Abstract

We propose a system that utilizes reflection holograms to realize color holography that illuminates from the back site. In this configuration, two types of polarizers and two quarter-wave plates are used. By combining these elements and controlling the polarization direction of the transmitted beam that passes through them, it is possible to avoid the drawbacks of the conventional method of illuminating from the front. The reconstructed image has a wide viewing angle, and a clear color image can be observed. The effectiveness of this configuration in the proposed color holography system is discussed with respect to the dependence of the polarization characteristics of the elements on the angle of incidence. We also constructed a benchtop prototype with this configuration and evaluated its effectiveness.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
More Like This
Color holography to produce highly realistic three-dimensional images

Hans I. Bjelkhagen and Evangelos Mirlis
Appl. Opt. 47(4) A123-A133 (2008)

Optical scanning holography with a polarization directed flat lens

Chen-Ming Tsai, Hong-Yuan Sie, Ting-Chung Poon, and Jung-Ping Liu
Appl. Opt. 60(10) B113-B118 (2021)

Backscatter multiple wavelength digital holography for color micro-particle imaging

Ramesh Giri and Matthew J. Berg
Appl. Opt. 61(5) B83-B95 (2022)

References

  • View by:

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref]
  2. S. A. Benton, “Holographic displays,” Opt. Eng. 19, 686–690 (1980).
    [Crossref]
  3. P. Hariharan, Optical Holography, 2nd ed. (Cambridge University, 1996), Chap. 4.
  4. P. Hariharan, “Colour holography,” in Progress in Optics, E. Wolf, ed. (1983), Vol. 20, pp. 265–324.
  5. T. Kubota, “Recording of high quality color holograms,” Appl. Opt. 25, 4141–4145 (1986).
    [Crossref]
  6. H. I. Bjelkhagen, “Super-realistic imaging based on color holography and Lippmann photography,” Proc. SPIE 4737, 131–141 (2002).
    [Crossref]
  7. S. J. Zacharovas, D. B. Ratcliffe, G. R. Skokov, S. P. Vorobiv, P. I. Kumonko, and Y. A. Sazonov, “Recent advances in holographic materials from Slavich,” Proc. SPIE 4149, 73–80 (2000).
    [Crossref]
  8. Y. Gentet and S. Lee, “Ultimate 04 the new reference for ultra-realistic color holography,” in International Conference on Emerging Trends & Innovation in ICT (ICEI) (2017), pp. 162–166.
  9. S. H. Stevenson, “DuPont multicolor holographic recording films,” Proc. SPIE 3011, 231–241 (1997).
    [Crossref]
  10. Covestro AG, “Bayfol HX200 description and application information.”, https://solutions.covestro.com/en/products/bayfol/bayfol-hx200_86194384-20033146
  11. D. Kodama and T. Hotta, “Transmissively viewable reflection hologram,” U.S. patent6,366, 371 B1 (2April2002).
  12. Y. Gentet and P. Gentet, “CHIMERA, a new holoprinter technology combining low-power continuous lasers and fast printing,” Appl. Opt. 58, G226–G230 (2019).
    [Crossref]
  13. T. Shimizu, Y. Awatsuji, and T. Kubota, “Simulator for computer-aided design of holograms,” Opt. Eng. 40, 2524–2531 (2001).
    [Crossref]
  14. E. B. Champagne, “Non-paraxial imaging and aberration properties in holography,” J. Opt. Soc. Am. 57, 51–55 (1967).
    [Crossref]
  15. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [Crossref]
  16. http://www.piphotonics.co.jp/EN/index.html .

2019 (1)

2002 (1)

H. I. Bjelkhagen, “Super-realistic imaging based on color holography and Lippmann photography,” Proc. SPIE 4737, 131–141 (2002).
[Crossref]

2001 (1)

T. Shimizu, Y. Awatsuji, and T. Kubota, “Simulator for computer-aided design of holograms,” Opt. Eng. 40, 2524–2531 (2001).
[Crossref]

2000 (1)

S. J. Zacharovas, D. B. Ratcliffe, G. R. Skokov, S. P. Vorobiv, P. I. Kumonko, and Y. A. Sazonov, “Recent advances in holographic materials from Slavich,” Proc. SPIE 4149, 73–80 (2000).
[Crossref]

1997 (1)

S. H. Stevenson, “DuPont multicolor holographic recording films,” Proc. SPIE 3011, 231–241 (1997).
[Crossref]

1986 (1)

1980 (1)

S. A. Benton, “Holographic displays,” Opt. Eng. 19, 686–690 (1980).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

1967 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Awatsuji, Y.

T. Shimizu, Y. Awatsuji, and T. Kubota, “Simulator for computer-aided design of holograms,” Opt. Eng. 40, 2524–2531 (2001).
[Crossref]

Benton, S. A.

S. A. Benton, “Holographic displays,” Opt. Eng. 19, 686–690 (1980).
[Crossref]

Bjelkhagen, H. I.

H. I. Bjelkhagen, “Super-realistic imaging based on color holography and Lippmann photography,” Proc. SPIE 4737, 131–141 (2002).
[Crossref]

Champagne, E. B.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Gentet, P.

Gentet, Y.

Y. Gentet and P. Gentet, “CHIMERA, a new holoprinter technology combining low-power continuous lasers and fast printing,” Appl. Opt. 58, G226–G230 (2019).
[Crossref]

Y. Gentet and S. Lee, “Ultimate 04 the new reference for ultra-realistic color holography,” in International Conference on Emerging Trends & Innovation in ICT (ICEI) (2017), pp. 162–166.

Hariharan, P.

P. Hariharan, Optical Holography, 2nd ed. (Cambridge University, 1996), Chap. 4.

P. Hariharan, “Colour holography,” in Progress in Optics, E. Wolf, ed. (1983), Vol. 20, pp. 265–324.

Hotta, T.

D. Kodama and T. Hotta, “Transmissively viewable reflection hologram,” U.S. patent6,366, 371 B1 (2April2002).

Kodama, D.

D. Kodama and T. Hotta, “Transmissively viewable reflection hologram,” U.S. patent6,366, 371 B1 (2April2002).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Kubota, T.

T. Shimizu, Y. Awatsuji, and T. Kubota, “Simulator for computer-aided design of holograms,” Opt. Eng. 40, 2524–2531 (2001).
[Crossref]

T. Kubota, “Recording of high quality color holograms,” Appl. Opt. 25, 4141–4145 (1986).
[Crossref]

Kumonko, P. I.

S. J. Zacharovas, D. B. Ratcliffe, G. R. Skokov, S. P. Vorobiv, P. I. Kumonko, and Y. A. Sazonov, “Recent advances in holographic materials from Slavich,” Proc. SPIE 4149, 73–80 (2000).
[Crossref]

Lee, S.

Y. Gentet and S. Lee, “Ultimate 04 the new reference for ultra-realistic color holography,” in International Conference on Emerging Trends & Innovation in ICT (ICEI) (2017), pp. 162–166.

Ratcliffe, D. B.

S. J. Zacharovas, D. B. Ratcliffe, G. R. Skokov, S. P. Vorobiv, P. I. Kumonko, and Y. A. Sazonov, “Recent advances in holographic materials from Slavich,” Proc. SPIE 4149, 73–80 (2000).
[Crossref]

Sazonov, Y. A.

S. J. Zacharovas, D. B. Ratcliffe, G. R. Skokov, S. P. Vorobiv, P. I. Kumonko, and Y. A. Sazonov, “Recent advances in holographic materials from Slavich,” Proc. SPIE 4149, 73–80 (2000).
[Crossref]

Shimizu, T.

T. Shimizu, Y. Awatsuji, and T. Kubota, “Simulator for computer-aided design of holograms,” Opt. Eng. 40, 2524–2531 (2001).
[Crossref]

Skokov, G. R.

S. J. Zacharovas, D. B. Ratcliffe, G. R. Skokov, S. P. Vorobiv, P. I. Kumonko, and Y. A. Sazonov, “Recent advances in holographic materials from Slavich,” Proc. SPIE 4149, 73–80 (2000).
[Crossref]

Stevenson, S. H.

S. H. Stevenson, “DuPont multicolor holographic recording films,” Proc. SPIE 3011, 231–241 (1997).
[Crossref]

Vorobiv, S. P.

S. J. Zacharovas, D. B. Ratcliffe, G. R. Skokov, S. P. Vorobiv, P. I. Kumonko, and Y. A. Sazonov, “Recent advances in holographic materials from Slavich,” Proc. SPIE 4149, 73–80 (2000).
[Crossref]

Zacharovas, S. J.

S. J. Zacharovas, D. B. Ratcliffe, G. R. Skokov, S. P. Vorobiv, P. I. Kumonko, and Y. A. Sazonov, “Recent advances in holographic materials from Slavich,” Proc. SPIE 4149, 73–80 (2000).
[Crossref]

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

J. Opt. Soc. Am. (1)

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Opt. Eng. (2)

S. A. Benton, “Holographic displays,” Opt. Eng. 19, 686–690 (1980).
[Crossref]

T. Shimizu, Y. Awatsuji, and T. Kubota, “Simulator for computer-aided design of holograms,” Opt. Eng. 40, 2524–2531 (2001).
[Crossref]

Proc. SPIE (3)

S. H. Stevenson, “DuPont multicolor holographic recording films,” Proc. SPIE 3011, 231–241 (1997).
[Crossref]

H. I. Bjelkhagen, “Super-realistic imaging based on color holography and Lippmann photography,” Proc. SPIE 4737, 131–141 (2002).
[Crossref]

S. J. Zacharovas, D. B. Ratcliffe, G. R. Skokov, S. P. Vorobiv, P. I. Kumonko, and Y. A. Sazonov, “Recent advances in holographic materials from Slavich,” Proc. SPIE 4149, 73–80 (2000).
[Crossref]

Other (6)

Y. Gentet and S. Lee, “Ultimate 04 the new reference for ultra-realistic color holography,” in International Conference on Emerging Trends & Innovation in ICT (ICEI) (2017), pp. 162–166.

P. Hariharan, Optical Holography, 2nd ed. (Cambridge University, 1996), Chap. 4.

P. Hariharan, “Colour holography,” in Progress in Optics, E. Wolf, ed. (1983), Vol. 20, pp. 265–324.

Covestro AG, “Bayfol HX200 description and application information.”, https://solutions.covestro.com/en/products/bayfol/bayfol-hx200_86194384-20033146

D. Kodama and T. Hotta, “Transmissively viewable reflection hologram,” U.S. patent6,366, 371 B1 (2April2002).

http://www.piphotonics.co.jp/EN/index.html .

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Configuration of the proposed system. AP1, AP2, absorption-type polarizer; WP1, WP2, quarter-wave plate; RH, reflection hologram; RP, reflective polarizer; O, observer.
Fig. 2.
Fig. 2. Optical layout for measuring polarization characteristics of AP1. D, detector; $I{{0}}$, intensity of incident beam; $I{{1}}$, intensity of transmitted beam.
Fig. 3.
Fig. 3. Dependence of the incident angle on polarization characteristics for AP1 (SEG1223CUHC film). The angle of the incident beam changes in the $xz$ plane. $\theta y = {{0}}$. APxT, transmission axis is the same as that of the polarization direction of the incident beam; APxS, transmission axis is perpendicular to that of the polarization direction of the incident beam. The plots of APxS-R and APxS-G are hidden behind APxS-B.
Fig. 4.
Fig. 4. Dependence of the incident angle on the polarization characteristics for AP1 (SEG1223CUHC film). The angle of the incident beam changes in the $y {-} z$ plane. $\theta x = {{0}}^\circ$. APyT, transmission axis is the same as that of the polarization direction of the incident beam; APyS, transmission axis is perpendicular to that of the polarization direction of the incident beam. The plots of APyS-R and APyS-G are hidden behind APyS-B.
Fig. 5.
Fig. 5. Dependence of the incident angle on the polarization characteristics for WP1 (NZF film). The angle of the incident beam changes in the $x {-} z$ plane. $\theta y = {{0}}^\circ$. WxT, polarization direction of an AP is perpendicular to that of the incident beam; WxS, polarization direction of the AP is the same as that of the incident beam.
Fig. 6.
Fig. 6. Dependence of the incident angle on the polarization characteristics for RP (WGFfilm). The angle of the incident beam changes in the $x {-} z$ plane. $\theta y = {{0}}^\circ$. RPxR, reflection axis is the same as that of the polarization direction of the incident beam (s-polarized light); RPxS, reflection axis is perpendicular to that of the polarization direction of the incident beam. The plots of RPxS-R and RPxS-G are hidden behind RPxS-B.
Fig. 7.
Fig. 7. Optical arrangement for analyzing behavior of the beam reconstructed with the RH when it is illuminated from back site. (a) Recording, (b) reconstruction.
Fig. 8.
Fig. 8. Benchtop prototype of proposed system.
Fig. 9.
Fig. 9. Example of reconstructed image of color hologram using proposed system.
Fig. 10.
Fig. 10. Effect of external light on the reconstructed image when fluorescent lamp was mounted on ceiling. (a) Reconstructed image with conventional system; (b) reconstructed image with proposed system.

Metrics