electron. Lett. 52, 1545–1546 (2016).
[Crossref]

Ono, M.

Onodera, Y.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1361–1366 (2003).
[Crossref]

Oohashi, H.

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85ºC,” IEEE Photon. Technol. Lett. 21, 1154–1156 (2009).
[Crossref]

Ortsiefer, M.

Otsubo, K.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “Uncooled 25  Gbit/s direct modulation of semi-insulating buried-heterostructure1.3  μm AlGaInAs quantum-well DFB lasers,” Electron. Lett. 44, 631–633 (2008).
[Crossref]

Oxenløwe, L. K.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Ozeki, T.

T. Ozeki and T. Ito, “Pulse modulation of DH-(GaAl)As lasers,” IEEE J. Quantum Electron. 9, 388–391 (1973).
[Crossref]

Ozolins, O.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]

Pang, X.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Paniccia, M. J.

Panish, M. B.

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17, 109–111 (1970).
[Crossref]

Pantouvaki, M.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Park, H.

Park, H.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Park, S.

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Park, R. Kou, K. Yamada, and S. Itabashi, “Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structures,” Appl. Phys. Express 3, 102203 (2010).
[Crossref]

Parker, B.

T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits 40, 2633–2645 (2005).
[Crossref]

Patil, D.

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Perkins, D.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Peters, F. H.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Peters, J.

Peucheret, C.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Pham, T.

Pin, J. B.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Pinguet, T.

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

Piprek, J.

J. Piprek, Semiconductor Optoelectronic Devices, Introduction to Physics and Simulations (Academic, 2003).

Pleumeekers, J. L.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Popov, S.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Portnoi, E. L.

Zh. I. Alferov, V. M. Andreev, E. L. Portnoi, and M. K. Trukan, “AlAs-GaAs heterojunction injection lasers with a low room-temperature threshold,” Fiz. Tekh. Poluprovodn. 3, 1328–1332 (1969).

Powazinik, W.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3  μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[Crossref]

R. Olshansky, C. B. Su, J. Manning, and W. Powazinik, “Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources,” IEEE J. Quantum Electron. 20, 838–854 (1984).
[Crossref]

Pozzi, F.

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Proesel, J. E.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

Pu, R.

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL’s bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11, 1554–1556 (1999).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 37–38 (1946).
[Crossref]

Raineri, F.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Raj, R.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Ralph, S. E.

J. Lavrencik, S. Varughese, J. S. Gustavsson, E. Haglund, A. Larsson, and S. E. Ralph, “Error-free 100  Gbps PAM-4 transmission over 100  m wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (2017), paper W.1.A3.

Rao, Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Rasmussen, J.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Optical Fiber Communication Conference (2014), paper M2I.5.

Rasmussen, J. C.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (2013), paper OM3H.1.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s Optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (OFC) (2013), paper OM3H.1.

Reffle, M.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Reithmaier, J. P.

J. P. Reithmaier, W. Kaiser, L. Bach, A. Forchel, V. Feies, M. Gioannini, I. Montrosset, T. W. Berg, and B. Tromborg, “Modulation speed enhancement by coupling to higher order resonances: a road towards 40  GHz bandwidth lasers on InP,” in International Conference on Indium Phosphide Related Materials (2005), pp. 118–123.

Rhebein, W.

U. Troppenz, J. Kreissl, M. Mohrle, C. Bornholdt, W. Rhebein, B. Sartorius, I. Woods, and M. Schell, “40  Gbit/s directly modulated lasers: physics and application,” Proc. SPIE 7953, 79530F (2011).
[Crossref]

Rhee, W.

T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits 40, 2633–2645 (2005).
[Crossref]

Rochat, N.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Roelkens, G.

S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

S. Kumari, J. Gustavsson, E. P. Haglund, J. Bengtsson, A. Larsson, G. Roelkens, and R. Baets, “Design of an 845-nm GaAs vertical-cavity silicon-integrated laser with an intracavity grating for coupling to a SiN waveguide circuit,” IEEE Photon. J. 9, 1504109 (2017).
[Crossref]

E. P. Haglund, S. Kumari, E. Haglund, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “Silicon-integrated hybrid-cavity 850-nm VCSELs by adhesive bonding: impact of bonding interface thickness on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23, 1700109 (2017).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

A. Abbasi, C. Spatharakis, G. Kanakis, N. Sequeira André, H. Louchet, A. Katumba, J. Verbist, H. Avramopoulos, P. Bienstman, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “High speed direct modulation of a heterogeneously integrated InP/SOI DFB laser,” J. Lightwave Technol. 34, 1683–1687 (2016).
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, G. Roelkens, R. Baets, and A. Larsson, “Silicon-integrated short-wavelength hybrid-cavity VCSEL,” Opt. Express 23, 33634–33640 (2015).
[Crossref]

A. Abbasi, J. Verbist, J. Van Kerrebrouck, F. Lelarge, G.-H. Duan, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “28  Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser,” Opt. Express 23, 26479–26485 (2015).
[Crossref]

G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express 14, 8154–8159 (2006).
[Crossref]

A. Abbasi, B. Moeneclaey, J. Verbist, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “56  Gb/s direct modulation of an InP-on-Si DFB laser diode,” in Proceedings IEEE Optical Interconnects Conference (2017), pp. 31–32.

Ros, F. D.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Rossell, M. D.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (2015), paper T173.

Rosskopf, J.

D. M. Kuchta, T. N. Huynh, F. E. Doany, L. Schares, C. W. Baks, C. Neumeyr, A. Daly, B. Kogel, J. Rosskopf, and M. Ortsiefer, “Error-free 56  Gb/s NRZ modulation of a 1530-nm VCSEL Link,” J. Lightwave Technol. 34, 3275–3282 (2016).
[Crossref]

M. Müller, P. Wolf, T. Gründl, C. Grasse, J. Rosskopf, W. Hofmann, D. Bimberg, and M.-C. Amann, “Energy-efficient 1.3  μm short-cavity VCSELs for 30  Gb/s error-free optical links,” in International Semiconductor Laser Conference (ISLC) (2012), paper PD 1.2.

Roxlo, C.

Rozier, R.

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

Rylyakov, A. V.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

J. B. Heroux, T. Kise, M. Funabashi, T. Aoki, C. L. Schow, A. V. Rylyakov, and S. Nakagawa, “Energy-efficient 1060-nm optical link operating up to 28  Gb/s,” J. Lightwave Technol. 33, 733–740 (2015).
[Crossref]

Sagnes, I.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Sakai, A.

M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999).
[Crossref]

Sakai, K.

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “Room-temperature CW operation of distributed-feedback buried-heterostructure InGaAsP/InP lasers emitting at 1.57  μm,” Electron. Lett. 17, 961–962 (1981).
[Crossref]

Y. Matsushima, K. Sakai, S. Akiba, and T. Yamamoto, “Zn-diffused In0.53Ga0.47As/InP avalanche photodetector,” Appl. Phys. Lett. 35, 466–468 (1979).
[Crossref]

Sakai, S.

S. Sakai, T. Soga, M. Takeyasu, and M. Umeno, “Room-temperature laser operation of AlGaAs/GaAs double heterostructures fabricated on Si substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 48, 413–414 (1986).
[Crossref]

Sakai, Y.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

Sakuma, Y.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

Salvatore, R. A.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Sanchez, D.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

Sanchez, E.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Sanjoh, H.

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Fujisawa, H. Sanjoh, and M. Itoh, “4 × 25.8  Gbit/s (100  Gbit/s) simultaneous operation of InGaAlAs based DML array monolithically integrated with MMI coupler,” Electron. Lett. 51, 1516–1517 (2015).
[Crossref]

W. Kobayashi, T. Fujisawa, S. Kanazawa, and H. Sanjoh, “25  Gbaud/s 4-PAM (50  Gbit/s) modulation and 10  km SMF transmission with 1.3  μm InGaAlAs-based DML,” Electron. Lett. 50, 299–300 (2014).
[Crossref]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μmm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Ohno, T. Yoshimatsu, T. Shindo, H. Sanjoh, H. Ishii, S. Matsuo, and M. Itoh, “Monolithically integrated directly modulated DFB laser array with MMI coupler for 100GBASE-LR4 application,” in Optical Fiber Communication Conference (2015), paper Tu3I.2.

Sano, D.

T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron. 9, 1340–1346 (2003).
[Crossref]

Santis, C. T.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
[Crossref]

Sartorius, B.

U. Troppenz, J. Kreissl, M. Mohrle, C. Bornholdt, W. Rhebein, B. Sartorius, I. Woods, and M. Schell, “40  Gbit/s directly modulated lasers: physics and application,” Proc. SPIE 7953, 79530F (2011).
[Crossref]

Sasaki, H.

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100  GHz spacing Si arrayed- waveguide grating using minimal terrace at slab-array interface,” Electron. Lett. 52, 1545–1546 (2016).
[Crossref]

Sato, K.

Y. Itaya, M. Oishi, M. Nakao, K. Sato, Y. Kondo, and Y. Imamura, “Low-threshold operation of 1.5  μm buried-heterostructure DFB lasers grown entirely by low-pressure MOVPE,” Electron. Lett. 23, 193–194 (1987).
[Crossref]

Sato, T.

T. Sato, K. Takeda, A. Shinya, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Photonic crystal lasers for chip-to-chip and on-chip optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 4900410 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, and T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47, 023001 (2014).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “A few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

T. Sato, Y. Kondo, T. Sekiguchi, and T. Suemasu, “Sb surfactant effect on defect evolution in compressively strained In0.80Ga0.20As quantum well on InP grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 1, 111202 (2008).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, M. Notomi, K. Hasebe, and T. Kakitsuka, “28.5-fJ/bit on-chip optical interconnect using monolithically integrated photonic crystal laser and photodetector,” in European Conference and Exhibition on Optical Communication (2012), paper Th.3.B.2.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Integrated on-chip optical links using photonic-crystal lasers and photodetectors with current blocking trenches,” in Optical Fiber Communication Conference (2013), paper OM2J.5.

Schares, L.

Schatz, R.

Y. Matsui, R. Schatz, T. Pham, W. A. Ling, G. Carey, H. M. Daghighian, D. Adams, T. Sudo, and C. Roxlo, “55  GHz bandwidth distributed reflector laser,” J. Lightwave Technol. 35, 397–403 (2017).
[Crossref]

M. Chacinski and R. Schatz, “Impact of losses in the Bragg section on the dynamics of detuned loaded DBR lasers,” IEEE J. Quantum Electron. 46, 1360–1367 (2010).
[Crossref]

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “Two-section InGaAsP DBR-lasers at 1.55-μm wavelength with 31  GHz direct modulation bandwidth,” in International Conference on Indium Phosphide Related Materials (1997), pp. 665–668, paper ThF4.

Schell, M.

U. Troppenz, J. Kreissl, M. Mohrle, C. Bornholdt, W. Rhebein, B. Sartorius, I. Woods, and M. Schell, “40  Gbit/s directly modulated lasers: physics and application,” Proc. SPIE 7953, 79530F (2011).
[Crossref]

Schellingerhout, A. J. G.

R. H. M. Van De Leur, A. J. G. Schellingerhout, F. Tuinstra, and J. E. Mooij, “Critical thickness for pseudomorphic growth of Si/Ge alloys and superlattices,” J. Appl. Phys. 64, 3043–3050 (1988).
[Crossref]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

Schneider, R. P.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Schoke, D.

Schoke, D. M.

Schow, C. L.

J. B. Heroux, T. Kise, M. Funabashi, T. Aoki, C. L. Schow, A. V. Rylyakov, and S. Nakagawa, “Energy-efficient 1060-nm optical link operating up to 28  Gb/s,” J. Lightwave Technol. 33, 733–740 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

Schwetman, H.

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

Seeds, A.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Segawa, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Sekiguchi, T.

T. Sato, Y. Kondo, T. Sekiguchi, and T. Suemasu, “Sb surfactant effect on defect evolution in compressively strained In0.80Ga0.20As quantum well on InP grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 1, 111202 (2008).
[Crossref]

Selander, K.

T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits 40, 2633–2645 (2005).
[Crossref]

Selway, P. R.

M. Chown, A. R. Goodwin, D. F. Lovelace, G. H. B. Thompson, and P. R. Selway, “Direct modulation of double-heterostructure lasers at rates up to 1  Gbit/s,” Electron. Lett. 9, 34–35 (1973).
[Crossref]

Sequeira André, N.

Shakoor, A.

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

Shen, A.

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Shi, Y.

Shibata, Y.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μmm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

Shikama, K.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

Shimbo, M.

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[Crossref]

Shimizua, H.

K. Takaki, S. Imaia, S. Kamivab, H. Shimizua, Y. Kawakita, K. Hiraiwa, T. Takagia, H. Shimizua, J. Yoshida, T. Ishikawab, N. Tsukijia, and A. Kasukawa, “1060  nm VCSEL for inter-chip optical interconnection,” Proc. SPIE 7952, 795204 (2011).
[Crossref]

K. Takaki, S. Imaia, S. Kamivab, H. Shimizua, Y. Kawakita, K. Hiraiwa, T. Takagia, H. Shimizua, J. Yoshida, T. Ishikawab, N. Tsukijia, and A. Kasukawa, “1060  nm VCSEL for inter-chip optical interconnection,” Proc. SPIE 7952, 795204 (2011).
[Crossref]

Shimomura, K.

K. Matsumoto, T. Makino, K. Kimura, and K. Shimomura, “Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate,” J. Cryst. Growth 370, 133–135 (2013).
[Crossref]

Shimura, D.

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100  GHz spacing Si arrayed- waveguide grating using minimal terrace at slab-array interface,” Electron. Lett. 52, 1545–1546 (2016).
[Crossref]

Shindo, T.

T. Shindo, M. Futami, K. Doi, T. Amemiya, N. Nishiyama, and S. Arai, “Design of lateral-current-injection-type membrane distributed-feedback lasers for on-chip optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 19, 1502009 (2013).
[Crossref]

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Ohno, T. Yoshimatsu, T. Shindo, H. Sanjoh, H. Ishii, S. Matsuo, and M. Itoh, “Monolithically integrated directly modulated DFB laser array with MMI coupler for 100GBASE-LR4 application,” in Optical Fiber Communication Conference (2015), paper Tu3I.2.

Shinoda, K.

K. Adachi, K. Shinoda, T. Kitatani, T. Fukamachi, Y. Matsuoka, T. Sugawara, and S. Tsuji, “25-Gb/s multichannel 1.3-μm surface-emitting lens integrated DFB laser arrays,” J. Lightwave Technol. 29, 2899–2905 (2011).
[Crossref]

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19, 1436–1438 (2007).
[Crossref]

K. Nakahara, T. Tsuchiya, S. Tanaka, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, E. Nomoto, S. Fujisaki, and M. Kudo, “115°C, 12.5-Gb/s direct modulation of 1.3-μm InGaAlAs-MQW RWG DFB laser with notch-free grating structure for datacom applications,” in Optical Fiber Communication Conference (OFC) (2003), paper PD40-1.

Shinojima, H.

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Park, R. Kou, K. Yamada, and S. Itabashi, “Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structures,” Appl. Phys. Express 3, 102203 (2010).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[Crossref]

Shinya, A.

T. Sato, K. Takeda, A. Shinya, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Photonic crystal lasers for chip-to-chip and on-chip optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 4900410 (2015).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, and T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47, 023001 (2014).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “A few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, M. Notomi, K. Hasebe, and T. Kakitsuka, “28.5-fJ/bit on-chip optical interconnect using monolithically integrated photonic crystal laser and photodetector,” in European Conference and Exhibition on Optical Communication (2012), paper Th.3.B.2.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Integrated on-chip optical links using photonic-crystal lasers and photodetectors with current blocking trenches,” in Optical Fiber Communication Conference (2013), paper OM2J.5.

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Proceedings of European Conference on Lasers and Electro-Optics (2017), paper CK-9.4.

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Shuurmans, M. F. H.

R. Eppenga, M. F. H. Shuurmans, and S. Colack, “New k.p theory for GaAs/Ga1-xAlxAs-type quantum wells,” Phys. Rev. B 36, 1554–1564 (1987).
[Crossref]

Simoyama, T.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21, 1502307 (2015).
[Crossref]

M. Matsuda, T. Simoyama, A. Uetake, S. Okumura, M. Ekawa, and T. Yamamoto, “Uncooled, low-driving-current 25.8  Gbit/s direct modulation using 1.3  μm AlGaInAs MQW distributed-reflector lasers,” Electron. Lett. 48, 450–452 (2012).
[Crossref]

Simpanen, E.

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

Siriani, D. F.

S. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
[Crossref]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Smit, M.

Smit, M. K.

M. K. Smit, J. J. G. M. van der Tol, and M. T. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6, 1–13 (2012).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Soenen, W.

Soga, T.

S. Sakai, T. Soga, M. Takeyasu, and M. Umeno, “Room-temperature laser operation of AlGaAs/GaAs double heterostructures fabricated on Si substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 48, 413–414 (1986).
[Crossref]

Song, B.-S.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

R. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
[Crossref]

Sorin, W. V.

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

Sorna, M.

T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits 40, 2633–2645 (2005).
[Crossref]

Sousa, M.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (2015), paper T173.

Spatharakis, C.

Spiga, S.

Srinivasan, S.

Stalnacke, B.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “Two-section InGaAsP DBR-lasers at 1.55-μm wavelength with 31  GHz direct modulation bandwidth,” in International Conference on Indium Phosphide Related Materials (1997), pp. 665–668, paper ThF4.

Statz, H.

H. Statz, C. L. Tang, and J. M. Lavine, “Spectral output of semiconductor lasers,” J. Appl. Phys. 35, 2581–2585 (1964).
[Crossref]

Steger, S. T.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
[Crossref]

Stemme, G.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99, 031101 (2006).
[Crossref]

Stengl, R.

R. Stengl, T. Tan, and U. Gösele, “A model for the silicon wafer bonding process,” Jpn. J. Appl. Phys. 28, 1735–1741 (1989).
[Crossref]

Stojanovic, N.

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Optical Fiber Communication Conference (2012), paper OW1H.4.

Streubel, K.

N. M. Margalit, D. I. Babic, K. Streubel, R. P. Mirin, R. L. Naone, J. E. Bowers, and E. L. Hu, “Submilliamp long wavelength vertical-cavity lasers,” Electron. Lett. 32, 1675–1677 (1996).
[Crossref]

D. I. Babic, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, Y. Long, and K. Carey, “Room-temperature continuous-wave operation of 1.54-m vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[Crossref]

Su, C. B.

R. Olshansky, C. B. Su, J. Manning, and W. Powazinik, “Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources,” IEEE J. Quantum Electron. 20, 838–854 (1984).
[Crossref]

Suda, D. A.

N. Bewtra, D. A. Suda, G. L. Tan, F. Chatenoud, and J. M. Xu, “Modeling of quantum-well lasers with electro-opto-thermal interaction,” IEEE J. Sel. Top. Quantum Electron. 1, 331–340 (1995).
[Crossref]

Sudo, T.

Suemasu, T.

T. Sato, Y. Kondo, T. Sekiguchi, and T. Suemasu, “Sb surfactant effect on defect evolution in compressively strained In0.80Ga0.20As quantum well on InP grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 1, 111202 (2008).
[Crossref]

Suematsu, Y.

Y. Suematsu and K. Iga, “Semiconductor lasers in photonics,” J. Lightwave Technol. 26, 1132–1144 (2008).
[Crossref]

M. Asada and Y. Suematsu, “Measurement of spontaneous emission efficiency and nonradiative recombination in 1.58-μm wavelength GaInAsP/InP crystals,” Appl. Phys. Lett. 41, 353–355 (1982).
[Crossref]

K. Utaka, K. Kobayashi, and Y. Suematsu, “Lasing characteristics of GaInAsP/InP integrated twin-guide lasers with first-order distributed Bragg reflectors,” IEEE J. Quantum Electron. 17, 651–658 (1981).
[Crossref]

T. Ikegami and Y. Suematsu, “Carrier lifetime measurement of a junction laser using direct modulation,” IEEE J. Quantum Electron. 4, 148–151 (1968).
[Crossref]

T. Ikegami and Y. Suematsu, “Resonance-like characteristics of the direct modulation of a junction laser,” Proc. IEEE 55, 122–123 (1967).
[Crossref]

Y. Suematsu and M. Yamada, “Transverse mode control in semiconductor laser,” in Proceedings of IEEE Semiconductor Laser Conference (1972), pp. 305–310.

Sugawara, T.

Sugo, M.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  μm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
[Crossref]

Sumski, S.

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17, 109–111 (1970).
[Crossref]

Suzuki, Y.

T. Matsuoka, H. Nagai, Y. Itaya, Y. Noguchi, Y. Suzuki, and T. Ikegami, “CW operation of DFB-BH GaInAsP/InP lasers in 1.5  μm wavelength region,” Electron. Lett. 18, 27–28 (1982).
[Crossref]

Tabata, K.

M. Yamada, S. Ogita, M. Yamagishi, and K. Tabata, “Anisotropy and broadening of optical gain in a GaAs/AIGaAs multiquantum-well laser,” IEEE J. Quantum Electron. 21, 640–645 (1985).
[Crossref]

Tachikawa, M.

M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  μm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
[Crossref]

Tadokoro, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μmm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

W. Kobayashi, M. Arai, T. Yamanaka, N. Fujiwara, T. Fujisawa, T. Tadokoro, K. Tsuzuki, Y. Kondo, and F. Kano, “Design and fabrication of 10-/40-Gb/s, uncooled electroabsorption modulator integrated DFB laser with butt-joint structure,” J. Lightwave Technol. 28, 164–171 (2010).
[Crossref]

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85ºC,” IEEE Photon. Technol. Lett. 21, 1154–1156 (2009).
[Crossref]

Taillaert, D.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Takabayashi, K.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21, 1502307 (2015).
[Crossref]

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Optical Fiber Communication Conference (2014), paper M2I.5.

Takada, K.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “Uncooled 25  Gbit/s direct modulation of semi-insulating buried-heterostructure1.3  μm AlGaInAs quantum-well DFB lasers,” Electron. Lett. 44, 631–633 (2008).
[Crossref]

Takagia, T.

K. Takaki, S. Imaia, S. Kamivab, H. Shimizua, Y. Kawakita, K. Hiraiwa, T. Takagia, H. Shimizua, J. Yoshida, T. Ishikawab, N. Tsukijia, and A. Kasukawa, “1060  nm VCSEL for inter-chip optical interconnection,” Proc. SPIE 7952, 795204 (2011).
[Crossref]

Takahara, T.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (2013), paper OM3H.1.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Optical Fiber Communication Conference (2014), paper M2I.5.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s Optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (OFC) (2013), paper OM3H.1.

Takahashi, H.

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100  GHz spacing Si arrayed- waveguide grating using minimal terrace at slab-array interface,” Electron. Lett. 52, 1545–1546 (2016).
[Crossref]

T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, H. Takahashi, and E. Yoshida, “Compact and high-sensitivity 100-Gb/s (4 × 25  Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt. Express 20, B393–B398 (2012).
[Crossref]

Takahashi, T.

T. Takahashi and Y. Arakawa, “Nonlinear gain effects in quantum well, quantum well wire, and quantum well box lasers,” IEEE J. Quantum Electron. 27, 1824–1829 (1991).
[Crossref]

Takahashi, Y.

Takaki, K.

K. Takaki, S. Imaia, S. Kamivab, H. Shimizua, Y. Kawakita, K. Hiraiwa, T. Takagia, H. Shimizua, J. Yoshida, T. Ishikawab, N. Tsukijia, and A. Kasukawa, “1060  nm VCSEL for inter-chip optical interconnection,” Proc. SPIE 7952, 795204 (2011).
[Crossref]

Takeda, K.

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-μm-long active region on Si substrates,” Opt. Express 26, 1268–1277 (2018).
[Crossref]

T. Fujii, K. Takeda, N.-P. Diamantopouloss, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Evaluation of device parameters for membrane lasers on Si fabricated with active-layer bonding followed by epitaxial growth,” IEICE Trans. Electron. E100-C, 196–203 (2017).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, M. Ono, A. Shakoor, E. Kuramochi, and M. Notomi, “Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier,” Optica 3, 483–492 (2016).
[Crossref]

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic integration of InP wire and SiOx waveguides on Si platform,” IEEE Photon. J. 7, 4900308 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

T. Sato, K. Takeda, A. Shinya, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Photonic crystal lasers for chip-to-chip and on-chip optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 4900410 (2015).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, and T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47, 023001 (2014).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “A few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Proceedings of European Conference on Lasers and Electro-Optics (2017), paper CK-9.4.

K. Takeda, E. Kanno, T. Fujii, K. Hasebe, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Continuous-wave operation of ultra-short cavity distributed Bragg reflector lasers on Si substrates,” in Compound Semiconductor Week (2016), paper ThD1-2.

N. P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 120-Gbps DMT transmission using a 1.3-μm membrane laser on Si,” in Optical Fiber Communication Conference (2018), paper M2D.5.

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in 42nd European Conference on Optical Communication (2016), paper Th.3.A.2.

N. P. Diamantopoulos, W. Kobayashi, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “40-km SSMF transmission of 56/64-Gb/s PAM-4 signals using 1.3-μm directly modulated laser and PIN photodiode,” in Advanced Photonic Congress (2017), paper PW2D.4.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Integrated on-chip optical links using photonic-crystal lasers and photodetectors with current blocking trenches,” in Optical Fiber Communication Conference (2013), paper OM2J.5.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, M. Notomi, K. Hasebe, and T. Kakitsuka, “28.5-fJ/bit on-chip optical interconnect using monolithically integrated photonic crystal laser and photodetector,” in European Conference and Exhibition on Optical Communication (2012), paper Th.3.B.2.

H. Nishi, T. Fujii, N. P. Diamantopoulos, K. Takeda, E. Kanno, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Monolithic integration of an 8-channel directly modulated membrane-laser array and a SiN AWG filter on Si,” in Optical Fiber Communication Conference (2018), paper Th3B.2.

Takeda, T.

Takemoto, A.

Y. Ohkura, N. Yoshida, A. Takemoto, and S. Kakimoto, “Extremely low-threshold 1.3  μm GaInAsP/InP DFB PPIBH laser,” Electron. Lett. 24, 1508–1510 (1988).
[Crossref]

Takeyasu, M.

S. Sakai, T. Soga, M. Takeyasu, and M. Umeno, “Room-temperature laser operation of AlGaAs/GaAs double heterostructures fabricated on Si substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 48, 413–414 (1986).
[Crossref]

Tamura, S.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1361–1366 (2003).
[Crossref]

N. Nunoya, M. Nakamura, H. Yasumoto, M. Morahed, I. Fukuda, S. Tamura, and S. Arai, “Sub-milliampere operation of 1.55  μm wavelength high index-coupled buried heterostructure distributed feedback lasers,” Electron. Lett. 36, 1213–1214 (2000).
[Crossref]

Tan, G. L.

N. Bewtra, D. A. Suda, G. L. Tan, F. Chatenoud, and J. M. Xu, “Modeling of quantum-well lasers with electro-opto-thermal interaction,” IEEE J. Sel. Top. Quantum Electron. 1, 331–340 (1995).
[Crossref]

Tan, M. P.

S. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
[Crossref]

Tan, M. R.

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

Tan, T.

R. Stengl, T. Tan, and U. Gösele, “A model for the silicon wafer bonding process,” Jpn. J. Appl. Phys. 28, 1735–1741 (1989).
[Crossref]

Tanabe, T.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]

Tanaka, H.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “Uncooled 25  Gbit/s direct modulation of semi-insulating buried-heterostructure1.3  μm AlGaInAs quantum-well DFB lasers,” Electron. Lett. 44, 631–633 (2008).
[Crossref]

Tanaka, S.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

S. Tanaka, F. Kitasawa, and J.-I. Nishizawa, “Amplitude modulation of diode laser light in millimeter-wave region,” Proc. IEEE 56, 135–136 (1968).
[Crossref]

K. Nakahara, T. Tsuchiya, S. Tanaka, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, E. Nomoto, S. Fujisaki, and M. Kudo, “115°C, 12.5-Gb/s direct modulation of 1.3-μm InGaAlAs-MQW RWG DFB laser with notch-free grating structure for datacom applications,” in Optical Fiber Communication Conference (OFC) (2003), paper PD40-1.

Tanaka, T.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s Optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (OFC) (2013), paper OM3H.1.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (2013), paper OM3H.1.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Optical Fiber Communication Conference (2014), paper M2I.5.

Tanaka, Y.

Tang, C. L.

H. Statz, C. L. Tang, and J. M. Lavine, “Spectral output of semiconductor lasers,” J. Appl. Phys. 35, 2581–2585 (1964).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Tang, Y.

C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Taniguchi, T.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19, 1436–1438 (2007).
[Crossref]

K. Nakahara, T. Tsuchiya, S. Tanaka, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, E. Nomoto, S. Fujisaki, and M. Kudo, “115°C, 12.5-Gb/s direct modulation of 1.3-μm InGaAlAs-MQW RWG DFB laser with notch-free grating structure for datacom applications,” in Optical Fiber Communication Conference (OFC) (2003), paper PD40-1.

Taniyama, H.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, and T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47, 023001 (2014).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “A few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011).
[Crossref]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Integrated on-chip optical links using photonic-crystal lasers and photodetectors with current blocking trenches,” in Optical Fiber Communication Conference (2013), paper OM2J.5.

Tanzawa, K.

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[Crossref]

Tao, Z.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s Optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (OFC) (2013), paper OM3H.1.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (2013), paper OM3H.1.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Optical Fiber Communication Conference (2014), paper M2I.5.

Tateno, K.

S. Matsuo, K. Tateno, T. Nakahara, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997).
[Crossref]

S. Matsuo, T. Nakahara, K. Tateno, and T. Kurokawa, “Novel technology for hybrid integration of photonic and electronic circuits,” IEEE Photon. Technol. Lett. 8, 1507–1509 (1996).
[Crossref]

Taylor, R. B.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Thompson, G. H. B.

M. Chown, A. R. Goodwin, D. F. Lovelace, G. H. B. Thompson, and P. R. Selway, “Direct modulation of double-heterostructure lasers at rates up to 1  Gbit/s,” Electron. Lett. 9, 34–35 (1973).
[Crossref]

Tian, B.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Tomiyasu, T.

Tromborg, B.

J. P. Reithmaier, W. Kaiser, L. Bach, A. Forchel, V. Feies, M. Gioannini, I. Montrosset, T. W. Berg, and B. Tromborg, “Modulation speed enhancement by coupling to higher order resonances: a road towards 40  GHz bandwidth lasers on InP,” in International Conference on Indium Phosphide Related Materials (2005), pp. 118–123.

Troppenz, U.

U. Troppenz, J. Kreissl, M. Mohrle, C. Bornholdt, W. Rhebein, B. Sartorius, I. Woods, and M. Schell, “40  Gbit/s directly modulated lasers: physics and application,” Proc. SPIE 7953, 79530F (2011).
[Crossref]

Trukan, M. K.

Zh. I. Alferov, V. M. Andreev, E. L. Portnoi, and M. K. Trukan, “AlAs-GaAs heterojunction injection lasers with a low room-temperature threshold,” Fiz. Tekh. Poluprovodn. 3, 1328–1332 (1969).

Tsuchiya, T.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19, 1436–1438 (2007).
[Crossref]

K. Nakahara, T. Tsuchiya, S. Tanaka, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, E. Nomoto, S. Fujisaki, and M. Kudo, “115°C, 12.5-Gb/s direct modulation of 1.3-μm InGaAlAs-MQW RWG DFB laser with notch-free grating structure for datacom applications,” in Optical Fiber Communication Conference (OFC) (2003), paper PD40-1.

Tsuchizawa, T.

T. Hiraki, T. Aihara, H. Nishi, and T. Tsuchizawa, “Deuterated SiN/SiON waveguides on Si platform and their application to C-band WDM filters,” IEEE Photon. J. 9, 2500207 (2017).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic integration of InP wire and SiOx waveguides on Si platform,” IEEE Photon. J. 7, 4900308 (2015).
[Crossref]

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Park, R. Kou, K. Yamada, and S. Itabashi, “Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structures,” Appl. Phys. Express 3, 102203 (2010).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Proceedings of European Conference on Lasers and Electro-Optics (2017), paper CK-9.4.

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in 42nd European Conference on Optical Communication (2016), paper Th.3.A.2.

H. Nishi, T. Fujii, N. P. Diamantopoulos, K. Takeda, E. Kanno, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Monolithic integration of an 8-channel directly modulated membrane-laser array and a SiN AWG filter on Si,” in Optical Fiber Communication Conference (2018), paper Th3B.2.

Tsuda, H.

H. Tsuda, T. Nakahara, and T. Kurokawa, “Hybrid-integrated smart pixels for dense optical interconnects,” IEICE Trans. Electron. E84-C, 1771–1777 (2001).

Tsuji, S.

Tsukijia, N.

K. Takaki, S. Imaia, S. Kamivab, H. Shimizua, Y. Kawakita, K. Hiraiwa, T. Takagia, H. Shimizua, J. Yoshida, T. Ishikawab, N. Tsukijia, and A. Kasukawa, “1060  nm VCSEL for inter-chip optical interconnection,” Proc. SPIE 7952, 795204 (2011).
[Crossref]

Tsuzuki, K.

Tucker, R. S.

R. S. Tucker, J. M. Wiesenfeld, P. M. Downey, and J. E. Bowers, “Propagation delays and transition times in pulse-modulated semiconductor lasers,” Appl. Phys. Lett. 48, 1707–1709 (1986).
[Crossref]

Tuinstra, F.

R. H. M. Van De Leur, A. J. G. Schellingerhout, F. Tuinstra, and J. E. Mooij, “Critical thickness for pseudomorphic growth of Si/Ge alloys and superlattices,” J. Appl. Phys. 64, 3043–3050 (1988).
[Crossref]

Tutu, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Uccelli, E.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (2015), paper T173.

Ueda, Y.

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Fujisawa, H. Sanjoh, and M. Itoh, “4 × 25.8  Gbit/s (100  Gbit/s) simultaneous operation of InGaAlAs based DML array monolithically integrated with MMI coupler,” Electron. Lett. 51, 1516–1517 (2015).
[Crossref]

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Ohno, T. Yoshimatsu, T. Shindo, H. Sanjoh, H. Ishii, S. Matsuo, and M. Itoh, “Monolithically integrated directly modulated DFB laser array with MMI coupler for 100GBASE-LR4 application,” in Optical Fiber Communication Conference (2015), paper Tu3I.2.

Uetake, A.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21, 1502307 (2015).
[Crossref]

M. Matsuda, T. Simoyama, A. Uetake, S. Okumura, M. Ekawa, and T. Yamamoto, “Uncooled, low-driving-current 25.8  Gbit/s direct modulation using 1.3  μm AlGaInAs MQW distributed-reflector lasers,” Electron. Lett. 48, 450–452 (2012).
[Crossref]

Umeno, M.

S. Sakai, T. Soga, M. Takeyasu, and M. Umeno, “Room-temperature laser operation of AlGaAs/GaAs double heterostructures fabricated on Si substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 48, 413–414 (1986).
[Crossref]

Ungar, J.

T. R. Chen, P. C. Chen, J. Ungar, S. Oh, H. Luong, and N. Bar-Chaim, “Wide temperature range linear DFB lasers at 1.3  μm with very low threshold,” in 15th IEEE International Semiconductor Laser Conference (1996), pp. 169–170, paper Th2.2.

Ury, I.

K. Y. Lau, N. Bar-Chaim, I. Ury, Ch. Harder, and A. Yariv, “Direct amplitude modulation of short-cavity GaAs lasers up to X-band frequencies,” Appl. Phys. Lett. 43, 1–3 (1983).
[Crossref]

Ushigome, R.

M. Fujita, R. Ushigome, and T. Baba, “Continuous wave lasing in GalnAsP microdisk injection laser with threshold current of 40  μA,” Electron. Lett. 36, 790–791 (2000).
[Crossref]

Utaka, K.

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “Room-temperature CW operation of distributed-feedback buried-heterostructure InGaAsP/InP lasers emitting at 1.57  μm,” Electron. Lett. 17, 961–962 (1981).
[Crossref]

K. Utaka, K. Kobayashi, and Y. Suematsu, “Lasing characteristics of GaInAsP/InP integrated twin-guide lasers with first-order distributed Bragg reflectors,” IEEE J. Quantum Electron. 17, 651–658 (1981).
[Crossref]

Vahala, K. J.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh- microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

Van Campenhout, J.

Van De Leur, R. H. M.

R. H. M. Van De Leur, A. J. G. Schellingerhout, F. Tuinstra, and J. E. Mooij, “Critical thickness for pseudomorphic growth of Si/Ge alloys and superlattices,” J. Appl. Phys. 64, 3043–3050 (1988).
[Crossref]

van der Tol, J. J. G. M.

M. K. Smit, J. J. G. M. van der Tol, and M. T. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6, 1–13 (2012).
[Crossref]

Van Kerrebrouck, J.

Van Leeuwen, M. F.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Van Thourhout, D.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express 14, 8154–8159 (2006).
[Crossref]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Varughese, S.

J. Lavrencik, S. Varughese, J. S. Gustavsson, E. Haglund, A. Larsson, and S. E. Ralph, “Error-free 100  Gbps PAM-4 transmission over 100  m wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (2017), paper W.1.A3.

Vasilyev, A.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
[Crossref]

Verbist, J.

Vilenchik, Y.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
[Crossref]

Vizioz, C.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Vlasov, Y.

Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), S67–S72 (2012).
[Crossref]

Vurgaftman, I.

I. Vurgaftman and J. R. Meyer, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

Wada, H.

H. Wada, Y. Ogawa, and T. Kamijoh, “Electrical characteristics of directly-bonded GaAs and InP,” Appl. Phys. Lett. 62, 738–740 (1993).
[Crossref]

Wakayama, Y.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

Wang, H.

Wang, T.

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Wang, Z.

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Wanlass, M. W.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413–5415 (2003).
[Crossref]

Watanabe, K.

Watanabe, T.

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Park, R. Kou, K. Yamada, and S. Itabashi, “Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structures,” Appl. Phys. Express 3, 102203 (2010).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Watson, J. P.

A. N. AL-Omari, G. P. Carey, S. Hallstein, J. P. Watson, G. Dang, and K. L. Lear, “Low thermal resistance high-speed top-emitting 980-nm VCSELs,” IEEE Photon. Technol. Lett. 18, 1225–1227 (2006).
[Crossref]

Webjorn, J.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Welch, D. F.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Westbergh, P.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2016).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, G. Roelkens, R. Baets, and A. Larsson, “Silicon-integrated short-wavelength hybrid-cavity VCSEL,” Opt. Express 23, 33634–33640 (2015).
[Crossref]

Wiaux, V.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Wiesenfeld, J. M.

R. S. Tucker, J. M. Wiesenfeld, P. M. Downey, and J. E. Bowers, “Propagation delays and transition times in pulse-modulated semiconductor lasers,” Appl. Phys. Lett. 48, 1707–1709 (1986).
[Crossref]

Willner, A. E.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Wilmsen, C. W.

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL’s bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11, 1554–1556 (1999).
[Crossref]

Wolf, P.

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85ºC,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

M. Müller, P. Wolf, T. Gründl, C. Grasse, J. Rosskopf, W. Hofmann, D. Bimberg, and M.-C. Amann, “Energy-efficient 1.3  μm short-cavity VCSELs for 30  Gb/s error-free optical links,” in International Semiconductor Laser Conference (ISLC) (2012), paper PD 1.2.

Woods, I.

U. Troppenz, J. Kreissl, M. Mohrle, C. Bornholdt, W. Rhebein, B. Sartorius, I. Woods, and M. Schell, “40  Gbit/s directly modulated lasers: physics and application,” Proc. SPIE 7953, 79530F (2011).
[Crossref]

Worland, D. P.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Wouters, J.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Wu, Y. A.

C. J. Chang-Hasnain, Y. A. Wu, G. S. Li, G. Hasnain, K. D. Choquette, C. Caneau, and L. T. Florez, “Low threshold buried heterostructure vertical cavity surface emitting laser,” Appl. Phys. Lett. 63, 1307–1309 (1993).
[Crossref]

Wyatt, K. W.

Xiao, Z.

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Optical Fiber Communication Conference (2012), paper OW1H.4.

Xie, C.

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Optical Fiber Communication Conference (2012), paper OW1H.4.

Xiong, Q.

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Optical Fiber Communication Conference (2012), paper OW1H.4.

Xu, J.

Xu, J. M.

N. Bewtra, D. A. Suda, G. L. Tan, F. Chatenoud, and J. M. Xu, “Modeling of quantum-well lasers with electro-opto-thermal interaction,” IEEE J. Sel. Top. Quantum Electron. 1, 331–340 (1995).
[Crossref]

Xu, X.

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Optical Fiber Communication Conference (2012), paper OW1H.4.

Yaegashi, H.

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100  GHz spacing Si arrayed- waveguide grating using minimal terrace at slab-array interface,” Electron. Lett. 52, 1545–1546 (2016).
[Crossref]

Yamada, K.

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic integration of InP wire and SiOx waveguides on Si platform,” IEEE Photon. J. 7, 4900308 (2015).
[Crossref]

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Park, R. Kou, K. Yamada, and S. Itabashi, “Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structures,” Appl. Phys. Express 3, 102203 (2010).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Yamada, M.

M. Yamada, S. Ogita, M. Yamagishi, and K. Tabata, “Anisotropy and broadening of optical gain in a GaAs/AIGaAs multiquantum-well laser,” IEEE J. Quantum Electron. 21, 640–645 (1985).
[Crossref]

Y. Suematsu and M. Yamada, “Transverse mode control in semiconductor laser,” in Proceedings of IEEE Semiconductor Laser Conference (1972), pp. 305–310.

Yamagishi, M.

M. Yamada, S. Ogita, M. Yamagishi, and K. Tabata, “Anisotropy and broadening of optical gain in a GaAs/AIGaAs multiquantum-well laser,” IEEE J. Quantum Electron. 21, 640–645 (1985).
[Crossref]

Yamaguchi, M.

M. Kitamura, M. Yamaguchi, S. Murata, I. Mito, and K. Kobayashi, “Low-threshold and high temperature single-longitudinal-mode operation of 1.55  μm-band DFB-DC-PBH LDs,” Electron. Lett. 18, 27–28 (1982).
[Crossref]

Yamamoto, M.

M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  μm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
[Crossref]

Yamamoto, T.

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-μm-long active region on Si substrates,” Opt. Express 26, 1268–1277 (2018).
[Crossref]

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Evaluation of device parameters for membrane lasers on Si fabricated with active-layer bonding followed by epitaxial growth,” IEICE Trans. Electron. E100-C, 196–203 (2017).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21, 1502307 (2015).
[Crossref]

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic integration of InP wire and SiOx waveguides on Si platform,” IEEE Photon. J. 7, 4900308 (2015).
[Crossref]

M. Matsuda, T. Simoyama, A. Uetake, S. Okumura, M. Ekawa, and T. Yamamoto, “Uncooled, low-driving-current 25.8  Gbit/s direct modulation using 1.3  μm AlGaInAs MQW distributed-reflector lasers,” Electron. Lett. 48, 450–452 (2012).
[Crossref]

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “Uncooled 25  Gbit/s direct modulation of semi-insulating buried-heterostructure1.3  μm AlGaInAs quantum-well DFB lasers,” Electron. Lett. 44, 631–633 (2008).
[Crossref]

Y. Matsushima, K. Sakai, S. Akiba, and T. Yamamoto, “Zn-diffused In0.53Ga0.47As/InP avalanche photodetector,” Appl. Phys. Lett. 35, 466–468 (1979).
[Crossref]

K. Takeda, E. Kanno, T. Fujii, K. Hasebe, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Continuous-wave operation of ultra-short cavity distributed Bragg reflector lasers on Si substrates,” in Compound Semiconductor Week (2016), paper ThD1-2.

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in 42nd European Conference on Optical Communication (2016), paper Th.3.A.2.

Yamamoto, Y.

Y. Yamamoto and H. Kanbe, “Zn diffusion in InxGa1-xAs with ZnAs2 source,” Jpn. J. Appl. Phys. 19, 121–128 (1980).
[Crossref]

Yamanaka, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μmm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

W. Kobayashi, M. Arai, T. Yamanaka, N. Fujiwara, T. Fujisawa, T. Tadokoro, K. Tsuzuki, Y. Kondo, and F. Kano, “Design and fabrication of 10-/40-Gb/s, uncooled electroabsorption modulator integrated DFB laser with butt-joint structure,” J. Lightwave Technol. 28, 164–171 (2010).
[Crossref]

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85ºC,” IEEE Photon. Technol. Lett. 21, 1154–1156 (2009).
[Crossref]

Yamazaki, T.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1361–1366 (2003).
[Crossref]

Yan, W.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s Optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (OFC) (2013), paper OM3H.1.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Optical Fiber Communication Conference (2014), paper M2I.5.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (2013), paper OM3H.1.

Yang, G. M.

G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
[Crossref]

Yang, J.-K.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Yang, W.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Yariv, A.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]

H. Z. Chen, A. Ghaffari, H. Wang, H. Morkoq, and A. Yariv, “Continuous-wave operation of extremely low-threshold GaAs/AlGaAs broad-area injection lasers on (100) Si substrates at room temperature,” Opt. Lett. 12, 812–813 (1987).
[Crossref]

Y. Arakawa and A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 21, 1666–1674 (1985).
[Crossref]

K. Y. Lau, N. Bar-Chaim, I. Ury, Ch. Harder, and A. Yariv, “Direct amplitude modulation of short-cavity GaAs lasers up to X-band frequencies,” Appl. Phys. Lett. 43, 1–3 (1983).
[Crossref]

Yasumoto, H.

N. Nunoya, M. Nakamura, H. Yasumoto, M. Morahed, I. Fukuda, S. Tamura, and S. Arai, “Sub-milliampere operation of 1.55  μm wavelength high index-coupled buried heterostructure distributed feedback lasers,” Electron. Lett. 36, 1213–1214 (2000).
[Crossref]

Ye, Z.

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

Yin, X.

Yokoyama, H.

Yoshida, E.

Yoshida, J.

K. Takaki, S. Imaia, S. Kamivab, H. Shimizua, Y. Kawakita, K. Hiraiwa, T. Takagia, H. Shimizua, J. Yoshida, T. Ishikawab, N. Tsukijia, and A. Kasukawa, “1060  nm VCSEL for inter-chip optical interconnection,” Proc. SPIE 7952, 795204 (2011).
[Crossref]

Yoshida, N.

Y. Ohkura, N. Yoshida, A. Takemoto, and S. Kakimoto, “Extremely low-threshold 1.3  μm GaInAsP/InP DFB PPIBH laser,” Electron. Lett. 24, 1508–1510 (1988).
[Crossref]

Yoshimatsu, T.

T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, H. Takahashi, and E. Yoshida, “Compact and high-sensitivity 100-Gb/s (4 × 25  Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt. Express 20, B393–B398 (2012).
[Crossref]

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Ohno, T. Yoshimatsu, T. Shindo, H. Sanjoh, H. Ishii, S. Matsuo, and M. Itoh, “Monolithically integrated directly modulated DFB laser array with MMI coupler for 100GBASE-LR4 application,” in Optical Fiber Communication Conference (2015), paper Tu3I.2.

Young, B.

Yu, F.

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Optical Fiber Communication Conference (2012), paper OW1H.4.

Zah, C. E.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11, 990–998 (2005).
[Crossref]

Zahler, J. M.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413–5415 (2003).
[Crossref]

Zhang, C.

C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

C. Zhang, D. Liang, and J. E. Bowers, “MOCVD regrowth of InP on hybrid silicon substrate,” Electrochem. Solid State Lett. 2, Q82–Q86 (2013).
[Crossref]

Zheng, X.

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

Ziari, M.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

Zier, S.

T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits 40, 2633–2645 (2005).
[Crossref]

Ziyadi, M.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Appl. Phys. Express (3)

T. Sato, Y. Kondo, T. Sekiguchi, and T. Suemasu, “Sb surfactant effect on defect evolution in compressively strained In0.80Ga0.20As quantum well on InP grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 1, 111202 (2008).
[Crossref]

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Park, R. Kou, K. Yamada, and S. Itabashi, “Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structures,” Appl. Phys. Express 3, 102203 (2010).
[Crossref]

H. Dalir and F. Koyama, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance,” Appl. Phys. Express 7, 022102 (2014).
[Crossref]

Appl. Phys. Lett. (17)

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413–5415 (2003).
[Crossref]

S. Sakai, T. Soga, M. Takeyasu, and M. Umeno, “Room-temperature laser operation of AlGaAs/GaAs double heterostructures fabricated on Si substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 48, 413–414 (1986).
[Crossref]

R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, “Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300  mm wafers for next generation non planar devices,” Appl. Phys. Lett. 104, 262103 (2014).
[Crossref]

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17, 109–111 (1970).
[Crossref]

R. S. Geels and L. A. Coldren, “Submilliamp threshold vertical-cavity laser diodes,” Appl. Phys. Lett. 57, 1605–1607 (1990).
[Crossref]

M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  μm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
[Crossref]

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

H. Wada, Y. Ogawa, and T. Kamijoh, “Electrical characteristics of directly-bonded GaAs and InP,” Appl. Phys. Lett. 62, 738–740 (1993).
[Crossref]

K. Y. Lau, N. Bar-Chaim, I. Ury, Ch. Harder, and A. Yariv, “Direct amplitude modulation of short-cavity GaAs lasers up to X-band frequencies,” Appl. Phys. Lett. 43, 1–3 (1983).
[Crossref]

R. S. Tucker, J. M. Wiesenfeld, P. M. Downey, and J. E. Bowers, “Propagation delays and transition times in pulse-modulated semiconductor lasers,” Appl. Phys. Lett. 48, 1707–1709 (1986).
[Crossref]

M. Asada and Y. Suematsu, “Measurement of spontaneous emission efficiency and nonradiative recombination in 1.58-μm wavelength GaInAsP/InP crystals,” Appl. Phys. Lett. 41, 353–355 (1982).
[Crossref]

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh- microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Y. Matsushima, K. Sakai, S. Akiba, and T. Yamamoto, “Zn-diffused In0.53Ga0.47As/InP avalanche photodetector,” Appl. Phys. Lett. 35, 466–468 (1979).
[Crossref]

F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett. 55, 221–222 (1989).
[Crossref]

C. J. Chang-Hasnain, Y. A. Wu, G. S. Li, G. Hasnain, K. D. Choquette, C. Caneau, and L. T. Florez, “Low threshold buried heterostructure vertical cavity surface emitting laser,” Appl. Phys. Lett. 63, 1307–1309 (1993).
[Crossref]

Electrochem. Solid State Lett. (1)

C. Zhang, D. Liang, and J. E. Bowers, “MOCVD regrowth of InP on hybrid silicon substrate,” Electrochem. Solid State Lett. 2, Q82–Q86 (2013).
[Crossref]

Electron. Lett. (24)

N. Nunoya, M. Nakamura, H. Yasumoto, M. Morahed, I. Fukuda, S. Tamura, and S. Arai, “Sub-milliampere operation of 1.55  μm wavelength high index-coupled buried heterostructure distributed feedback lasers,” Electron. Lett. 36, 1213–1214 (2000).
[Crossref]

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Fujisawa, H. Sanjoh, and M. Itoh, “4 × 25.8  Gbit/s (100  Gbit/s) simultaneous operation of InGaAlAs based DML array monolithically integrated with MMI coupler,” Electron. Lett. 51, 1516–1517 (2015).
[Crossref]

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100  GHz spacing Si arrayed- waveguide grating using minimal terrace at slab-array interface,” Electron. Lett. 52, 1545–1546 (2016).
[Crossref]

G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation,” Electron. Lett. 31, 886–888 (1995).
[Crossref]

N. M. Margalit, D. I. Babic, K. Streubel, R. P. Mirin, R. L. Naone, J. E. Bowers, and E. L. Hu, “Submilliamp long wavelength vertical-cavity lasers,” Electron. Lett. 32, 1675–1677 (1996).
[Crossref]

M. Fujita, R. Ushigome, and T. Baba, “Continuous wave lasing in GalnAsP microdisk injection laser with threshold current of 40  μA,” Electron. Lett. 36, 790–791 (2000).
[Crossref]

M. Matsuda, T. Simoyama, A. Uetake, S. Okumura, M. Ekawa, and T. Yamamoto, “Uncooled, low-driving-current 25.8  Gbit/s direct modulation using 1.3  μm AlGaInAs MQW distributed-reflector lasers,” Electron. Lett. 48, 450–452 (2012).
[Crossref]

M. Kitamura, M. Yamaguchi, S. Murata, I. Mito, and K. Kobayashi, “Low-threshold and high temperature single-longitudinal-mode operation of 1.55  μm-band DFB-DC-PBH LDs,” Electron. Lett. 18, 27–28 (1982).
[Crossref]

Y. Itaya, M. Oishi, M. Nakao, K. Sato, Y. Kondo, and Y. Imamura, “Low-threshold operation of 1.5  μm buried-heterostructure DFB lasers grown entirely by low-pressure MOVPE,” Electron. Lett. 23, 193–194 (1987).
[Crossref]

Y. Ohkura, N. Yoshida, A. Takemoto, and S. Kakimoto, “Extremely low-threshold 1.3  μm GaInAsP/InP DFB PPIBH laser,” Electron. Lett. 24, 1508–1510 (1988).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85ºC,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “Uncooled 25  Gbit/s direct modulation of semi-insulating buried-heterostructure1.3  μm AlGaInAs quantum-well DFB lasers,” Electron. Lett. 44, 631–633 (2008).
[Crossref]

W. Kobayashi, T. Fujisawa, S. Kanazawa, and H. Sanjoh, “25  Gbaud/s 4-PAM (50  Gbit/s) modulation and 10  km SMF transmission with 1.3  μm InGaAlAs-based DML,” Electron. Lett. 50, 299–300 (2014).
[Crossref]

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400  Gbit/s (10 channel × 40  Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 347–349 (2005).
[Crossref]

S. Matsuo, K. Tateno, T. Nakahara, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

C. M. Long, A. V. Giannopoulos, and K. D. Choquette, “Modified spontaneous emission from laterally injected photonic crystal emitter,” Electron. Lett. 45, 227–228 (2009).
[Crossref]

M. Chown, A. R. Goodwin, D. F. Lovelace, G. H. B. Thompson, and P. R. Selway, “Direct modulation of double-heterostructure lasers at rates up to 1  Gbit/s,” Electron. Lett. 9, 34–35 (1973).
[Crossref]

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “Room-temperature CW operation of distributed-feedback buried-heterostructure InGaAsP/InP lasers emitting at 1.57  μm,” Electron. Lett. 17, 961–962 (1981).
[Crossref]

T. Matsuoka, H. Nagai, Y. Itaya, Y. Noguchi, Y. Suzuki, and T. Ikegami, “CW operation of DFB-BH GaInAsP/InP lasers in 1.5  μm wavelength region,” Electron. Lett. 18, 27–28 (1982).
[Crossref]

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

Fiz. Tekh. Poluprovodn. (1)

Zh. I. Alferov, V. M. Andreev, E. L. Portnoi, and M. K. Trukan, “AlAs-GaAs heterojunction injection lasers with a low room-temperature threshold,” Fiz. Tekh. Poluprovodn. 3, 1328–1332 (1969).

IEEE Commun. Mag. (1)

Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), S67–S72 (2012).
[Crossref]

IEEE J. Quantum Electron. (11)

T. Ozeki and T. Ito, “Pulse modulation of DH-(GaAl)As lasers,” IEEE J. Quantum Electron. 9, 388–391 (1973).
[Crossref]

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

K. Utaka, K. Kobayashi, and Y. Suematsu, “Lasing characteristics of GaInAsP/InP integrated twin-guide lasers with first-order distributed Bragg reflectors,” IEEE J. Quantum Electron. 17, 651–658 (1981).
[Crossref]

T. Ikegami and Y. Suematsu, “Carrier lifetime measurement of a junction laser using direct modulation,” IEEE J. Quantum Electron. 4, 148–151 (1968).
[Crossref]

R. Olshansky, C. B. Su, J. Manning, and W. Powazinik, “Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources,” IEEE J. Quantum Electron. 20, 838–854 (1984).
[Crossref]

M. Yamada, S. Ogita, M. Yamagishi, and K. Tabata, “Anisotropy and broadening of optical gain in a GaAs/AIGaAs multiquantum-well laser,” IEEE J. Quantum Electron. 21, 640–645 (1985).
[Crossref]

Y. Arakawa and A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 21, 1666–1674 (1985).
[Crossref]

T. Takahashi and Y. Arakawa, “Nonlinear gain effects in quantum well, quantum well wire, and quantum well box lasers,” IEEE J. Quantum Electron. 27, 1824–1829 (1991).
[Crossref]

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3  μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[Crossref]

U. Feiste, “Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors,” IEEE J. Quantum Electron. 34, 2371–2379 (1998).
[Crossref]

M. Chacinski and R. Schatz, “Impact of losses in the Bragg section on the dynamics of detuned loaded DBR lasers,” IEEE J. Quantum Electron. 46, 1360–1367 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (19)

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

E. P. Haglund, S. Kumari, E. Haglund, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “Silicon-integrated hybrid-cavity 850-nm VCSELs by adhesive bonding: impact of bonding interface thickness on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23, 1700109 (2017).
[Crossref]

T. Shindo, M. Futami, K. Doi, T. Amemiya, N. Nishiyama, and S. Arai, “Design of lateral-current-injection-type membrane distributed-feedback lasers for on-chip optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 19, 1502009 (2013).
[Crossref]

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21, 1502307 (2015).
[Crossref]

K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
[Crossref]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1361–1366 (2003).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

N. Bewtra, D. A. Suda, G. L. Tan, F. Chatenoud, and J. M. Xu, “Modeling of quantum-well lasers with electro-opto-thermal interaction,” IEEE J. Sel. Top. Quantum Electron. 1, 331–340 (1995).
[Crossref]

T. Baba, “Photonic crystals and microdisk cavities based on GaAInAs-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999).
[Crossref]

T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron. 9, 1340–1346 (2003).
[Crossref]

A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 357–376 (2011).
[Crossref]

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11, 990–998 (2005).
[Crossref]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μmm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultra-low operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

T. Sato, K. Takeda, A. Shinya, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Photonic crystal lasers for chip-to-chip and on-chip optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 4900410 (2015).
[Crossref]

T. Fujii, K. Takeda, N.-P. Diamantopouloss, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

IEEE J. Solid-State Circuits (1)

T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits 40, 2633–2645 (2005).
[Crossref]

IEEE Photon. J. (3)

S. Kumari, J. Gustavsson, E. P. Haglund, J. Bengtsson, A. Larsson, G. Roelkens, and R. Baets, “Design of an 845-nm GaAs vertical-cavity silicon-integrated laser with an intracavity grating for coupling to a SiN waveguide circuit,” IEEE Photon. J. 9, 1504109 (2017).
[Crossref]

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic integration of InP wire and SiOx waveguides on Si platform,” IEEE Photon. J. 7, 4900308 (2015).
[Crossref]

T. Hiraki, T. Aihara, H. Nishi, and T. Tsuchizawa, “Deuterated SiN/SiON waveguides on Si platform and their application to C-band WDM filters,” IEEE Photon. J. 9, 2500207 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (14)

S. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
[Crossref]

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

S. Matsuo, T. Nakahara, K. Tateno, and T. Kurokawa, “Novel technology for hybrid integration of photonic and electronic circuits,” IEEE Photon. Technol. Lett. 8, 1507–1509 (1996).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50  Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett. 27, 534–536 (2015).
[Crossref]

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6, 479–481 (1994).
[Crossref]

D. I. Babic, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, Y. Long, and K. Carey, “Room-temperature continuous-wave operation of 1.54-m vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[Crossref]

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL’s bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11, 1554–1556 (1999).
[Crossref]

A. N. AL-Omari, G. P. Carey, S. Hallstein, J. P. Watson, G. Dang, and K. L. Lear, “Low thermal resistance high-speed top-emitting 980-nm VCSELs,” IEEE Photon. Technol. Lett. 18, 1225–1227 (2006).
[Crossref]

D. M. Byrne and B. A. Keating, “A laser diode model based on temperature dependent rate equations,” IEEE Photon. Technol. Lett. 1, 356–359 (1989).
[Crossref]

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85ºC,” IEEE Photon. Technol. Lett. 21, 1154–1156 (2009).
[Crossref]

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19, 1436–1438 (2007).
[Crossref]

G. P. Agrawal, “Effect of gain nonlinearities on the dynamic response of single-mode semiconductor lasers,” IEEE Photon. Technol. Lett. 1, 419–421 (1989).
[Crossref]

IEICE Electron. Express (1)

H. Dalir and F. Koyama, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8, 1075–1081 (2011).
[Crossref]

IEICE Trans. Electron. (2)

H. Tsuda, T. Nakahara, and T. Kurokawa, “Hybrid-integrated smart pixels for dense optical interconnects,” IEICE Trans. Electron. E84-C, 1771–1777 (2001).

T. Fujii, K. Takeda, E. Kanno, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Evaluation of device parameters for membrane lasers on Si fabricated with active-layer bonding followed by epitaxial growth,” IEICE Trans. Electron. E100-C, 196–203 (2017).
[Crossref]

IET Optoelectron. (1)

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

J. Appl. Phys. (7)

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys. 60, 2987–2989 (1986).
[Crossref]

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99, 031101 (2006).
[Crossref]

H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

M. Okai, “Spectral characteristics of distributed feedback semiconductor lasers and their improvements by corrugation-pitch-modulated structure,” J. Appl. Phys. 75, 1–29 (1994).
[Crossref]

H. Statz, C. L. Tang, and J. M. Lavine, “Spectral output of semiconductor lasers,” J. Appl. Phys. 35, 2581–2585 (1964).
[Crossref]

I. Vurgaftman and J. R. Meyer, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

R. H. M. Van De Leur, A. J. G. Schellingerhout, F. Tuinstra, and J. E. Mooij, “Critical thickness for pseudomorphic growth of Si/Ge alloys and superlattices,” J. Appl. Phys. 64, 3043–3050 (1988).
[Crossref]

J. Cryst. Growth (2)

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth 27, 118–125 (1974).
[Crossref]

K. Matsumoto, T. Makino, K. Kimura, and K. Shimomura, “Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate,” J. Cryst. Growth 370, 133–135 (2013).
[Crossref]

J. Lightwave Technol. (14)

D. M. Kuchta, T. N. Huynh, F. E. Doany, L. Schares, C. W. Baks, C. Neumeyr, A. Daly, B. Kogel, J. Rosskopf, and M. Ortsiefer, “Error-free 56  Gb/s NRZ modulation of a 1530-nm VCSEL Link,” J. Lightwave Technol. 34, 3275–3282 (2016).
[Crossref]

Y. Matsui, T. Pham, T. Sudo, G. Carey, B. Young, J. Xu, C. Cole, and C. Roxlo, “28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB laser,” J. Lightwave Technol. 34, 2677–2683 (2016).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

P. V. Mena, J. J. Morikuni, S.-M. Kang, A. V. Harton, and K. W. Wyatt, “A simple rate-equation-based thermal VCSEL model,” J. Lightwave Technol. 17, 865–872 (1999).
[Crossref]

W. Kobayashi, M. Arai, T. Yamanaka, N. Fujiwara, T. Fujisawa, T. Tadokoro, K. Tsuzuki, Y. Kondo, and F. Kano, “Design and fabrication of 10-/40-Gb/s, uncooled electroabsorption modulator integrated DFB laser with butt-joint structure,” J. Lightwave Technol. 28, 164–171 (2010).
[Crossref]

K. Adachi, K. Shinoda, T. Kitatani, T. Fukamachi, Y. Matsuoka, T. Sugawara, and S. Tsuji, “25-Gb/s multichannel 1.3-μm surface-emitting lens integrated DFB laser arrays,” J. Lightwave Technol. 29, 2899–2905 (2011).
[Crossref]

S. Spiga, D. Schoke, A. Andrejew, G. Boehm, and M.-C. Amann, “Effect of cavity length, strain, and mesa capacitance on 1.5-μm VCSELs performance,” J. Lightwave Technol. 35, 3130–3141 (2017).
[Crossref]

Y. Suematsu and K. Iga, “Semiconductor lasers in photonics,” J. Lightwave Technol. 26, 1132–1144 (2008).
[Crossref]

S. Spiga, W. Soenen, A. Andrejew, D. M. Schoke, X. Yin, J. Bauwelinck, G. Boehm, and M.-C. Amann, “Single-mode high-speed 1.5-μm VCSELs,” J. Lightwave Technol. 35, 727–733 (2017).
[Crossref]

J. B. Heroux, T. Kise, M. Funabashi, T. Aoki, C. L. Schow, A. V. Rylyakov, and S. Nakagawa, “Energy-efficient 1060-nm optical link operating up to 28  Gb/s,” J. Lightwave Technol. 33, 733–740 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2016).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, T. Takeda, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33, 1217–1222 (2015).
[Crossref]

A. Abbasi, C. Spatharakis, G. Kanakis, N. Sequeira André, H. Louchet, A. Katumba, J. Verbist, H. Avramopoulos, P. Bienstman, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “High speed direct modulation of a heterogeneously integrated InP/SOI DFB laser,” J. Lightwave Technol. 34, 1683–1687 (2016).
[Crossref]

Y. Matsui, R. Schatz, T. Pham, W. A. Ling, G. Carey, H. M. Daghighian, D. Adams, T. Sudo, and C. Roxlo, “55  GHz bandwidth distributed reflector laser,” J. Lightwave Technol. 35, 397–403 (2017).
[Crossref]

J. Phys. D (1)

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, and T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47, 023001 (2014).
[Crossref]

Jpn. J. Appl. Phys. (2)

R. Stengl, T. Tan, and U. Gösele, “A model for the silicon wafer bonding process,” Jpn. J. Appl. Phys. 28, 1735–1741 (1989).
[Crossref]

Y. Yamamoto and H. Kanbe, “Zn diffusion in InxGa1-xAs with ZnAs2 source,” Jpn. J. Appl. Phys. 19, 121–128 (1980).
[Crossref]

Laser Photon. Rev. (2)

M. K. Smit, J. J. G. M. van der Tol, and M. T. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6, 1–13 (2012).
[Crossref]

S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

Nat. Photonics (8)

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. V. Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Hybrid indium phosphide-on-silicon nanolaser diode,” Nat. Photonics 11, 297–300 (2017).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “A few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]

Opt. Express (19)

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17206–17213 (2007).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308–6315 (2006).
[Crossref]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15, 7506–7514 (2007).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express 14, 8154–8159 (2006).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, T. Takeda, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-μm-long active region on Si substrates,” Opt. Express 26, 1268–1277 (2018).
[Crossref]

T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, H. Takahashi, and E. Yoshida, “Compact and high-sensitivity 100-Gb/s (4 × 25  Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt. Express 20, B393–B398 (2012).
[Crossref]

M. Ahmed, A. Bakry, M. S. Alghamdi, H. Dalir, and F. Koyama, “Enhancing the modulation bandwidth of VCSELs to the millimeter-waveband using strong transverse slow-light feedback,” Opt. Express 23, 15365–15371 (2015).
[Crossref]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref]

D. Inoue, T. Hiratani, K. Fukuda, T. Tomiyasu, T. Amemiya, N. Nishiyama, and S. Arai, “High-modulation efficiency operation of GaInAsP/InP membrane distributed feedback laser on Si substrate,” Opt. Express 23, 29024–29031 (2015).
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, G. Roelkens, R. Baets, and A. Larsson, “Silicon-integrated short-wavelength hybrid-cavity VCSEL,” Opt. Express 23, 33634–33640 (2015).
[Crossref]

C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
[Crossref]

A. Abbasi, J. Verbist, J. Van Kerrebrouck, F. Lelarge, G.-H. Duan, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “28  Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser,” Opt. Express 23, 26479–26485 (2015).
[Crossref]

Opt. Lett. (3)

Optica (2)

Photon. Res. (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 37–38 (1946).
[Crossref]

Phys. Rev. B (2)

R. Eppenga, M. F. H. Shuurmans, and S. Colack, “New k.p theory for GaAs/Ga1-xAlxAs-type quantum wells,” Phys. Rev. B 36, 1554–1564 (1987).
[Crossref]

C. Y. P. Chao and S. L. Chuang, “Spin-orbit-coupling effects on the valence band structure of strained semiconductor quantum wells,” Phys. Rev. B 46, 4110–4122 (1992).
[Crossref]

Proc. IEEE (6)

R. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
[Crossref]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

T. Ikegami and Y. Suematsu, “Resonance-like characteristics of the direct modulation of a junction laser,” Proc. IEEE 55, 122–123 (1967).
[Crossref]

S. Tanaka, F. Kitasawa, and J.-I. Nishizawa, “Amplitude modulation of diode laser light in millimeter-wave region,” Proc. IEEE 56, 135–136 (1968).
[Crossref]

J. E. Goell, “A 274-Mb/s optical-repeater experiment employing a GaAs laser,” Proc. IEEE 61, 1504–1505 (1973).
[Crossref]

H. Kroemer, “A proposed class of heterojunction injection lasers,” Proc. IEEE 51, 1782–1783 (1963).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
[Crossref]

Proc. SPIE (2)

K. Takaki, S. Imaia, S. Kamivab, H. Shimizua, Y. Kawakita, K. Hiraiwa, T. Takagia, H. Shimizua, J. Yoshida, T. Ishikawab, N. Tsukijia, and A. Kasukawa, “1060  nm VCSEL for inter-chip optical interconnection,” Proc. SPIE 7952, 795204 (2011).
[Crossref]

U. Troppenz, J. Kreissl, M. Mohrle, C. Bornholdt, W. Rhebein, B. Sartorius, I. Woods, and M. Schell, “40  Gbit/s directly modulated lasers: physics and application,” Proc. SPIE 7953, 79530F (2011).
[Crossref]

Science (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Other (32)

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, M. Notomi, K. Hasebe, and T. Kakitsuka, “28.5-fJ/bit on-chip optical interconnect using monolithically integrated photonic crystal laser and photodetector,” in European Conference and Exhibition on Optical Communication (2012), paper Th.3.B.2.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Integrated on-chip optical links using photonic-crystal lasers and photodetectors with current blocking trenches,” in Optical Fiber Communication Conference (2013), paper OM2J.5.

T. R. Chen, P. C. Chen, J. Ungar, S. Oh, H. Luong, and N. Bar-Chaim, “Wide temperature range linear DFB lasers at 1.3  μm with very low threshold,” in 15th IEEE International Semiconductor Laser Conference (1996), pp. 169–170, paper Th2.2.

Y.-C. Chang and L. A. Coldren, “Optimization of VCSEL structure for high-speed operation,” in IEEE 21st International Semiconductor Laser Conference (2008), pp. 159–160.

D. Kuchta, “High-capacity VCSEL links,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Tu3C.4.

J. Piprek, Semiconductor Optoelectronic Devices, Introduction to Physics and Simulations (Academic, 2003).

S. L. Chuang, Physics of Optoelectronics Devices (Wiley, 1995).

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, 1993).

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

K. Nakahara, T. Tsuchiya, S. Tanaka, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, E. Nomoto, S. Fujisaki, and M. Kudo, “115°C, 12.5-Gb/s direct modulation of 1.3-μm InGaAlAs-MQW RWG DFB laser with notch-free grating structure for datacom applications,” in Optical Fiber Communication Conference (OFC) (2003), paper PD40-1.

M. Müller, P. Wolf, T. Gründl, C. Grasse, J. Rosskopf, W. Hofmann, D. Bimberg, and M.-C. Amann, “Energy-efficient 1.3  μm short-cavity VCSELs for 30  Gb/s error-free optical links,” in International Semiconductor Laser Conference (ISLC) (2012), paper PD 1.2.

Y. Suematsu and M. Yamada, “Transverse mode control in semiconductor laser,” in Proceedings of IEEE Semiconductor Laser Conference (1972), pp. 305–310.

K. Iga, Laboratory Notebook (1977).

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s Optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (OFC) (2013), paper OM3H.1.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (2015), paper T173.

J. Lavrencik, S. Varughese, J. S. Gustavsson, E. Haglund, A. Larsson, and S. E. Ralph, “Error-free 100  Gbps PAM-4 transmission over 100  m wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (2017), paper W.1.A3.

N. P. Diamantopoulos, W. Kobayashi, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “40-km SSMF transmission of 56/64-Gb/s PAM-4 signals using 1.3-μm directly modulated laser and PIN photodiode,” in Advanced Photonic Congress (2017), paper PW2D.4.

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100  Gb/s optical IM-DD transmission with 10G-class devices enabled by 65  GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (2013), paper OM3H.1.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Optical Fiber Communication Conference (2014), paper M2I.5.

N. P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 120-Gbps DMT transmission using a 1.3-μm membrane laser on Si,” in Optical Fiber Communication Conference (2018), paper M2D.5.

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in 42nd European Conference on Optical Communication (2016), paper Th.3.A.2.

“Ethernet, clause 91,” (2015).

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Optical Fiber Communication Conference (2012), paper OW1H.4.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “Two-section InGaAsP DBR-lasers at 1.55-μm wavelength with 31  GHz direct modulation bandwidth,” in International Conference on Indium Phosphide Related Materials (1997), pp. 665–668, paper ThF4.

T. Kishi, M. Nagatani, S. Kanazawa, S. Nakano, H. Katsurai, T. Fujii, H. Nishi, T. Kakitsuka, K. Hasebe, K. Shikama, Y. Kawajiri, A. Aratake, H. Nosaka, H. Fukuda, and S. Matsuo, “A 137-mW, 4 ch × 25-Gbps low-power compact transmitter flip-chip-bonded 1.3-μm LD-array-on-Si,” in Optical Fiber Communication Conference (2018), paper M2D.2.

“Ethernet task force,” , available at http://www.ieee802.org/3/bs/ .

W. Kobayashi, S. Kanazawa, Y. Ueda, T. Ohno, T. Yoshimatsu, T. Shindo, H. Sanjoh, H. Ishii, S. Matsuo, and M. Itoh, “Monolithically integrated directly modulated DFB laser array with MMI coupler for 100GBASE-LR4 application,” in Optical Fiber Communication Conference (2015), paper Tu3I.2.

H. Nishi, T. Fujii, N. P. Diamantopoulos, K. Takeda, E. Kanno, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Monolithic integration of an 8-channel directly modulated membrane-laser array and a SiN AWG filter on Si,” in Optical Fiber Communication Conference (2018), paper Th3B.2.

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Proceedings of European Conference on Lasers and Electro-Optics (2017), paper CK-9.4.

K. Takeda, E. Kanno, T. Fujii, K. Hasebe, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Continuous-wave operation of ultra-short cavity distributed Bragg reflector lasers on Si substrates,” in Compound Semiconductor Week (2016), paper ThD1-2.

A. Abbasi, B. Moeneclaey, J. Verbist, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “56  Gb/s direct modulation of an InP-on-Si DFB laser diode,” in Proceedings IEEE Optical Interconnects Conference (2017), pp. 31–32.

J. P. Reithmaier, W. Kaiser, L. Bach, A. Forchel, V. Feies, M. Gioannini, I. Montrosset, T. W. Berg, and B. Tromborg, “Modulation speed enhancement by coupling to higher order resonances: a road towards 40  GHz bandwidth lasers on InP,” in International Conference on Indium Phosphide Related Materials (2005), pp. 118–123.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (69)