Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Low-noise and high-sensitivity Φ-OTDR based on an optimized dual-pulse heterodyne detection scheme

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, a novel phase-sensitive optical time-domain reflectometry ($\Phi $-OTDR) based on the optimized dual-pulse heterodyne detection scheme (DHDS) is proposed, which is designed to implement distributed vibration sensing with low phase noise and high sensitivity. The optimized DHDS employs an unbalanced interferometer to separate a light pulse into dual probe pulses so that they are generated by the laser at the same time. This ensures that the measurement sensitivity of a phase-interrogation-based $\Phi $-OTDR can be improved simply by increasing the space interval of the dual probe pulses while the phase noise of the $\Phi $-OTDR does not deteriorate. In addition, the proposed DHDS utilizes only one acousto-optic modulator (AOM) to shift the frequencies of the dual probe pulses so as to eliminate the effects of frequency shift jitters, and thus guarantees low phase noise level of a $\Phi $-OTDR. The distributed vibration sensing performances of the $\Phi $-OTDR with the proposed DHDS are theoretically and experimentally studied in terms of multi-event signal restoration and phase noise level. The proposed approach solves the contradiction between the measurement sensitivity and phase noise of a $\Phi $-OTDR and promotes the $\Phi $-OTDR to the applications of distributed weak vibration sensing.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
SNR dependence of measurement stability of heterodyne phase-sensitive optical time-domain reflectometry

Yang Lu, Zhijie Yu, Zewu Ju, Xiaoyang Hu, Mo Chen, and Zhou Meng
Appl. Opt. 59(21) 6333-6339 (2020)

Quantitative demodulation of distributed low-frequency vibration based on phase-shifted dual-pulse phase-sensitive OTDR with direct detection

Shuaiqi Liu, Liyang Shao, Fei-Hong Yu, Weijie Xu, Mang I. Vai, Dongrui Xiao, Weihao Lin, Jie Hu, Fang Zhao, Guoqing Wang, Weizhi Wang, Huanhuan Liu, Perry P. Shum, and Feng Wang
Opt. Express 30(6) 10096-10109 (2022)

Fading-free Φ-OTDR evaluation based on the statistical analysis of phase hopping

Heng Qian, Bin Luo, Haijun He, Yin Zhou, Xihua Zou, Wei Pan, and Lianshan Yan
Appl. Opt. 61(23) 6729-6735 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.