Abstract

Underwater optical communication has been a promising technology but is severely affected by underwater turbulence due to the resulting fluctuations in the index of refraction. In this paper, a revised spatial power spectrum model is obtained that considers the refraction index to be a function of the eddy diffusivity ratio, assuming the underwater turbulence is anisotropic. The scintillation indices for both plane and spherical waves that propagate in underwater turbulence are derived based on this model. Thereafter, the performance of an optical communication system, i.e., the outage probability and bit error rate, with the associated aperture averaging effect is considered. The simulation results demonstrate that temperature-induced and salinity-induced turbulence have distinct influences on the scintillation index and consequently result in different system performances. In addition, the variation in the eddy diffusivity ratio in some intervals induces more complicated results for underwater optical communication. Moreover, the effect of the receiver aperture diameter on the aperture averaging factor is presented in anisotropic underwater turbulence. Such an effect is more obvious in the plane wave case than in the spherical wave case. These results can find potential application in the engineering design of optical communication systems in an underwater environment.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Underwater optical communication performance under the influence of the eddy diffusivity ratio

Peng Yue, Mengjie Wu, Xiang Yi, Zongmin Cui, and Xiaohui Luan
J. Opt. Soc. Am. A 36(1) 32-37 (2019)

Effect of eddy diffusivity ratio on underwater optical scintillation index

Mohammed Elamassie, Murat Uysal, Yahya Baykal, Mohamed Abdallah, and Khalid Qaraqe
J. Opt. Soc. Am. A 34(11) 1969-1973 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription