Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Numerical simulations on narrow-linewidth photonic microwave generation based on a QD laser simultaneously subject to optical injection and optical feedback

Not Accessible

Your library or personal account may give you access

Abstract

Based on a three-level model for quantum dot (QD) lasers, the characteristics of the photonic microwave generated by a QD laser simultaneously subject to optical injection and optical feedback are numerically investigated. First, the performance of the microwave signal generated by an optical injected QD laser operating at period one state are analyzed, and the mappings of the frequency and intensity of the generated microwave in the parameter space of the frequency detuning and injection strength are given, which are roughly similar to those reported experimentally. Next, an optical feedback loop is further introduced to the optically injected QD laser for compressing the linewidth of the microwave signal, and the results demonstrate that the linewidth of the generated microwave can be reduced by at least 1 order of magnitude under suitable feedback parameters. Finally, the effect of the linewidth enhancement factor on the generated microwave signal is analyzed.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Numerical investigation of photonic microwave generation in an optically injected semiconductor laser subject to filtered optical feedback

Chenpeng Xue, Songkun Ji, Yanhua Hong, Ning Jiang, Hongqiang Li, and Kun Qiu
Opt. Express 27(4) 5065-5082 (2019)

Narrow-linewidth microwave generation using AlGaInAs/InP microdisk lasers subject to optical injection and optoelectronic feedback

Xiu-Wen Ma, Yong-Zhen Huang, Ling-Xiu Zou, Bo-Wen Liu, Heng Long, Hai-Zhong Weng, Yue-De Yang, and Jin-Long Xiao
Opt. Express 23(16) 20321-20331 (2015)

Characteristics of microwave photonic signal generation using vertical-cavity surface-emitting lasers with optical injection and feedback

Chenpeng Xue, Da Chang, Yuanlong Fan, Songkun Ji, Zuxing Zhang, Hong Lin, Paul S. Spencer, and Yanhua Hong
J. Opt. Soc. Am. B 37(5) 1394-1400 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.