Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Linear depolarization ratios of nitrate-coated mineral dust particles in haze episodes

Not Accessible

Your library or personal account may give you access

Abstract

This study reports an internal mixed particle model of dust and nitrate aerosols using the actual haze condition. We performed accurate calculations of linear depolarization ratios (LDR) of nitrate-coated mineral dust particles at three wavelengths (0.35, 0.53, and 1.06 µm) using the T-matrix method. The LDRs of the mono-disperse aerosol particles evolve differently as expressions in the Rayleigh and Mie domains. In the Rayleigh domain, the LDRs increase with the core–shell ratio and the aspect ratio and decrease when the wavelength increases. The forward and backward LDRs depend more on aspect ratio than on the core–shell ratio. In the Mie domain, the LDRs overall increase with the core–shell ratio and the aspect ratio, but there is no significant regular change. When the wavelength increases, the gradual change can be explained by the size parameter of the particles in the vicinity of the Rayleigh domain. For poly-disperse particles, the core–shell ratio mainly affects the position of the side-scattering peak, whereas aspect ratio affects the LDRs. The backscattering LDRs depend more on the variation of aspect ratio, and the core–shell ratio only affects LDRs in a small range. Furthermore, our results on the LDRs are highly promising for remote sensing of the non-spherical and inhomogeneous properties of fine aerosols compared with AERONET measurements. Our results provide a comprehensive understanding of the LDR evolution for coated non-spherical particles in a haze atmosphere. The LDRs can be used as an empirical reference for remote sensing to distinguish coated non-spherical particles.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Assessing the depolarization capabilities of nonspherical particles in a super-ellipsoidal shape space

Lei Bi, Wushao Lin, Dong Liu, and Kejun Zhang
Opt. Express 26(2) 1726-1742 (2018)

Vertical profiles of pure dust and mixed smoke–dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations

Detlef Müller, Igor Veselovskii, Alexei Kolgotin, Matthias Tesche, Albert Ansmann, and Oleg Dubovik
Appl. Opt. 52(14) 3178-3202 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved