Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Broadband terahertz metamaterial absorber: design and fabrication

Not Accessible

Your library or personal account may give you access

Abstract

We proposed and experimentally demonstrated a broadband terahertz (THz) metamaterial absorber based on a symmetrical L-shaped metallic resonator. The absorber structure produces two absorption peaks at 0.491 and 0.73 THz, with the absorption rates of 98.6% and 99.6%, respectively. Broadband absorption was obtained from 0.457 to 1 THz, achieving a ${\gt}{90}\%$ absorption bandwidth of 0.543 THz. By analyzing the distributions of the electric and magnetic field at the two resonance frequencies, electric and magnetic dipole resonances were proposed to explain the broadband absorption mechanism. Furthermore, various widths and lengths of the symmetrical L-shaped metallic resonator on the absorption characteristics were investigated. Moreover, the broadband absorption characteristic can be maintained with an incident angle of up to 45° for transverse-electric and 30° for transverse-magnetic polarization. Finally, we experimentally observed a ${\gt}{70}\%$ broadband absorption characteristic from 0.42 to 1 THz. This proposed absorber has the potential for bolometric imaging, modulating, and spectroscopy in the THz region.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Dual and broadband terahertz metamaterial absorber based on a compact resonator structure

Yongzhi Cheng, Haijun Zou, Jiaji Yang, Xuesong Mao, and Rongzhou Gong
Opt. Mater. Express 8(10) 3104-3114 (2018)

Broadband tunable terahertz metamaterial absorber having near-perfect absorbance modulation capability based on a patterned vanadium dioxide circular patch

Qian Zhao, Xuefeng Qin, Chongyang Xu, Haiquan Zhou, and Ben-Xin Wang
Appl. Opt. 62(35) 9283-9290 (2023)

Broadband terahertz absorber with gradient ring resonators based on a discrete spiral topological distribution

Hao Pan, Haifeng Zhang, Xingliang Tian, and Dan Zhang
J. Opt. Soc. Am. B 38(3) 850-857 (2021)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.