Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Transformation optics based on unitary vectors and Fermat’s principle for arbitrary spatial transformation design

Not Accessible

Your library or personal account may give you access

Abstract

A methodology of designing an arbitrary transformation using transformation optics (TO) based on unitary vectors and Fermat’s principle is presented. The TO equation is derived in terms of grid coordinates. The geometry of the transformed space is stored in the grid coordinates rather than the transformation functions. This allows the crafting of an arbitrary transformation by combining several transformation templates together. The touch interface is employed to intuitively apply the transformations. The resulting material parameters are calculated from the proposed method and verified using the anisotropic finite-difference frequency-domain method. Five examples are presented to demonstrate the capability of this method.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries

Zheng Chang, Xiaoming Zhou, Jin Hu, and Gengkai Hu
Opt. Express 18(6) 6089-6096 (2010)

Design method for electromagnetic cloak with arbitrary shapes based on Laplace’s equation

Jin Hu, Xiaoming Zhou, and Gengkai Hu
Opt. Express 17(3) 1308-1320 (2009)

Anisotropic Fermat’s principle for controlling hyperbolic van der Waals polaritons

Sicen Tao, Tao Hou, Yali Zeng, Guangwei Hu, Zixun Ge, Junke Liao, Shan Zhu, Tan Zhang, Cheng-Wei Qiu, and Huanyang Chen
Photon. Res. 10(10) B14-B22 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved