Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Spurious fringe processing for dielectric metasurface profile measurement using white-light scanning interferometry

Not Accessible

Your library or personal account may give you access

Abstract

Dielectric metasurfaces, which are capable of manipulating incident light, have been a novel branch of flat optics. This modulation ability is realized by nanostructures with space-variant geometrical parameters such as height and diameter. Therefore, accurate profile measurement of metasurfaces is of great importance. White-light scanning interferometry is widely used for profile measurement. The step height is retrieved by locating the envelope’s peak. However, spurious fringes attached to the desired fringes were observed at the measured area near the edge of nanostructures. Their amplitude distributions vary with the density of nanostructures as well as distance to the edge. Further, anomalous coherence signals with two fringe envelopes are produced, which result in inaccurate measurement results. We attributed this phenomenon to the complex light modulation by the nanostructures. When referring to the anomalous coherence signals for the top of the nanostructures, one envelope is produced by the top, and the other is produced by the bottom; however, it is difficult to distinguish these two, which is the same case for the bottom of the nanostructures. To automatically solve these obstacles, a signal processing method, which integrates the image segmentation technology to identify and divide the anomalous coherence signals, along with a Morlet wavelet transform to extract the fringe envelope, suitable for any measured area of the dielectric metasurface, is proposed. One metasurface belt consisting of seven kinds of nanopillars with varying arrayed densities that produce different coherence signals is measured. The diameter distribution ranges from 500 to 1250 nm with a constant height of 1850 nm. The local periods in the $X$ and $Y$ directions are 3020 and 1740 nm, respectively. Measurement results demonstrate the validity of the proposed method for spurious fringes processing.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Fringe modulation skewing effect in white-light vertical scanning interferometry

Akiko Harasaki and James C. Wyant
Appl. Opt. 39(13) 2101-2106 (2000)

Fast template matching method in white-light scanning interferometry for 3D micro-profile measurement

Yiliang Huang, Jian Gao, Lanyu Zhang, Haixiang Deng, and Xin Chen
Appl. Opt. 59(4) 1082-1091 (2020)

Surface profile measurement in white-light scanning interferometry using a three-chip color CCD

Suodong Ma, Chenggen Quan, Rihong Zhu, Cho Jui Tay, and Lei Chen
Appl. Opt. 50(15) 2246-2254 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.