Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Error coupling analysis of the laboratory calibration method for a star tracker

Not Accessible

Your library or personal account may give you access

Abstract

A star tracker should be well calibrated before it is equipped in order to achieve high accuracy. There exists, however, the coupling problem between the internal and external parameters for most commonly used laboratory calibration methods, which affect the star tracker’s performance. We theoretically analyze the major aspects of the coupling mechanism based on the star tracker laboratory calibration model, which means the coupling between the principal point and the installation angle. The concept of equivalent principal point error, which illustrates the effectiveness of the calibration even with poor decoupling accuracy between the principal point and the installation angle, is introduced. Simulation and bench experiments are conducted to verify the laboratory calibration method and its coupling mechanism. The decoupling accuracy can be improved with more samples during calibration. In addition, the equivalent principal point error converges quickly and hardly affects the attitude of the star tracker, which is verified by both theory and experiment. The comprehensive calibration accuracy can still reach a high level even with poor decoupling accuracy.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Simulation analysis of dynamic working performance for star trackers

Juan Shen, Guangjun Zhang, and Xinguo Wei
J. Opt. Soc. Am. A 27(12) 2638-2647 (2010)

Laboratory calibration of star sensors using a global refining method

Tao Ye, Xi Zhang, and Jian Feng Xie
J. Opt. Soc. Am. A 35(10) 1674-1684 (2018)

Optimized star sensors laboratory calibration method using a regularization neural network

Chengfen Zhang, Yanxiong Niu, Hao Zhang, and Jiazhen Lu
Appl. Opt. 57(5) 1067-1074 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.