Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications

Not Accessible

Your library or personal account may give you access

Abstract

Compared to the neighboring infrared and microwave regions, the terahertz regime is still in need of fundamental technological advances. We have designed a terahertz (THz) semiconductor metamaterial (MM) waveguide system, which exhibits a significant slow-light effect, based on a classical electromagnetically induced transparency phenomenon. The potential of MMs for THz radiation originates from a resonant electromagnetic response that can be tailored for specific applications. By appropriately adjusting the distance between the two radiative and nonradiative modes, a flat band corresponding to a nearly constant group index (of the order of 4924) in the THz regime can be achieved. Finite-difference time-domain simulations show that the incident pulse can be slowed down. The proposed device from a paucity of naturally occurring materials has useful applications in electronic or photonic properties at terahertz frequencies. This proposed compact configuration may find potential applications in plasmonic slow-light systems, optical buffers, and thermal and electromagnetic modulating applications and temperature sensors.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Tunable terahertz group slowing effect with plasmon-induced transparency metamaterial

Baoku Wang, Tong Guo, Ke Gai, Fei Yan, Ruoxing Wang, and Li Li
Appl. Opt. 61(11) 3218-3222 (2022)

Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial

Zohreh Vafapour and Hossain Ghahraloud
J. Opt. Soc. Am. B 35(5) 1192-1199 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.