Abstract

High optical performance systems with wide field-of-view (FOV) have important applications in remote sensing. The radial basis functions, which have a prominent local characteristic in surface description, have attracted much attention in recent years. In this paper, an effective design method for the wide FOV imaging system using Gaussian radial basis function freeform surfaces is proposed. The FOV of the optical system is extended from a relatively small value to a larger one, and the Gaussian radial basis function surfaces are extended stepwise based on certain criteria. A high image quality and small distortion off-axis freeform three-mirror system with a wide FOV (${{60}}^\circ \times {0.6}^\circ$) is designed as an example. Tolerance analysis considering both surface figure error and assembly error is performed. The design results demonstrate the effectiveness of the proposed method.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface freeform and field of view

Qingyu Meng, Hongyuan Wang, Wenjing Liang, Zhiqiang Yan, and Bingwen Wang
Appl. Opt. 58(3) 609-615 (2019)

Optimization method using nodal aberration theory for coaxial imaging systems with radial basis functions based on surface slope

Shuai Zhang, Liuchang Xiao, Xing Zhao, Lipei Song, Yongji Liu, Lingjie Wang, Guangwei Shi, and Weiwei Liu
Appl. Opt. 60(9) 2722-2730 (2021)

Description and tolerance analysis of freeform surface figure error using specific-probability-distributed Gaussian radial basis functions

Junhao Ni, Tong Yang, Yue Liu, Dewen Cheng, and Yongtian Wang
Opt. Express 27(22) 31820-31839 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription